The Reaction Talc * Forsterite = Enstatite + Hro: New Experimentalresults and Petrologicalimplications Ar,Rsour

Total Page:16

File Type:pdf, Size:1020Kb

The Reaction Talc * Forsterite = Enstatite + Hro: New Experimentalresults and Petrologicalimplications Ar,Rsour AmericanMineralogist, Volume 83, pages 5l-57, 1998 The reaction talc * forsterite = enstatite + HrO: New experimentalresults and petrologicalimplications Ar,rsouR. PlwrBv Departmentof Earth Sciences,University of Manchester,Oxford Road, ManchesterM13 gPL, U.K. Ansrnacr The reaction talc * forsterite = enstatite + HrO has been investigatedbetween 6 and 20 kbar. Previous high-pressureexperimental studies suggestedvarious reaction positions, mostly with positive P-7 slopes. The new results show that the reaction has a negative slope in the pressurerange studied. It was bracketedbetween 640 and 680'C at l0 kbar, between 620 and 640 "C at 15 kbar, and between 580 and 600 'C at 20 kbar. The growth of antigorite at high pressuresprevented the reaction from being determinedabove 20 kbar. The reaction position is consistentwith the previous low-pressuredata of Chernosky et al. (1985), is in very good agreementwith the position calculated using the thermodynamic databaseof Berman (1988), and is in reasonableagreement with the calculation using the thermodynamic databaseof Holland and Powell (1990). The high reaction temperatures suggestedby previous high-pressureexperiments may reflect metastableor quench growth of talc in those experiments.Talc in equilibrium with forsterite is stable over a wide P-7 range in hydrothermally altered and metamorphosedulffamafic rocks and may be important for carrying HrO into subduction zones. However, talc dehydration occurs at too shallow a depth for the HrO to contribute directly to subduction zone volcanism. INrnonucrroN and releasesits HrO through a series of dehydration re- Talc, Mg.SioO,o(OH)r,is a common mineral in hydro- actions. These reactions may play a major role in sub- thermally altered and metamorphosedultramafic rocks. In duction zone processesby providing the HrO necessary these rocks it is commonly associatedwith olivine and for volcanism or by triggering earthquakes.In addition, other hydrous minerals such as serpentineand amphibole. HrO releasedby these actions may become incorporated The maximum stability of end-membertalc, as given by in new high-pressurehydrous phases,e.g., densehydrous the reaction talc : enstatite + quartz + H,O, occurs at magnesiumsilicates or in nominally anhydrousminerals. -800 "C at 10-30 kbar (Chernoskyer al. 1985;Jenkins These phases may transport the HrO to much greater et al. 1991). However, in typical altered ultramafic rock depth than the stability of common metamorphicminerals in which talc coexistswith olivine, it breaksdown at low- such as talc. er temperaturesthrough reaction with the olivine. The Several experimental investigationsof reaction t have end-member reaction in the system MgO-SiOr-HrO been published. For example, as part of a comprehensive (MSH) is: study of phaseequilibria in the systemMSH at low pres- sures,Chernosky et al. (1985)determined its positionup talc + forsterite: 5enstatite+ H,O (1) to 6 kbar. Their results on this reaction and others in- Ta, MgisiaOr0(OH)2 Fo, Mg2SiOl En, MgSrOl volving talc formed the basis for the determinationof the This reaction is significant becauseit determinesnot only enthalpy of talc in the internally consistentthermodynam- the maximum stability of talc in equilibrium with for- ic databasesof Holland and Powell (1990) and Berman sterite but also the highest temperatureat which HrO can (1988).The experimentaldata of Chernoskyet al. (1985) be stored in typical altered ultramafic rock at moderateto and the position of reaction I calculated using the data- high pressures.The amphibole-bearingMSH assemblage basesare shown in Figure 1, togetherwith other previous anthophyllite + forsterite is stableto higher temperatures data on reaction1. than talc + forsterite but is not stable above -8 kbar The results of Chernoskyet al. (1985) on talc reactions (Chernosky et al. 1985). Serpentine is more abundant are generally self-consistentand so the calculatedreaction than talc at low pressuresand temperatures,but below I passesthrough their low-pressure brackets. However -15 kbar it breaks down at a temperature lower than this consistency does not extend to the previous high- reaction 1. Reaction I could therefore play an important pressureexperimental studies, which have produced re- role in affecting the conditions of HrO storage in the sults inconsistent with each other and with the calcula- Earth's mantle, parlicularly in subduction zones. Here, tions. The most-cited high-pressurereversal experiments hydrated oceanic lithosphereis subductedinto the mantle are those of Kitahara et al. (1966), who obtained phase- 0003-004x/98/0102-0051$05.00 sl 52 PAWLEY: TALC-FORSTERITE REACTIONS H a2O Chedoslyeral i1985) H Kilahanerdl (1966) Fo- o 15 H Yamamoroand Atimoto (1977) L i3'---O Ulrer and Tronmdod ( I 9951 700 Temperature('C) FrcurB 1. Resultsof previousstudies on thereaction Ta f Temperature("C) Fo - En + HrO,and calculation of thereaction using the com- puterprograms THERMOCALC (Powell and Holland 1988) and TWQ (Berman1991). Program versions are THERMOCALC v2.5 (thermodynamicdata generated February 1997) and TWQ v1.0.Reaction temperatures were also calculated using TWQ v2.01(March 1997) and up to 30 kbarare within 2 'C of those calculatedusing vl 0 Thecalculation using v2.01 is notshown, however,as this versionof the databasedoes not includeanti- gorite,as requiredfor the other reactionsshown in Figure2. Fo En SiO2 : grew, : Closedsymbols Ta t Fo opensymbols En grew. Frcuns2. Equilibriain thesystem MSH around the invariant pointinvolving Th, Atg, Fo, En, and H.O, calculated using TWQ. Solidlines are stable equilibria, dashed lines metastable. Com- equilibrium brackets between 10 and 30 kbar. As shown patibility diagramsare shownfor stableassemblages in each in Figure 1, their bracket at 10 kbar occurs at a much field.The numberscorrespond to thereactions given in thetext. point higher temperaturethan the 6 kbar bracket of Chernosky Notethat stability levels relate to thisinvariant only. et al. (1985). Given that the data of Chernosky et al. (1985) suggestthat the maximum thermal stability of Ta The stabilities of other hydrous MSH phasesare also + Fo is at -5-6 kbar, with the reaction bending back to relevant to this study. For example, the experiments of lower temperaturesat higher pressures,the two sets of Ulmer and Trommsdorff (1995) showed that the serpen- resultscannot be reconciled.Chernosky et al. (1985)sug- tine mineral antigorite [Atg, Mgo.Si.oO*.(OH)ur]is stable gestedthat the apparentlyhigher-temperature brackets of at low temperaturesand high pressures.At low pressures Kitahara et al. (1966) are becauseof inaccurate calibra- and high temperatures,antigorite dehydratesthrough the tion of their piston-cylinder apparatus,whereas Berman reaction (1988) suggestedthat the error lies in the use of poorly antigorite : talc * forsterite + HrO (2) characterizedstarting materials synthesizedin very short experiments.This substantialdiscrepancy between high- which has been reversedbetween 2 and 15 kbar by Evans and low-pressure data indicates the need for a redeter- et al. (1976).Their bracketswere usedby Berman(1988) mination of reaction 1 at pressuresabove 6 kbar. in deriving the enthalpy data for antigorite in his data- Reaction I has been investigatedin other studiesof the base.The position of reaction 2 and all others around the MHS system. For example, in synthesis experiments at invariant point involving Ta, Atg, Fo, En, and H,O, as =29 kbar, Yamamoto and Akimoto (1977) obtained a re- calculated using the program TWQ, are shown in Figure action position -80 'C higher than that suggestedby Ki- 2. (Becauseantigorite is not presentin THERMOCALC, tahara et al. (1966), which is itself much higher than the a similar calculation cannot be performed using that calculatedcurve (Fig. 1). Yamamoto and Akimoto (1977) database.) accepted the possibility of disequilibrium in their short Anthophyllite is anothermineral potentially relevant to synthesis experiments and cited the need for reversal the presentstudy, becauseat low pressuresand high tem- expenments. peraturesTa + Fo react to anthophyllite rather than en- The assemblageTa + Fo was produced in the inves- statite. However the reaction is not directly relevant to tigation of serpentinestability by Ulmer and Tiommsdorff this study, becausebelow 700'C anthophylliteis only (1995) and again appearedto be stable to higher temper- stable below 8 kbar, breaking down at higher pressures atures than calculated. Those experiments, although not to Ta + En (Chernoskyet al. 1985). designed specifically to investigate reaction l, reinforce This paper reports the reinvestigation of reaction I be- the need for a redeterminationof this reaction by reversal tween 6 and 20 kbar. The results are in very good agree- expenments. ment with the position of the reaction calculated using PAWLEY: TALC-FORSTERITE REACTIONS 53 TWQ and are close to the position calculated using TeeLe 1. Exoerimentalresults THERMOCALC. The reasonsfor the discrepancies with EXOer- previous experimentsare examined. ment Starting Duration number material P (kbar) f ("C) (hours) ExpBmlrBNrAL PRocEDURES The reaction talc + forsterite = enstatite + H2Ousing natural talc Starting materials for the experiments on reaction I 23 TFE 6 0 670 280 No reaction were 1:1:5mixtures of naturalor synthetictalc, synthetic 21 TFE 6 0 679 312 No reaction 19 Expt 4 8.0 660 353 Ta + Fo'f. forsterite, and synthetic enstatite. The natural talc has 8 TFE 10 O 620 792 Ta + Fo'l been used in previous studies(Pawley et al. 1995;
Recommended publications
  • The Forsterite-Anorthite-Albite System at 5 Kb Pressure Kristen Rahilly
    The Forsterite-Anorthite-Albite System at 5 kb Pressure Kristen Rahilly Submitted to the Department of Geosciences of Smith College in partial fulfillment of the requirements for the degree of Bachelor of Arts John B. Brady, Honors Project Advisor Acknowledgements First I would like to thank my advisor John Brady, who patiently taught me all of the experimental techniques for this project. His dedication to advising me through this thesis and throughout my years at Smith has made me strive to be a better geologist. I would like to thank Tony Morse at the University of Massachusetts at Amherst for providing all of the feldspar samples and for his advice on this project. Thank you also to Michael Jercinovic over at UMass for his help with last-minute carbon coating. This project had a number of facets and I got assistance from many different departments at Smith. A big thank you to Greg Young and Dale Renfrow in the Center for Design and Fabrication for patiently helping me prepare and repair the materials needed for experiments. I’m also grateful to Dick Briggs and Judith Wopereis in the Biology Department for all of their help with the SEM and carbon coater. Also, the Engineering Department kindly lent their copy of LabView software for this project. I appreciated the advice from Mike Vollinger within the Geosciences Department as well as his dedication to driving my last three samples over to UMass to be carbon coated. The Smith Tomlinson Fund provided financial support. Finally, I need to thank my family for their support and encouragement as well as my friends here at Smith for keeping this year fun and for keeping me balanced.
    [Show full text]
  • Forsterite Dissolution and Magnesite Precipitation at Conditions Relevant for Deep Saline Aquifer Storage and Sequestration of Carbon Dioxide
    Chemical Geology 217 (2005) 257–276 www.elsevier.com/locate/chemgeo Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide Daniel E. Giammara,T, Robert G. Bruant Jr.b, Catherine A. Petersb aDepartment of Civil Engineering and Environmental Engineering Science Program, Washington University, St. Louis, MO 63130, United States bProgram in Environmental Engineering and Water Resources, Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, United States Received 30 April 2003; accepted 10 December 2004 Abstract The products of forsterite dissolution and the conditions favorable for magnesite precipitation have been investigated in experiments conducted at temperature and pressure conditions relevant to geologic carbon sequestration in deep saline aquifers. Although forsterite is not a common mineral in deep saline aquifers, the experiments offer insights into the effects of relevant temperatures and PCO2 levels on silicate mineral dissolution and subsequent carbonate precipitation. Mineral suspensions and aqueous solutions were reacted at 30 8C and 95 8C in batch reactors, and at each temperature experiments were conducted with headspaces containing fixed PCO2 values of 1 and 100 bar. Reaction products and progress were determined by elemental analysis of the dissolved phase, geochemical modeling, and analysis of the solid phase using scanning electron microscopy, infrared spectroscopy, and X-ray diffraction. The extent of forsterite dissolution increased with both increasing temperature and PCO2. The release of Mg and Si from forsterite was stoichiometric, but the Si concentration was ultimately controlled by the solubility of amorphous silica. During forsterite dissolution initiated in deionized water, the aqueous solution reached supersaturated conditions with respect to magnesite; however, magnesite precipitation was not observed for reaction times of nearly four weeks.
    [Show full text]
  • 12.109 Lecture Notes September 29, 2005 Thermodynamics II Phase
    12.109 Lecture Notes September 29, 2005 Thermodynamics II Phase diagrams and exchange reactions Handouts: using phase diagrams, from 12.104, Thermometry and Barometry Fractional crystallization vs. equilibrium crystallization Perfect equilibrium – constant bulk composition, crystals + melt react, reactions go to equilibrium Perfect fractional – situation where reaction between phases is incomplete, melt entirely removed, etc. Because earth is not in equilibrium, we have interesting geology! Binary system = 2 component system Example: albite (Ab) and anorthite (An) solid solution Phase diagrams show the equilibrium case. Fractional crystallization would result in zoned crystal growth: The exchange of ions happens by solid state diffusion. If the crystal grows faster than ions can diffuse through it, the outer layers form with different compositions, thus we have a chemically zoned crystal. Olivine and plagioclase commonly grow this way. In crossed polarized light, you can see gradual extinction from the center, out to the edges of the crystal. This is also sometimes visible in clinopyroxene. Fractional crystallization preserves the original composition. The center zone has the composition of the crystal from the liquidus. The liquidus composition reveals the temperature of the liquid when it arrived at the final crystallization. Solvus, or miscibility gap – in system with solid solution, region of immiscibility (inability to mix) In Na-K feldspars, perthite results from unmixing of a single crystalline phase two coexisting phases with different compositions and same crystal structure As T goes down, two phases separate out (spinoidal decomposition) Feldspar system, see Bowen and Tuttle Thermometry and Barometry Thermobarometer Igneous and metamorphic rocks Uses composition of coexisting minerals to tell us something about T + P Liquidus minerals record temperature (if you can preserve the composition of the liquidus mineral.
    [Show full text]
  • Geological Mapping and Characterization of Possible Primary Input Materials for the Mineral Sequestration of Carbon Dioxide in Europe
    minerals Article Geological Mapping and Characterization of Possible Primary Input Materials for the Mineral Sequestration of Carbon Dioxide in Europe Dario Kremer 1,*, Simon Etzold 2,*, Judith Boldt 3, Peter Blaum 4, Klaus M. Hahn 1, Hermann Wotruba 1 and Rainer Telle 2 1 AMR Unit of Mineral Processing, RWTH Aachen University, Lochnerstrasse 4-20, 52064 Aachen, Germany 2 Department of Ceramics and Refractory Materials, GHI - Institute of Mineral Engineering, RWTH Aachen University, Mauerstrasse 5, 52064 Aachen, Germany 3 HeidelbergCement AG-Global Geology, Oberklamweg 2-4, 69181 Leimen, Germany 4 HeidelbergCement AG-Global R&D, Oberklamweg 2-4, 69181 Leimen, Germany * Correspondence: [email protected] (D.K.); [email protected] (S.E.); Tel.: +49-241-80-96681(D.K.); +49-241-80-98343 (S.E.) Received: 19 June 2019; Accepted: 10 August 2019; Published: 13 August 2019 Abstract: This work investigates the possible mineral input materials for the process of mineral sequestration through the carbonation of magnesium or calcium silicates under high pressure and high temperatures in an autoclave. The choice of input materials that are covered by this study represents more than 50% of the global peridotite production. Reaction products are amorphous silica and magnesite or calcite, respectively. Potential sources of magnesium silicate containing materials in Europe have been investigated in regards to their availability and capability for the process and their harmlessness concerning asbestos content. Therefore, characterization by X-ray fluorescence (XRF), X-ray diffraction (XRD), and QEMSCAN® was performed to gather information before the selection of specific material for the mineral sequestration. The objective of the following carbonation is the storage of a maximum amount of CO2 and the utilization of products as pozzolanic material or as fillers for the cement industry, which substantially contributes to anthropogenic CO2 emissions.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • CRYSTAL STRUCTURES of NATURAL OLIVINES J. D. Brnmt
    THE AMERICAN MINERALOGISI', VOL 53, MAY_JUNE, 1968 CRYSTAL STRUCTURES OF NATURAL OLIVINES J. D. Brnmt, G.V. Grnns2,P. B. MoonE, ANDJ. V. SurrH, Departmentof the GeophysicalSciences, (Jn'ittersity of Chicago Chicago,Illinois 60637,U.S.A. Ansrnncr Atomic parameters were obtained by 3D least-squares X-ray difiraction analysis of forsterite (Mgo go,Feo1s), plutonic hyalosiderite (Mgo u:u,Feonso,Mrio ooo,CzIo oor), dike hortonolite (Mgo as,Feoas,Mno or,Cao or), and fayalite (Feo gz,Mgoor,Mns ,r). The closeness in value of the isotropic temperature factors calculated for the M sites indicates substitutional disorder of the Mg and Fe atoms in all four structures. Poiyhedra distortions are closely similar in all four structures showing that they depend on the struc- ture type rather than on the Mg, Fe substitution. Simple electrostatic rules allied with papk- ing considerations permit qualitative explanation of the structural distortions. The M(l) octahedron has six short shared edges to give a distorted and elongated trigonal antiprism. The M(2) octahedron has a triangle of three short shared edges. Metal-oxygen distances tend to compensate e.g., the longest Si-O distance and the shortest (MS,Fe)-O distance go to the same oxygen. INrnorucrroN The type structure of olivine was determined by Bragg and Brown (1926) on a forsterite crystal with composition Mgo noFeo.ro.Three- dimensionalrefinement of another forsterite crystal by Belov, Belova, Andrianova, and Smirnova (1951) yielded Si-O and M-O distancesfar outside the usual ranges for silicates. More recently Hanke a\d Zemarn (1963) determined the atomic parameters of forsterite from a two-di- mensionalanalysis, and Born (1964) followed this by showing that the observedposition ol M(2) falls on the maximum of the total attractive plus repulsiveenergy for half-ionizedatoms.
    [Show full text]
  • Chapter 5: Lunar Minerals
    5 LUNAR MINERALS James Papike, Lawrence Taylor, and Steven Simon The lunar rocks described in the next chapter are resources from lunar materials. For terrestrial unique to the Moon. Their special characteristics— resources, mechanical separation without further especially the complete lack of water, the common processing is rarely adequate to concentrate a presence of metallic iron, and the ratios of certain potential resource to high value (placer gold deposits trace chemical elements—make it easy to distinguish are a well-known exception). However, such them from terrestrial rocks. However, the minerals separation is an essential initial step in concentrating that make up lunar rocks are (with a few notable many economic materials and, as described later exceptions) minerals that are also found on Earth. (Chapter 11), mechanical separation could be Both lunar and terrestrial rocks are made up of important in obtaining lunar resources as well. minerals. A mineral is defined as a solid chemical A mineral may have a specific, virtually unvarying compound that (1) occurs naturally; (2) has a definite composition (e.g., quartz, SiO2), or the composition chemical composition that varies either not at all or may vary in a regular manner between two or more within a specific range; (3) has a definite ordered endmember components. Most lunar and terrestrial arrangement of atoms; and (4) can be mechanically minerals are of the latter type. An example is olivine, a separated from the other minerals in the rock. Glasses mineral whose composition varies between the are solids that may have compositions similar to compounds Mg2SiO4 and Fe2SiO4.
    [Show full text]
  • 1. Fill in the Table Below by Listing the Minerals Present in Each Metamorphic Zone
    1. Fill in the table below by listing the minerals present in each metamorphic zone. Give the name of each mineral and its chemical composition: e.g., Quartz (SiO2). Table 1. Metamorphic mineral assemblages from the Alta stock contact aureole Talc Zone Tremolite Zone Forsterite Zone Periclase Zone Dolomite Dolomite Dolomite Dolomite 1. CaMg(CO3)2 CaMg(CO3)2 CaMg(CO3)2 CaMg(CO3)2 Calcite Calcite Calcite Calcite 2. CaCO3 CaCO3 CaCO3 CaCO3 Talc Tremolite Forsterite Periclase 3. Mg Si O (OH) Ca Mg Si O (OH) 3 4 10 2 2 5 8 22 2 Mg2SiO4 MgO Quartz? Quartz Brucite 4. Mg(OH) SiO2 SiO2 2 Forsterite 5. Mg2SiO4 2. Which components (use oxides) do you need to define all the minerals on your list? CaO, MgO, SiO2, CO2, H2O 3. If you eliminate the fluid species, you should be left with three components. On the ternary diagram below, put one component at each corner, and plot the positions of the minerals present in the contact aureole of the Alta stock. SiO Qtz 2 10 10 20 20 30 30 40 40 Tr Tlc 50 50 40 40 Fo 30 30 20 20 10 10 Cal Per, Brc CaO 10 20 30 40 50 40 30 20 10 MgO Dol 4. Use the phase rule to determine the number of minerals present in these rocks for the following cases. Assume that the fluid species (H2O and CO2) are in excess and available. Invariance: 5 Univariance: 4 Divariance: 3 5. Let’s work our way up the temperature gradient in the aureole.
    [Show full text]
  • Synthesis and Characterization of Forsterite (Mg2sio4) Nanomaterials of Dunite from Sumatera
    Chapter Synthesis and Characterization of Forsterite (Mg2SiO4) Nanomaterials of Dunite from Sumatera Ratnawulan Ratnawulan and Ahmad Fauzi Abstract The topics to be discussed are about the synthesis and characterization of for- sterite nanoparticles (Mg2So4) from dunite rocks originating from West Sumatra. This region is a meeting of two Indian and Australian plates that give rise to mineral dunite with unique characteristics. Forsterite synthesis was carried out using calcina- tions temperature variations namely 700, 800, 900, 1000 and 1100°C. Synthesis of forsterite nanoparticles used the High Energy Milling Ellipse 3D Motion (HEM-E3D) method with variations in milling time, i.e., 5, 10, 20 h. Characterization was carried out using X-Ray Fluorescence (XRF) and X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The synthesis results explain the forsterite concentra- tion in dunite rock, pure forsterite at optimal calcinations temperature, forsterite nanoparticles at optimal grinding time and forsterite nanoparticle structure. Keywords: forsterite, nanoparticles, dunite, HEM-E3D, milling time 1. Introduction Forsterite is a magnesium silicate crystal with the chemical formula Mg2SiO4 derived from the olivine mineral group [1]. Olivine is a group of minerals composed of iron (Fe) and magnesium (Mg). The olivine mineral is green, with luster, formed at high temperatures. This mineral is commonly found in basalt and ultramafic rocks. Rocks whose overall minerals consist of olivine minerals are known as dunite rocks [2, 3]. Forsterite is often used as an electronic component because it has a low coef- ficient of thermal expansion and electrical conductivity [4]. Besides that, forsterite has superior properties, namely chemical stability at high temperatures [5] and high electrical properties so that it can be used as a coating for the back, edges, and front of iron and steel [6–11].
    [Show full text]
  • Significant Lunar Minerals Mineral Names the Compositions of Minerals Naturally Fall Into Certain Groups
    Significant Lunar Minerals Mineral Names The compositions of minerals naturally fall into certain groups. A group shares a common anion and similarities in how the lattice of the minerals are structured. Plagioclase, olivine and pyroxene groups are silicates. Other groups of importance on the Moon are the oxides, of which the spinel group is a specific subset, the sulfides, the phosphates and the native (no anions) metals. In many cases within a group individual crystals may have quite a range of compositions. So for example a specimen in the olivine group may actually be half way between pure fayalite (Fe2SiO4) and pure forsterite (Mg2SiO4), or anywhere in between the end members. For mineral groups where this happens, geologists frequently will refer to the group name, rather than the mineral name. In such cases geologist will indicate the relative amount of each end member by giving the ratio of one end member to the total. For example an olivine that is half forsterite and half fayalite is described as Fo50, where Fo refers to the forsterite end member. This approach is also used for the plagioclase group, where the two end members are anorthite (CaAl2Si2O8) and albite (NaAlSi3O8). The relative amounts of these two end members in a crystal are expressed as An90. This is saying that 90% of the plagioclase is the anorthite end member. Lunar Abundance The terms indicating relative abundances in Table 1 are not formally defined. For this table the general concepts are as follows. Something that is Abundant is wide spread and usually more than ~33% of the material.
    [Show full text]
  • Minerals in Meteorites
    APPENDIX 1 Minerals in Meteorites Minerals make up the hard parts of our world and the Solar System. They are the building blocks of all rocks and all meteorites. Approximately 4,000 minerals have been identified so far, and of these, ~280 are found in meteorites. In 1802 only three minerals had been identified in meteorites. But beginning in the 1960s when only 40–50 minerals were known in meteorites, the discovery rate greatly increased due to impressive new analytic tools and techniques. In addition, an increasing number of different meteorites with new minerals were being discovered. What is a mineral? The International Mineralogical Association defines a mineral as a chemical element or chemical compound that is normally crystalline and that has been formed as a result of geological process. Earth has an enormously wide range of geologic processes that have allowed nearly all the naturally occurring chemical elements to participate in making minerals. A limited range of processes and some very unearthly processes formed the minerals of meteorites in the earliest history of our solar system. The abundance of chemical elements in the early solar system follows a general pattern: the lighter elements are most abundant, and the heavier elements are least abundant. The miner- als made from these elements follow roughly the same pattern; the most abundant minerals are composed of the lighter elements. Table A.1 shows the 18 most abundant elements in the solar system. It seems amazing that the abundant minerals of meteorites are composed of only eight or so of these elements: oxygen (O), silicon (Si), magnesium (Mg), iron (Fe), aluminum (Al), calcium (Ca), sodium (Na) and potas- sium (K).
    [Show full text]
  • Mineral Evolution
    Mineral Evolution Dan Britt University of Central Florida Center for Lunar and Asteroid Surface Science (CLASS) [email protected] “You are not in Kansas anymore” • Robert Hazen and colleagues (2008) had a fundamental insight on Uraninite UO2 mineralogical evolution. • The mineralogy of terrestrial planets and moons evolves as a consequence of varied physical, chemical, and biological processes that lead to the formation of new mineral species. • Mineral evolution is a change over time in…. – The diversity of mineral species – The relative abundances of minerals – The compositional ranges of minerals Autunite Ca(UO2)2(PO4)2 x 8-12 H2O – The grain sizes and morphologies of minerals A Few Definitions • Mineral: – A crystalline compound with a fairly well-defined chemical composition and a specific crystal structure. – For example, water ice is a mineral. • Evolution: – In biology the process by which different kinds of living organisms are thought to have developed and diversified from earlier forms during the history of the earth. – More broadly it is the gradual development of something from simple to more complex forms. • What we will be talking about is a form of radiation where minerals react in changing chemical and physical environments. – The result are changes to their crystal structure along with their physical and chemical properties. Take Olivine Olivine • Olivine is one of the most abundant minerals in the solar system and the universe. • Forsterite is the Mg-rich endmember: Mg2SiO4 – Add water and time, it weathers to serpentine Mg3Si2O5(OH)4 – Add high pressure the chemistry stays the same, but the crystal structure transforms to Ringwoodite.
    [Show full text]