Managing Intra-Operator Parallelism in Parallel Database Systems*

Total Page:16

File Type:pdf, Size:1020Kb

Managing Intra-Operator Parallelism in Parallel Database Systems* Managing Intra-operator Parallelism in Parallel Database Systems* Manish Mehta David J. Dewitt IBM Alamaden Research Center Computer Sciences Department San Jose, CA, USA. University of Wisconsin-Madison [email protected] [email protected] Abstract dat,a. However, it is not evident how intra-operat,or parallelism should be used in a multi-query environ- Int#ra-operator (or partitioned) parallelism is a rnent, where multiple concurrent queries are cont,end- well-established mechanism for achieving high per- ing for system resources. Selecting low degrees of op- formance in parallel database systems. How- era.tor parallelism can lead to underutilizat,ion of the ever, the problem of how to exploit intra-operator system and reduced performance. On the other hand. parallelism in a multi-query environment is not high degrees of parallelism can give “too many” re- well underst,ood. This paper presents a detailed sources to a single query and lead t.o high resource performance evaluation of several algorithms for contention. This paper explores this problem of deter- managing intra-operator parallelism in a parallel mining the %ppropriat,e” degree of intra-operator par- database system. A dynamic scheme based on the allelism for queries in a multi-query pa.rallel dat.aba.se concept of matching the ra.te of flow of tuples be- system. tween operat,ors is shown to perform well on a va- T.here are two important issues that need to be ad- riety of workloads and configurations. dressed. First, for each query, t,he algorithm must de- termine the degree of parallelism of each operator in the query plan. Second, the algorithm must a.ssign 1 Introduction specific processors to execute each operat.or inst,ance. Highly-parallel databa.se systems are increasingly be- The degree of parallelism of an operator should be ing used for large-scale database applications. Exam- selected such that the cost of starting and terminat- ples of these systems include products like Teradata ing all of the instances of t,he operat,or is more than DBC/1012 [26], Tandem Hima,laya [13], IBM SP1/2 offset, by the performance improvement due t,o paral- [16], and research prot,otypes like Bubba [8], Ga.mma lelism. Since startup and termination costs are a func- [7], and Volcano [12]. Inlru-operafor parallelism (or t,ion of the configuration and workload, the degree of partitioned parallelism [4]) is a well-established tech- parallelism should change for different workloads and nique for increasing performance in these systems. Ba- configurations. In this paper, we present, several al- sically, by allowing the input data to be partitioned gorithms for determining the degree of parallelism of among multiple processors and memories, this tech- operat,ors. A detailed performance evaluation shows nique enables a database operator to be split into many that a new dynamic algorit,hm based on t,he concept, independent operators each working on a part of the of matching the rat,e of flow of tuples bet.ween oper- at,ors provides good performance across a variet,y of *This research was performed while the first author was at workloads and configurations. the University of Wisconsin-Madison and was supported by an IBM Research Initiation Grant. The primary objective of an algorithm for assigning Pwmission to copy without jet all OT part of this material is processors to operators is load balancing. Processors granted provided that the copies are not made or distributed for should be assigned t#ooperators such that, the workload direct commercial advantage, the VLDB copyright notice and is uniformly distributed and all the nodes are equally the title of the publication and its date appear, and notice is utilized. This paper presents several alternative meth- given that copying is by permission of the ,veery Large Data Base Endowment. To copy otherwise, or to republish, requires a jee ods of assigning processors to operators. The results and/or special permission jvom the Endowment. show that algorithms that utilize information about Proceedings of the Zlst VLDB Conference the system workload in assignment decisions perform Zurich, Swizerland, 1995 better than algorithms t,hat assign processors stati- 382 tally. also has the highest startup and termination costs a,nd The rest, of the paper is organized as follows. Sec- leads to the highest resource contention. Moreover, tion 2 presents the system archit,ecture of a typical it is a static algorithm that selects the same degree highly-para.llel database syst,em. The algorithms for of parallelism for all operators regardless of the query selectmingthe degree of parallelism are presented in Sec- type and the workload. tion 3 while algorithms for mapping operators t,o pro- 3.2 MinDp cessors are presented in Section 4. Section 5 discusses how these algorithms can be combined to produce a The degree of parallelism selected by this algorit,hm is comprehensive processor allocation scheme. The simu- equal to the minimum of the degree of parallelism of lation model used for the performance evaluation is de- all the input streams. For example, consider a binary scribed in Section G followed by a, description of the ex- hash-join query where the degrees of parallelism of the periment#al parameters in Section 7. Section 8 presents selects on the inner and outer relations are Inner-dp a performance evaluation of algorithms for determin- and Outer-dp, respectively. The MinDp algorithm will ing the degree of parallelism and Section 9 cont,ains the select the join’s degree of parallelism as min(Inner-dp, evaluation of algorithms for mapping the operators to Outer-dp). processors. Related work is discussed in Section 10 3.3 MaxDp and Section 11 contains our conclusions and sugges- The MaxDp algorithm is sets t,he degree of join paral- tions for future work. lelism to be the maximum of the degree of parallelism 2 System Architecture of the input &earns. Note that in the case of unary op- erators like store, the MaxDp and MinDp a.lgorithms Highly parallel systems are typically constructed using are identical. a sha,red-nothing [25] archit#ecture. The system con- sists of a set of external terminals from which trans- 3.4 RateMatch actions a.re submitted. The transactions a.re sent to The RateMatch algorithm is based on the idea of a. randomly-selected scheduling node. The execution matching processing rates of operators. If the rate of each transaction on the processing nodes is coor- at which tuples are sent to an operator is much higher dinated by a specialized process called the schedvler. than the rate at which the tuples can be processed by The scheduler allocates resources (memory and proces- the operator, incoming messa,ges will accumulate and sors) to the transaction and is responsible for sta.rting the message buffer can overflow, forcing the sender to and terminating all the operators in a t,ransaction. The block. On t,he other hand, if the rate at which t,u- processing nodes are composed of a CPU, memory, and ples are received by an operat,or is much lower than one or more disk drives’. There is no shared mem- the maximum possible processing rat,e, the operator ory/disk between the nodes, hence the term Sha.red- will frequently be idle and will wast,e syst,em resources Nothing. All inter-node communicat,ion is via message (specifically memory). By matching operator process- pa.ssing on the int,erconnection network. ing rates, the RateMatch algorithm prevents senders 3 Determining the Degree of Operator from blocking and, at the same time, conserves system Paralleliqm resources by avoiding idle operators. We next present. t,he formulas used by the RateM- In most shared-nothing database syst8ems, the only atch algorit.hm to calculate the rate at which t.uples are way t,o access data on a node is to schedule a select processed by the select and hash-join operators. Sim- operator on that node. This implies that the degree of ilar formulas can also be developed for other database parallelism of select operators is fixed a-priori by the operators. These formulas adjust the degree of paral- data placement mechanism. However, the degree of lelism based on the current, CPU utilization and disk parallelism for other operators, like joins and stores, response times, and therefore allow the RateMatch al- can be chosen independently of the initial data place- gorit,hm t.o adapt to different workloads and config- ment. We consider four algorithms for determining the urations. We first develop formulas for a single-user degree of parallelism,of such operators. system assuming no buffering of messages, and then 3.1 Maximum incorporate the effect of multiple users and message buffering. The degree of parallelism chosen by this algorithm is equal to t,he number of nodes in t#he system. Maxi- 3.4.1 Processing Rate of Select Operators mum therefore achieves t,he highest parallelism, but it The total time (in seconds) taken by each select oper- ‘For the rest of this paper, the term node is used to collec- ator to process a data page is tively refer to a processor, its l&xl memory and the attached set of disks. 383 where TIIO~,,,,, is the time taken to perform one I/O Maximum Memory Allocation: In the case of and Tcpuselect is the CPU time taken for processing maximum memory allocation, join operators do not one data page. Note that the above equation assumes perform any I/OS. During the build phase, the join a.n overlap in CPU and I/O processing. TI/o~,,,,~ is operators read each incoming tuple and insert them calculated as the sum of the time taken to initiate an into a hash table.
Recommended publications
  • Efficient Splitter for Data Parallel Complex Event Procesing
    Institute of Parallel and Distributed Systems University of Stuttgart Universitätsstraße D– Stuttgart Bachelorarbeit Efficient Splitter for Data Parallel Complex Event Procesing Marco Amann Course of Study: Softwaretechnik Examiner: Prof. Dr. Dr. Kurt Rothermel Supervisor: M. Sc. Ahmad Slo Commenced: March , Completed: September , Abstract Complex Event Processing systems are a promising approach to detect patterns on ever growing amounts of event streams. Since a single server might not be able to run an operator at a sufficiently high rate, Data Parallel Complex Event Processing aims to distribute the load of one operator onto multiple nodes. In this work we analyze the splitter of an existing CEP framework, detail on its drawbacks and propose optimizations to cope with them. This yields the newly developed SPACE framework, which is evaluated and compared with an industry-proven CEP framework, Apache Flink. We show that the new splitter has greatly improved performance and is able to support more instances at a higher rate. In comparison with Apache Flink, the SPACE framework is able to process events at higher rates in our benchmarks but is less stable if overloaded. Kurzfassung Complex Event Processing Systeme stellen eine vielversprechende Möglichkeit dar, Muster in immer größeren Mengen von Event-Strömen zu erkennen. Da ein einzelner Server nicht in der Lage sein kann, einen Operator mit einer ausreichenden Geschwindigkeit zu betreiben, versucht Data Parallel Complex Event Processing die Last eines Operators auf mehrere Knoten zu verteilen. In dieser Arbeit wird ein Splitter eines vorhandenen CEP systems analysiert, seine Nachteile hervorgearbeitet und Optimierungen vorgeschlagen. Daraus entsteht das neue SPACE Framework, welches evaluiert wird und mit Apache Flink, einem industrieerprobten CEP Framework, verglichen wird.
    [Show full text]
  • Phases of Two Adjoints QCD3 and a Duality Chain
    Phases of Two Adjoints QCD3 And a Duality Chain Changha Choi,ab1 aPhysics and Astronomy Department, Stony Brook University, Stony Brook, NY 11794, USA bSimons Center for Geometry and Physics, Stony Brook, NY 11794, USA Abstract We analyze the 2+1 dimensional gauge theory with two fermions in the real adjoint representation with non-zero Chern-Simons level. We propose a new fermion-fermion dualities between strongly-coupled theories and determine the quantum phase using the structure of a `Duality Chain'. We argue that when Chern-Simons level is sufficiently small, the theory in general develops a strongly coupled quantum phase described by an emergent topological field theory. For special cases, our proposal predicts an interesting dynamical scenario with spontaneous breaking of partial 1-form or 0-form global symmetry. It turns out that SL(2; Z) transformation and the generalized level/rank duality are crucial for the unitary group case. We further unveil the dynamics of the 2+1 dimensional gauge theory with any pair of adjoint/rank-two fermions or two bifundamental fermions using similar `Duality Chain'. arXiv:1910.05402v1 [hep-th] 11 Oct 2019 [email protected] Contents 1 Introduction1 2 Review : Phases of Single Adjoint QCD3 7 3 Phase Diagrams for k 6= 0 : Duality Chain 10 3.1 k ≥ h : Semiclassical Regime . 10 3.2 Quantum Phase for G = SU(N)......................... 10 3.3 Quantum Phase for G = SO(N)......................... 13 3.4 Quantum Phase for G = Sp(N)......................... 16 3.5 Phase with Spontaneously Broken Partial 1-form, 0-form Symmetry . 17 4 More Duality Chains and Quantum Phases 19 4.1 Gk+Pair of Rank-Two/Adjoint Fermions .
    [Show full text]
  • Basic Electrical Engineering
    BASIC ELECTRICAL ENGINEERING V.HimaBindu V.V.S Madhuri Chandrashekar.D GOKARAJU RANGARAJU INSTITUTE OF ENGINEERING AND TECHNOLOGY (Autonomous) Index: 1. Syllabus……………………………………………….……….. .1 2. Ohm’s Law………………………………………….…………..3 3. KVL,KCL…………………………………………….……….. .4 4. Nodes,Branches& Loops…………………….……….………. 5 5. Series elements & Voltage Division………..………….……….6 6. Parallel elements & Current Division……………….………...7 7. Star-Delta transformation…………………………….………..8 8. Independent Sources …………………………………..……….9 9. Dependent sources……………………………………………12 10. Source Transformation:…………………………………….…13 11. Review of Complex Number…………………………………..16 12. Phasor Representation:………………….…………………….19 13. Phasor Relationship with a pure resistance……………..……23 14. Phasor Relationship with a pure inductance………………....24 15. Phasor Relationship with a pure capacitance………..……….25 16. Series and Parallel combinations of Inductors………….……30 17. Series and parallel connection of capacitors……………...…..32 18. Mesh Analysis…………………………………………………..34 19. Nodal Analysis……………………………………………….…37 20. Average, RMS values……………….……………………….....43 21. R-L Series Circuit……………………………………………...47 22. R-C Series circuit……………………………………………....50 23. R-L-C Series circuit…………………………………………....53 24. Real, reactive & Apparent Power…………………………….56 25. Power triangle……………………………………………….....61 26. Series Resonance……………………………………………….66 27. Parallel Resonance……………………………………………..69 28. Thevenin’s Theorem…………………………………………...72 29. Norton’s Theorem……………………………………………...75 30. Superposition Theorem………………………………………..79 31.
    [Show full text]
  • 7. Parallel Methods for Matrix-Vector Multiplication 7
    7. Parallel Methods for Matrix-Vector Multiplication 7. Parallel Methods for Matrix-Vector Multiplication................................................................... 1 7.1. Introduction ..............................................................................................................................1 7.2. Parallelization Principles..........................................................................................................2 7.3. Problem Statement..................................................................................................................3 7.4. Sequential Algorithm................................................................................................................3 7.5. Data Distribution ......................................................................................................................3 7.6. Matrix-Vector Multiplication in Case of Rowwise Data Decomposition ...................................4 7.6.1. Analysis of Information Dependencies ...........................................................................4 7.6.2. Scaling and Subtask Distribution among Processors.....................................................4 7.6.3. Efficiency Analysis ..........................................................................................................4 7.6.4. Program Implementation.................................................................................................5 7.6.5. Computational Experiment Results ................................................................................5
    [Show full text]
  • Chapter 5 Capacitance and Dielectrics
    Chapter 5 Capacitance and Dielectrics 5.1 Introduction...........................................................................................................5-3 5.2 Calculation of Capacitance ...................................................................................5-4 Example 5.1: Parallel-Plate Capacitor ....................................................................5-4 Interactive Simulation 5.1: Parallel-Plate Capacitor ...........................................5-6 Example 5.2: Cylindrical Capacitor........................................................................5-6 Example 5.3: Spherical Capacitor...........................................................................5-8 5.3 Capacitors in Electric Circuits ..............................................................................5-9 5.3.1 Parallel Connection......................................................................................5-10 5.3.2 Series Connection ........................................................................................5-11 Example 5.4: Equivalent Capacitance ..................................................................5-12 5.4 Storing Energy in a Capacitor.............................................................................5-13 5.4.1 Energy Density of the Electric Field............................................................5-14 Interactive Simulation 5.2: Charge Placed between Capacitor Plates..............5-14 Example 5.5: Electric Energy Density of Dry Air................................................5-15
    [Show full text]
  • Parallel Methods for Matrix Multiplication
    University of Nizhni Novgorod Faculty of Computational Mathematics & Cybernetics IntroductionIntroduction toto ParallelParallel ProgrammingProgramming Section 8. Parallel Methods for Matrix Multiplication Gergel V.P., Professor, D.Sc., Software Department Contents Problem Statement Sequential Algorithm Algorithm 1 – Block-Striped Decomposition Algorithm 2 – Fox’s method Algorithm 3 – Cannon’s method Summary Nizhni Novgorod, 2005 Introduction to Parallel Programming: Matrix Multiplication ©GergelV.P. 2 → 50 Problem Statement Matrix multiplication: C = A⋅ B or ⎛ c , c , ..., c ⎞ ⎛ a , a , ..., a ⎞ ⎛ b , b , ..., a ⎞ ⎜ 0,0 0,1 0,l−1 ⎟ ⎜ 0,0 0,1 0,n−1 ⎟ ⎜ 0,0 0,1 0,l−1 ⎟ ⎜ ... ⎟ = ⎜ ... ⎟ ⎜ ... ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝cm−1,0 , cm−1,1, ..., cm−1,l−1 ⎠ ⎝am−1,0 , am−1,1, ..., am−1,n−1 ⎠ ⎝bn−1,0 , bn−1,1, ..., bn−1,l−1 ⎠ ª The matrix multiplication problem can be reduced to the execution of m·l independent operations of matrix A rows and matrix B columns inner product calculation n−1 T cij = ()ai ,b j = ∑aik ⋅bkj , 0 ≤ i < m, 0 ≤ j < l k=0 Data parallelism can be exploited to design parallel computations Nizhni Novgorod, 2005 Introduction to Parallel Programming: Matrix Multiplication ©GergelV.P. 3 → 50 Sequential Algorithm… // Algorithm 8.1 // Sequential algorithm of matrix multiplication double MatrixA[Size][Size]; double MatrixB[Size][Size]; double MatrixC[Size][Size]; int i,j,k; ... for (i=0; i<Size; i++){ for (j=0; j<Size; j++){ MatrixC[i][j] = 0; for (k=0; k<Size; k++){ MatrixC[i][j] = MatrixC[i][j] + MatrixA[i][k]*MatrixB[k][j]; } } } Nizhni Novgorod, 2005 Introduction to Parallel Programming: Matrix Multiplication ©GergelV.P.
    [Show full text]
  • Introduction to Parallel Computing
    INTRODUCTION TO PARALLEL COMPUTING Plamen Krastev Office: 38 Oxford, Room 117 Email: [email protected] FAS Research Computing Harvard University OBJECTIVES: To introduce you to the basic concepts and ideas in parallel computing To familiarize you with the major programming models in parallel computing To provide you with with guidance for designing efficient parallel programs 2 OUTLINE: Introduction to Parallel Computing / High Performance Computing (HPC) Concepts and terminology Parallel programming models Parallelizing your programs Parallel examples 3 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Pravetz 82 and 8M, Bulgarian Apple clones Image credit: flickr 4 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage 5 What is High Performance Computing? Odyssey supercomputer is the major computational resource of FAS RC: • 2,140 nodes / 60,000 cores • 14 petabytes of storage Using the world’s fastest and largest computers to solve large and complex problems. 5 Serial Computation: Traditionally software has been written for serial computations: To be run on a single computer having a single Central Processing Unit (CPU) A problem is broken into a discrete set of instructions Instructions are executed one after another Only one instruction can be executed at any moment in time 6 Parallel Computing: In the simplest sense, parallel
    [Show full text]
  • Conjugacy of 2–Spherical Subgroups of Coxeter Groups and Parallel Walls
    Algebraic & Geometric Topology 6 (2006) 1987–2029 1987 arXiv version: fonts, pagination and layout may vary from AGT published version Conjugacy of 2–spherical subgroups of Coxeter groups and parallel walls PIERRE-EMMANUEL CAPRACE Let (W; S) be a Coxeter system of finite rank (ie jSj is finite) and let A be the associated Coxeter (or Davis) complex. We study chains of pairwise parallel walls in A using Tits’ bilinear form associated to the standard root system of (W; S). As an application, we prove the strong parallel wall conjecture of G Niblo and L Reeves [18]. This allows to prove finiteness of the number of conjugacy classes of certain one-ended subgroups of W , which yields in turn the determination of all co-Hopfian Coxeter groups of 2–spherical type. 20F55; 20F65, 20F67, 51F15 1 Introduction 1.1 Conjugacy of 2–spherical subgroups A group Γ is called 2–spherical if it possesses a finite generating set T such that any pair of elements of T generates a finite subgroup. By Serre [21, Section 6.5, Corollaire 2], a 2–spherical group enjoys property (FA); in particular, it follows from Stalling’s theorem that it is one-ended. In the literature, a Coxeter group W is called 2–spherical if it has a Coxeter generating set S with the property that any pair of elements of S generates a finite subgroup. If W has a Coxeter generating set S such that some pair of elements of S generates an infinite subgroup, then it is easy to see that W splits non-trivially as an amalgamated product of standard parabolic subgroups, and hence W does not have Serre’s property (FA).
    [Show full text]
  • Parallel Matrix Multiplication: a Systematic Journey∗
    SIAM J. SCI.COMPUT. c 2016 Society for Industrial and Applied Mathematics Vol. 38, No. 6, pp. C748{C781 PARALLEL MATRIX MULTIPLICATION: A SYSTEMATIC JOURNEY∗ MARTIN D. SCHATZy , ROBERT A. VAN DE GEIJNy , AND JACK POULSONz Abstract. We expose a systematic approach for developing distributed-memory parallel matrix- matrix multiplication algorithms. The journey starts with a description of how matrices are dis- tributed to meshes of nodes (e.g., MPI processes), relates these distributions to scalable parallel implementation of matrix-vector multiplication and rank-1 update, continues on to reveal a family of matrix-matrix multiplication algorithms that view the nodes as a two-dimensional (2D) mesh, and finishes with extending these 2D algorithms to so-called three-dimensional (3D) algorithms that view the nodes as a 3D mesh. A cost analysis shows that the 3D algorithms can attain the (order of magnitude) lower bound for the cost of communication. The paper introduces a taxonomy for the resulting family of algorithms and explains how all algorithms have merit depending on parameters such as the sizes of the matrices and architecture parameters. The techniques described in this paper are at the heart of the Elemental distributed-memory linear algebra library. Performance results from implementation within and with this library are given on a representative distributed-memory architecture, the IBM Blue Gene/P supercomputer. Key words. parallel processing, linear algebra, matrix multiplication, libraries AMS subject classifications. 65Y05, 65Y20, 65F05 DOI. 10.1137/140993478 1. Introduction. This paper serves a number of purposes: • Parallel1 implementation of matrix-matrix multiplication is a standard topic in a course on parallel high-performance computing.
    [Show full text]
  • Phys102 Lecture 7/8 Capacitors Key Points • Capacitors • Determination of Capacitance • Capacitors in Series and Parallel • Electric Energy Storage • Dielectrics
    Phys102 Lecture 7/8 Capacitors Key Points • Capacitors • Determination of Capacitance • Capacitors in Series and Parallel • Electric Energy Storage • Dielectrics References SFU Ed: 24-1,2,3,4,5,6. 6th Ed: 17-7,8,9,10+. A capacitor consists of two conductors that are close but not touching. A capacitor has the ability to store electric charge. Parallel-plate capacitor connected to battery. (b) is a circuit diagram. 24-1 Capacitors When a capacitor is connected to a battery, the charge on its plates is proportional to the voltage: The quantity C is called the capacitance. Unit of capacitance: the farad (F): 1 F = 1 C/V. Determination of Capacitance For a parallel-plate capacitor as shown, the field between the plates is E = Q/ε0A. The potential difference: Vba = Ed = Qd/ε0A. This gives the capacitance: Example 24-1: Capacitor calculations. (a) Calculate the capacitance of a parallel-plate capacitor whose plates are 20 cm × 3.0 cm and are separated by a 1.0-mm air gap. (b) What is the charge on each plate if a 12-V battery is connected across the two plates? (c) What is the electric field between the plates? (d) Estimate the area of the plates needed to achieve a capacitance of 1 F, given the same air gap d. Capacitors are now made with capacitances of 1 farad or more, but they are not parallel- plate capacitors. Instead, they are activated carbon, which acts as a capacitor on a very small scale. The capacitance of 0.1 g of activated carbon is about 1 farad.
    [Show full text]
  • 12 Notation and List of Symbols
    12 Notation and List of Symbols Alphabetic ℵ0, ℵ1, ℵ2,... cardinality of infinite sets ,r,s,... lines are usually denoted by lowercase italics Latin letters A,B,C,... points are usually denoted by uppercase Latin letters π,ρ,σ,... planes and surfaces are usually denoted by lowercase Greek letters N positive integers; natural numbers R real numbers C complex numbers 5 real part of a complex number 6 imaginary part of a complex number R2 Euclidean 2-dimensional plane (or space) P2 projective 2-dimensional plane (or space) RN Euclidean N-dimensional space PN projective N-dimensional space Symbols General ∈ belongs to such that ∃ there exists ∀ for all ⊂ subset of ∪ set union ∩ set intersection A. Inselberg, Parallel Coordinates, DOI 10.1007/978-0-387-68628-8, © Springer Science+Business Media, LLC 2009 532 Notation and List of Symbols ∅ empty st (null set) 2A power set of A, the set of all subsets of A ip inflection point of a curve n principal normal vector to a space curve nˆ unit normal vector to a surface t vector tangent to a space curve b binormal vector τ torsion (measures “non-planarity” of a space curve) × cross product → mapping symbol A → B correspondence (also used for duality) ⇒ implies ⇔ if and only if <, > less than, greater than |a| absolute value of a |b| length of vector b norm, length L1 L1 norm L L norm, Euclidean distance 2 2 summation Jp set of integers modulo p with the operations + and × ≈ approximately equal = not equal parallel ⊥ perpendicular, orthogonal (,,) homogeneous coordinates — ordered triple representing
    [Show full text]
  • Introduction to Parallel Programming
    Introduction to Parallel Programming Martin Čuma Center for High Performance Computing University of Utah [email protected] Overview • Types of parallel computers. • Parallel programming options. • How to write parallel applications. • How to compile. • How to debug/profile. • Summary, future expansion. 1/12/2014 http://www.chpc.utah.edu Slide 2 Parallel architectures Single processor: • SISD – single instruction single data. Multiple processors: • SIMD - single instruction multiple data. • MIMD – multiple instruction multiple data. Shared Memory . Distributed Memory 1/12/2014 http://www.chpc.utah.edu Slide 3 Shared memory Dual quad-core node • All processors have BUS access to local memory CPU Memory • Simpler programming CPU Memory • Concurrent memory access Many-core node (e.g. SGI) • More specialized CPU Memory hardware BUS • CHPC : CPU Memory Linux clusters, 2, 4, 8, 12, 16 core CPU Memory nodes GPU nodes CPU Memory 1/12/2014 http://www.chpc.utah.edu Slide 4 Distributed memory • Process has access only BUS CPU Memory to its local memory • Data between processes CPU Memory must be communicated • More complex Node Network Node programming Node Node • Cheap commodity hardware Node Node • CHPC: Linux clusters Node Node 8 node cluster (64 cores) 1/12/2014 http://www.chpc.utah.edu Slide 5 Parallel programming options Shared Memory • Threads – POSIX Pthreads, OpenMP (CPU, MIC), OpenACC, CUDA (GPU) – Thread – own execution sequence but shares memory space with the original process • Message passing – processes – Process – entity that executes a program – has its own memory space, execution sequence Distributed Memory • Message passing libraries . Vendor specific – non portable . General – MPI, PVM 1/12/2014 http://www.chpc.utah.edu Slide 6 OpenMP basics • Compiler directives to parallelize .
    [Show full text]