Methylglyoxal Effects on Protein Aggregation and Amyloid Formation

Total Page:16

File Type:pdf, Size:1020Kb

Methylglyoxal Effects on Protein Aggregation and Amyloid Formation UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE QUÍMICA E BIOQUÍMICA Methylglyoxal effects on protein aggregation and amyloid formation Luís Miguel Araújo da Silva Oliveira Doutoramento em Bioquímica (Especialidade: Biofísica Molecular) Tese orientada por: Prof. Doutor Alexandre Luís de Matos Botica Côrtes Quintas Doutor Carlos Alberto Alves Cordeiro 2009 De acordo com o disposto no artigo n°. 40 do Regulamento de Estudos Pós‐Graduados da Universidade de Lisboa, Deliberação n° 961/2003, publicada no Diário da República – II Série n°. 153 – 5 de Julho de 2003, foram incluídos nesta dissertação os resultados dos seguintes artigos: Luís M. A. Oliveira, Carlos Cordeiro, Ana Ponces Freire, Carla Ascenso, Alexandre Quintas. 2007. Unveiling heme proteins conformational stability through a UV absorbance ratio method Anal Biochem. 371: 253‐5 Alexandre Quintas, Luís M. A. Oliveira. 2008. Protein hierarchy levels of structural organization for amyloidogenesis: Biochemical and biophysical aspects underlying misfolding and disease. Protein Misfolding in Biology and Disease T. F. Outeiro, Research Signpost: 1‐34. Ricardo A. Gomes, Luís M. A. Oliveira, Mariana Silva, Carla Ascenso, Alexandre Quintas, Gonçalo Costa, Ana V. Coelho, Marta Sousa Silva, António E. N. Ferreira, Ana Ponces Freire, Carlos Cordeiro. 2008. Protein glycation in vivo: Functional and structural effects on yeast enolase. Biochem J. 416: 317‐26 Aknowledgments/Agradecimentos Aknowledgments/Agradecimentos Chegada a conclusão desta etapa com mais de quatro anos, não a poderia deixar terminar sem agradecer a todos os que, directa ou indirectamente, contribuíram para a realização deste trabalho. Em primeiro lugar quero expressar o meu mais profundo agradecimento ao Professor Doutor Alexandre Quintas, orientador principal deste trabalho, por todo o seu apoio, amizade, compreensão e disponibilidade. Desde que começámos a trabalhar juntos que sempre manteve a nossa relação numa base de confiança, transmitindo‐me a ideia de que somos uma equipa. E uma equipa luta junta pelos seus objectivos. As suas qualidades humanas e científicas que sempre marcaram presença são uma referência. Estou certo que no futuro ainda muito mais irei aprender com ele. Por tudo, o meu mais sincero obrigado. Ao Doutor Carlos Cordeiro, segundo orientador deste trabalho, agradeço a preocupação e ensinamentos que me fizeram crescer como investigador desde o primeiro dia que integrei o grupo de enzimologia. A sua serenidade, ponderação e conhecimento contribuíram de forma extremamente positiva para o desenrolar deste trabalho e para a minha aprendizagem como investigador. À Professora Doutora Ana Ponces, uma palavra especial por tudo o que representa. Desde os tempos de licenciatura que é uma referência minha pelos ensinamentos, pela sua capacidade invulgar de gerar motivação, pelo apoio, amizade e postura perante a vida. Uma pessoa que admiro profundamente que me ensinou e preparou a ser o investigador que sou. Aos amigos e colegas do Laboratório de Patologia Molecular, onde passei a maior parte do meu doutoramento, quero agradecer a simpatia, amizade, companheirismo e boa disposição que sempre pautou a nossa investigação. O meu destaque à Professora Carla Ascenso pelo apoio, ao Carlos Família, com quem partilho o laboratório desde o início, e à Lena pela amizade. Carlos fica a frase: “Oi pessoal tudo bem? Vai um café?”. À Ana e ao Miguel pela amizade, companheirismo e espírito de grupo criado. Não esquecerei a entreajuda estabelecida convosco bem como as Aknowledgments/Agradecimentos aventuras por Lausanne e Copenhaga. Espero sinceramente que não fiquem por aqui. À Joana pela alegria, amizade e bom espírito. É bom ter‐te no laboratório. Ao Gonçalo pelo espírito e amizade. À Catarina que foi marcante pelo furacão de alegria que sempre trazia consigo quando entrava pelo laboratório. Uma amiga que ficou. E finalmente, aos colegas que, não fazendo parte do nosso grupo, estão tão perto: à Teresa e à Susana pela amizade e carinho e ao Henrique, à Inês e ao Paulo pelo bom espírito e profissionalismo que trazem sempre consigo. You make my day!!! Agradeço também a todas as pessoas do Grupo de Enzimologia, o grupo que inicialmente me acolheu e formou. Foi muito o que aprendi junto de vós. O meu agradecimento especial ao Professor António Ferreira pelos conhecimentos e disponibilidade que sempre mostrou. Ao Ricardo Gomes por ser um colega espectacular. Diversão, capacidade de trabalho, entreajuda, amizade, espírito empreendedor, sempre foram qualidades que estiveram presentes. Ao Nuno Lages por ser um grande amigo com quem partilhei bons e maus momentos ao longo destes anos. Ao Hugo Miranda pela longa amizade e por todos os desafios que superámos em conjunto ainda desde a licenciatura. À sempre sorridente Lídia pela amizade e boa disposição. E finalmente à Mariana, ao Gonçalo e à Marta pela amizade e apoio. Uma palavra também para o Doutor Tiago Outeiro que desde o início se revelou ser uma pessoa inspiradora que me leva sempre a tentar ser um investigador cada vez melhor. Admiro muito a sua capacidade de comunicação, trabalho e toda a ciência que produz. O meu obrigado por toda disponibilidade, serenidade e confiança que sempre esteve presente na nossa relação, bem como a ajuda fornecida para que fosse possível trabalhar no laboratório do Professor Doutor Hilal Lashuel. Ao Professor Doutor Hilal Lashuel o meu muito obrigado por me ter acolhido no seu laboratório. As suas qualidades científicas são do melhor que tive a possibilidade de presenciar. Apesar do pouco tempo que estive no seu laboratório, foram inúmeros os conhecimentos que obtive e a aprendizagem que fiz. Para isso contribuiu também sem dúvida a orientação mais estreita da Doutora Katrina Paleologou com quem foi um prazer enorme trabalhar. A todos o meu muito obrigado em especial aos colegas Abid, Asad, Margot e Mirva. Aos amigos, que estão sempre lá, para a ciência e para tudo o resto. Não há palavras para descrever a vossa importância na minha vida. Sinto‐me um privilegiado por poder chamar amigo a Aknowledgments/Agradecimentos muita gente, mas não consigo deixar de vos destacar. Obrigado João Luís, Sónia Pais, Margarida Neves de Sousa, Ana Rita Moreira, João Lopes, Sara Gomes e a todos os Scramble por fazerem parte da minha vida. Por último o meu agradecimento a toda a família… aos avós, aos padrinhos, aos tios e primos que, embora longe, são tão importantes e sabem estar tão perto; e duas palavras de grande carinho: para com a minha mãe por tudo o que me proporcionou desde que nasci. Este meu ínfimo sucesso é sem dúvida fruto do seu amor, trabalho e dedicação… e eu não sou fácil de aturar!!! É impossível verbalizar a importância que tens na minha vida; e para com o meu pai a quem quero muito dedicar este trabalho. A tua partida a meio deste caminho deixa‐me uma mágoa inigualável. Era capaz de escrever outra tese sobre a pessoa, o exemplo e a referência que és e como te tenho presente nos meus dias, nas minhas atitudes e decisões. Sei que ninguém estaria mais orgulhoso que tu por me ver chegar aqui e por isso sei que o que fiz também é teu. Aknowledgments/Agradecimentos Aknowledgments/Agradecimentos Table of Contents AKNOWLEDGMENTS/AGRADECIMENTOS...........................................................................................V TABLE OF CONTENTS...............................................................................................................................IX SUMMARY..................................................................................................................................................XIII RESUMO .......................................................................................................................................................XV ABBREVIATIONS ..................................................................................................................................... XIX CHAPTER I...................................................................................................................................................... 2 1. PROTEIN STRUCTURE .................................................................................................................................. 3 1.1 Secondary structure............................................................................................................................. 5 1.1.1 Helical structures ........................................................................................................................................... 5 1.1.2 Beta structures ............................................................................................................................................... 6 1.1.3 Non-repetitive secondary structure................................................................................................................ 7 1.2 Tertiary structure................................................................................................................................. 7 1.3 Protein dynamics and flexibility .........................................................................................................10 1.4 Natively unfolded proteins..................................................................................................................11 2. THE PROTEIN FOLDING PROBLEM ...............................................................................................................14 2.1 The folding code .................................................................................................................................14
Recommended publications
  • 1 Epitomic Analysis of the Specificity of Conformation-Dependent, Anti-AЯ
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.05.238105; this version posted November 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Epitomic analysis of the specificity of conformation-dependent, anti-Aß amyloid monoclonal antibodies. Jorge Mauricio Reyes-Ruiz1, Rie Nakajima2, Ibtisam Baghallab3, Luki Goldschmidt4, Justyna Sosna1, Phuong Nguyen Mai Ho1, Taha Kumosani3, Philip L. Felgner2, and Charles Glabe1* 1Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 29697- 3900 3900 2Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA. 3Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah - Saudi Arabia 4Institute for Protein Design, Department of Biochemistry, University of Washington, NanoES 396, Seattle, WA 98195-7370 *Corresponding author: Charles Glabe Email: [email protected] Running title: Epitomic analysis of anti-Aß antibodies Keywords: Bioinformatics, Alzheimer Disease, Amyloid antibodies, Discontinuous epitopes, Epitope mapping, Phage display, Immunotherapy 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.05.238105; this version posted November 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract arrangement, the segments
    [Show full text]
  • Proquest Dissertations
    ©Copyright 2011 Andrew M. Simms Mining Mountains of Data: Organizing All Atom Molecular Dynamics Protein Simulation Data into SQL and OLAP Cubes Andrew M. Simms A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2011 Program Authorized to Offer Degree: Medical Education and Biomedical Informatics UMI Number: 3472310 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI' Dissertation Publishing UMI 3472310 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Andrew M. Simms and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: Valerie Daggett' Reading Committee: ^J CtJ..JLA^~JL Valerie Daggett (sA^d^/^y ^PUl« IraP,. Kalet JMer Myler Date: ^'/^v-ZO/r*y. / In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection.
    [Show full text]
  • CATALOG Hands On, Minds On! New Products
    ...where molecules become real TM CATALOG Hands On, Minds On! New Products Flu Fight: Immunity & Infection Panorama© Page 15 NEW Durable Plastic! Synapse Construction Kit© Page 19 Antibody and Antigen Models Page 17 Insulin Model Page 9 Our Customers’ Favorite Products Water Kit© Page 3 Flow of Genetic Information Kit© Page 13 DNA Discovery Kit© Page 11 Enzymes in Action Kit© Page 8 Amino Acid Starter Kit© Page 7 Phospholipid & Membrane Transport Kit© Page 5 David Goodsell Cellular Landscapes Page 14 3dmoleculardesigns.com Made in the U.S.A. ...where molecules become real TM 2018 Product by Category Water and Membrane Science Olympiad Protein Modeling Event © © Water Kit and NaCl Lattice .................................................................... 3 Pre-Build Kit and Practice Kit ............................................................... 23 Channel Mini Models: Sodium Channel, Aquaporin Channel, Potassium Channel and Potassium Project-Based Learning Activities © Channel with Scorpion Toxin ............................................................... 4 Neurotransmitters Module: The Beery Twins’ Story © © Phospholipid & Membrane Transport Kit and Human Sepiapterin Reductase mRNA Gene Map and Mini © Phospholipid Modeling Set ................................................................ 5 Model and Dopamine and Serotonin Biosynthesis Models ... 18 © Molecules of Life Collection ................................................................... 12 Water Tattoos .………………………………………….........................………….... 21 Kits ©
    [Show full text]
  • Divergence Entropy-Based Evaluation of Hydrophobic Core in Aggressive and Resistant Forms of Transthyretin
    entropy Article Divergence Entropy-Based Evaluation of Hydrophobic Core in Aggressive and Resistant Forms of Transthyretin Mateusz Banach 1 , Katarzyna Stapor 2 , Piotr Fabian 2 , Leszek Konieczny 3 and Irena Roterman 1,* 1 Department of Bioinformatics and Telemedicine, Jagiellonian University—Medical College, 30-688 Kraków, Poland; [email protected] 2 Institute of Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland; [email protected] (K.S.); [email protected] (P.F.) 3 Chair of Medical Biochemistry—Jagiellonian University—Medical College, 31-034 Kraków, Poland; [email protected] * Correspondence: [email protected] Abstract: The two forms of transthyretin differing slightly in the tertiary structure, despite the presence of five mutations, show radically different properties in terms of susceptibility to the amyloid transformation process. These two forms of transthyretin are the object of analysis. The search for the sources of these differences was carried out by means of a comparative analysis of the structure of these molecules in their native and early intermediate stage forms in the folding process. The criterion for assessing the degree of similarity and differences is the status of the hydrophobic core. The comparison of the level of arrangement of the hydrophobic core and its initial stages is possible thanks to the application of divergence entropy for the early intermediate stage and for the final forms. It was shown that the minimal differences observed in the structure of the hydrophobic core of the forms available in PDB, turned out to be significantly different in the early stage (ES) Citation: Banach, M.; Stapor, K.; structure in folding process.
    [Show full text]
  • Functional Capabilities of the Earliest Peptides and the Emergence of Life
    Genes 2011, 2, 671-688; doi:10.3390/genes2040671 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Article Functional Capabilities of the Earliest Peptides and the Emergence of Life 1, 2 E. James Milner-White * and Michael J. Russell 1 College of Medical, Veterinary and Life Sciences, Glasgow University, Glasgow G128QQ, UK 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-141-330-5283; Fax: +44-141-330-4620. Received: 11 August 2011; in revised form: 14 September 2011 / Accepted: 14 September 2011 / Published: 26 September 2011 Abstract: Considering how biological macromolecules first evolved, probably within a marine environment, it seems likely the very earliest peptides were not encoded by nucleic acids, or at least not via the genetic code as we know it. An objective of the present work is to demonstrate that sequence-independent peptides, or peptides with variable and unreliable lengths and sequences, have the potential to perform a variety of chemically useful functions such as anion and cation binding and membrane and channel formation as well as simple types of catalysis. These functions tend to be performed with the assistance of the main chain CONH atoms rather than the more variable or limited side chain atoms of the peptides presumed to exist then. Keywords: catgrips; emergence of life; hydrothermal mound; nests; niches; peptides 1. Introduction Many ideas about the emergence of life have been presented [1-6].
    [Show full text]
  • 7828.Full.Pdf
    Experimental characterization of disordered and ordered aggregates populated during the process of amyloid fibril formation Nata` lia Carullaa,1, Min Zhoub, Muriel Arimonc, Margarida Gairíd, Ernest Giralte,f, Carol V. Robinsonb,1, and Christopher M. Dobsonb,1 aInstitucio´Catalana de Recerca i Estudis Avanc¸ats Researcher at Institut de Recerca Biome`dica, Baldiri Reixac 10-12, 08028 Barcelona, Spain; bDepartment of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB21EW, United Kingdom; cInstitut de Bioenginyeria de Catalunya, Baldiri Reixac, 15, 08028 Barcelona, Spain; dUnitat de RMN, Serveis de Suport a la Recerca, Universitat de Barcelona, Baldiri Reixac, 10-12, 08028 Barcelona, Spain; eInstitut de Recerca Biome`dica, Baldiri Reixac 10-12, 08028 Barcelona, Spain; and fDepartament de Química Orga`nica, Universitat de Barcelona, Martí i Franque`s 1, Barcelona 08028, Spain Edited by David Baker, University of Washington, Seattle, WA, and approved March 10, 2009 (received for review December 2, 2008) Recent experimental evidence points to intermediates populated forms of mass spectrometry (12, 13). In addition, a conformation- during the process of amyloid fibril formation as the toxic moieties specific antibody that recognizes soluble oligomers from many types primarily responsible for the development of increasingly common of proteins, regardless of sequence, has been produced and has disorders such as Alzheimer’s disease and type II diabetes. We proved to be very useful in monitoring the kinetics of oligomer describe here the application of a pulse-labeling hydrogen- formation (14). deuterium (HD) exchange strategy monitored by mass spectrom- HD exchange experiments are based on solvent accessibilities; etry (MS) and NMR spectroscopy (NMR) to characterize the aggre- amide protons that normally undergo rapid exchange with solvent gation process of an SH3 domain under 2 different conditions, both deuterons experience much slower exchange when involved in of which ultimately lead to well-defined amyloid fibrils.
    [Show full text]
  • Amyloid Formation on Lipid Membrane Surfaces Paavo K.J
    The Open Biology Journal, 2009, 2, 163-175 163 Open Access Amyloid Formation on Lipid Membrane Surfaces Paavo K.J. Kinnunen* Helsinki Biophysics and Biomembrane Group, Medical Biochemistry/Institute of Biomedicine, University of Helsinki, Finland Abstract: Several lines of research have concluded lipid membranes to efficiently induce the formation of amyloid-type fibers by a number of proteins. In brief, membranes, particularly when containing acidic, negatively charged lipids, concentrate cationic peptides/proteins onto their surfaces, into a local low pH milieu. The latter together with the anisotropic low dielectricity environment of the lipid membrane further forces polypeptides to align and adjust their conformation so as to enable a proper arrangement of the side chains according to their physicochemical characteristics, creating a hydrophobic surface contacting the lipid hydrocarbon region. Concomitantly, the low dielectricity also forces the polypeptides to maximize intramolecular hydrogen bonding by folding into amphipathic -helices, which further aggregate, the latter adding cooperativity to the kinetics of membrane association. After the above, fast first events, several slower, cooperative conformational transitions of the oligomeric polypeptide chains take place in the membrane surface. Relaxation to the free energy minimum involves a complex free energy landscape of the above system comprised of a soft membrane interacting with, and accommodating peptide polymers. The overall free energy landscape thus involves a region of polypeptide aggregation associated with folding: polypeptide physicochemical properties and available conformation/oligomerization state spaces as determined by the amino acid sequence. In this respect, of major interest are those natively disordered proteins interacting with lipids, which in the absence of a ligand have no inherent structure and may adapt different functional states.
    [Show full text]
  • May 19, 2017 Mary Gates Hall
    May 19, 2017 Mary Gates Hall POSTER SESSION 2 POSTER SESSION 3 Balcony, Easel 106 Commons East, Easel 44 1:00 PM to 2:30 PM 2:30 PM to 4:00 PM Probing Amyloid Aggregation Using Designed Peptides “Beyond Appetite”: Examining Identities and Timothy Mark Bi, Junior, Bioengineering Motivations of Foodies through Food Visuals on Mentor: Valerie Daggett, Bioengineering Instagram Mentor: Nathan Maris, Bioengineering Napatsorn (Pam) Thanarugchok, Senior, Communication Mary Gates Scholar, UW Honors Program The beta-amyloid (Aβ) peptide, implicated in Alzheimer’s Mentor: Anita Crofts, Communication Disease, forms toxic aggregates known as oligomers that Mentor: Valerie Manusov, Communication cause brain degeneration. This aggregation process can be inhibited by designed peptides that have a novel structure, Food has long been recognized as the way that people as- known as the alpha-sheet. This structure is similar to a sign identities to themselves and others. We interpret the type beta-sheet except that the carbonyls all point in one direc- of food individuals consume as a factor that constructs their tion and the amine groups in the other, generating a molec- biological, sociological, and psychological images. As social ular dipole moment. The Daggett group hypothesizes that media grows more pervasive, foodie culture and new methods at some point, Aβ undergoes a conformational change that of self-expression through food visuals have been introduced. gives it this alpha-sheet character and the resulting molecu- For example, today there is a trend for social media users to lar dipole causes Aβ monomers to be attracted to each other share pictures of food and meals they consume online.
    [Show full text]
  • Computational Investigation for Secondary Structure Prediction
    International Journal of scientific research and management (IJSRM) ||Volume||2||Issue||10||Pages||1535-1541||2014|| Website: www.ijsrm.in ISSN (e): 2321-3418 Computational Investigation for Secondary Structure Prediction M.Rithvik1, G.Nageswara Rao2 1aditya Institute Of Technology And Management, Tekkali [email protected] 2 Aditya Institute Of Technology And Management, Tekkali [email protected] Abstract: Protein structure prediction play a key role in every living organisms All living organisms are made up of cells and each cell in its turn consists of certain protein consequences which exercise an important role in catalyzing the chemical reactions. So, a study of a protein structure becomes a search lamp in the diagnosis of a disease .when the percent identity between two protein sequences falls below 33%,it necessities to carry out the analysis of protein secondary structure. Of the several methodologies developed to analyze the protein secondary structure, two methods proved to be sound- DSSP(Dictionary of Secondary Structure of Proteins) and GOR(Garnier,Osguthrope and Robson),Even though the prediction accuracy of GORV is 73.5% due to hazards in its implementation ,GORIV is generally used in spite of its accuracy being only to 64.4% Keywords:Protein,Residue,DSSP,GOR local segments of biopolymers such as proteins and 1. Introduction nucleic acids (DNA/RNA). It does not, however, Analysis of secondary structures of proteins is carried out when describe specific atomic positions in three- the percent identity between two sequences fall below 33%. dimensional space, which are considered to be The world wide web hosts many programs that are able to tertiary structure.Secondary structure is formally recognize the number of residues that appear in secondary defined by the hydrogen bonds of the biopolymer, as structural elements such as alpha helices, beta strands etc, but observed in an atomic-resolution structure.
    [Show full text]
  • Synonymous Codon Usage in Different Protein Secondary Structural Classes 947
    Synonymous codon usage in different protein secondary structural classes 947 Synonymous codon usage in different protein secondary structural classes of human genes: Implication for increased non-randomness of GC3 rich genes towards protein stability PAMELA MUKHOPADHYAY, SURAJIT BASAK and TAPASH CHANDRA GHOSH* Bioinformatics Centre, Bose Institute, P 1/12, CIT Scheme VII M, Kolkata 700 054, India *Corresponding author (Fax, 91-33-2355 3886; Email, [email protected]) The relationship between the synonymous codon usage and different protein secondary structural classes were investigated using 401 Homo sapiens proteins extracted from Protein Data Bank (PDB). A simple Chi-square test was used to assess the signifi cance of deviation of the observed and expected frequencies of 59 codons at the level of individual synonymous families in the four different protein secondary structural classes. It was observed that synonymous codon families show non-randomness in codon usage in four different secondary structural classes. However, when the genes were classifi ed according to their GC3 levels there was an increase in non-randomness in high GC3 group of genes. The non-randomness in codon usage was further tested among the same protein secondary structures belonging to four different protein folding classes of high GC3 group of genes. The results show that in each of the protein secondary structural unit there exist some synonymous family that shows class specifi c codon- usage pattern. Moreover, there is an increased non-random behaviour of synonymous codons in sheet structure of all secondary structural classes in high GC3 group of genes. Biological implications of these results have been discussed.
    [Show full text]
  • The Dynamics and Misfolding Pathways of the Prion Protein at Atomic Resolution
    THE DYNAMICS AND MISFOLDING PATHWAYS OF THE PRION PROTEIN AT ATOMIC RESOLUTION Chin Jung Cheng A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2015 Reading Committee: Valerie Daggett, Chair James Bryers Shaoyi Jiang Program Authorized to Offer Degree: Bioengineering © Copyright 2015 Chin Jung Cheng University of Washington Abstract THE DYNAMICS AND MISFOLDING PATHWAYS OF THE PRION PROTEIN AT ATOMIC RESOLUTION Chin Jung Cheng Chair of the Supervisory Committee: Professor Valerie Daggett Bioengineering Prion diseases are fatal, transmissible and incurable neurodegenerative diseases that only infect mammals. While the manifestation of prion disease is not completely understood, it is known that the prion protein (PrP) plays a critical role in prion disease development. The PrP can exist in two different isoforms: PrP C is the native cellular form which is innocuous, while PrP Sc is the pathogenic form. PrP Sc is aggregation-prone thus forming soluble oligomers which are toxic and infectious. Using molecular dynamics simulations, we have investigated misfolding pathways for human PrP pathogenic mutants and bovine PrP at acidic pH. In order to better understand the molecular dynamics of the PrP C at a physiological environment, we have also performed simulations of the human PrP C attached with glycans in a membrane environment, revealing protective mechanisms against misfolding. Using recent experimental data on PrP Sc soluble oligomers, we have validated our current structural model for PrP Sc oligomers and finally, combining our findings from both bovine PrP Sc and human PrP C, we have constructed a system to model the PrP Sc -induced misfolding for the human PrP C in a physiological environment.
    [Show full text]
  • Molecular Dynamics Simulations Capture the Misfolding of the Bovine Prion Protein at Acidic Ph
    Biomolecules 2014, 4, 181-201; doi:10.3390/biom4010181 OPEN ACCESS biomolecules ISSN 2218-273X www.mdpi.com/journal/biomolecules/ Article Molecular Dynamics Simulations Capture the Misfolding of the Bovine Prion Protein at Acidic pH Chin Jung Cheng and Valerie Daggett * Department of Bioengineering, University of Washington, Seattle WA 98195-5013, USA; E-Mails: [email protected] (C.C.); [email protected] (V.D.) * Author to whom correspondence should be addressed; E-Mail: [email protected] (V.D.); Tel.: +1-206-543-9305; Fax: +1-206-685-3300. Received: 9 January 2014; in revised form: 7 February 2014 / Accepted: 9 February 2014 / Published: 10 February 2014 Abstract: Bovine spongiform encephalopathy (BSE), or mad cow disease, is a fatal neurodegenerative disease that is transmissible to humans and that is currently incurable. BSE is caused by the prion protein (PrP), which adopts two conformers; PrPC is the native innocuous form, which is α-helix rich; and PrPSc is the β-sheet rich misfolded form, which is infectious and forms neurotoxic species. Acidic pH induces the conversion of PrPC to PrPSc. We have performed molecular dynamics simulations of bovine PrP at various pH regimes. An acidic pH environment induced conformational changes that were not observed in neutral pH simulations. Putative misfolded structures, with nonnative β-strands formed in the flexible N-terminal domain, were found in acidic pH simulations. Two distinct pathways were observed for the formation of nonnative β-strands: at low pH, hydrophobic contacts with M129 nucleated the nonnative β-strand; at mid-pH, polar contacts involving Q168 and D178 facilitated the formation of a hairpin at the flexible N-terminus.
    [Show full text]