Emruli Blerim Nr3.Ps

Total Page:16

File Type:pdf, Size:1020Kb

Emruli Blerim Nr3.Ps ISSN: 1402-1544 ISBN 978-91-7583-XXX-X Se i listan och fyll i siffror där kryssen är DOCTORAL T H E SIS BLERIM EMRULI Department of Computer Science, Electrical and Space Engineering Division of EISLAB ISSN 1402-1544 Ubiquitous Cognitive Computing: ISBN 978-91-7583-003-2 (print) ISBN 978-91-7583-004-9 (pdf) A Vector Symbolic Approach Ubiquitous Cognitive Computing: A Vector Symbolic Approach Symbolic Vector A Computing: Ubiquitous Cognitive Luleå University of Technology 2014 BLERIM EMRULI Ubiquitous Cognitive Computing: A Vector Symbolic Approach BLERIM EMRULI EISLAB Luleå University of Technology Luleå, Sweden Supervisors: Jerker Delsing, Fredrik Sandin and Lennart Gustafsson Printed by Luleå University of Technology, Graphic Production 2014 ISSN 1402-1544 ISBN 978-91-7583-003-2 (print) ISBN 978-91-7583-004-9 (pdf) Luleå 2014 www.ltu.se To my parents Abstract A wide range of physical things are currently being integrated with the infrastructure of cyberspace in a process that is creating the so-called Internet of Things. It is expected that Internet-connected devices will vastly outnumber people on the planet in the near future. Such devices need to be easily deployed and integrated, otherwise the resulting systems will be too costly to configure and maintain. This is challenging to accomplish using conventional technology, especially when dealing with complex or heterogeneous systems consisting of diverse components that implement functionality and standards in different ways. In addi- tion, artificial systems that interact with humans, the environment and one-another need to deal with complex and imprecise information, which is difficult to represent in a flexible and standardized manner using conventional methods. This thesis investigates the use of cognitive computing principles that offer new ways to represent information and design such devices and systems. The core idea underpinning the work presented herein is that functioning systems can potentially emerge autonomously by learning from user interactions and the environment provided that each component of the system conforms to a set of general information-coding and communication rules. The proposed learning approach uses vector-based representations of information, which are common in models of cognition and semantic spaces. Vector symbolic architectures (VSAs) are a class of biology-inspired models that represent and manipulate structured rep- resentations of information, which can be used to model high-level cognitive processes such as analogy-making. Analogy-making is a central element of cognition that enables animals to identify and manage new information by generalizing past experiences, possibly from a few learned examples. The work presented herein is based on a VSA and a binary associative memory model known as sparse distributed memory. The thesis outlines a learning architecture for the au- tomated configuration and interoperation of devices operating in heterogeneous and ubiq- uitous environments. To this end, the sparse distributed memory model is extended with a VSA-based analogy-making mechanism that enables generalization from a few learned examples, thereby facilitating rapid learning. The thesis also presents a generalization of random indexing, which is an incremental and lightweight feature extraction method for streaming data that is commonly used to generate vector representations of semantic spaces. The impact of this thesis is twofold. First, the appended papers extend previous theoret- ical and empirical work on vector-based cognitive models, in particular for analogy-making and learning. Second, a new approach for designing the next generation of ubiquitous cog- nitive systems is outlined, which in principle can enable heterogeneous devices and systems to autonomously learn how to interoperate. Contents Part I 1 Introduction 3 1.1 Problem formulation ................................. 5 1.2 Delimitations ..................................... 7 1.3 Methodology ..................................... 7 1.4 Thesis outline ..................................... 7 2 Cognitive computation 9 2.1 Highlights of the last 60 years ............................ 9 2.2 Desirable properties of cognitive computation .................. 13 2.3 The geometric approach to cognition ........................ 16 2.4 New challenges .................................... 17 3 Representation, memory and analogy 19 3.1 Representation ..................................... 19 3.2 Vector symbolic architectures ............................ 22 3.3 Encoding a distributed representation ....................... 26 3.4 Memory ........................................ 27 3.5 Analogical mapping with holistic vectors ..................... 30 4 Conclusions and future work 33 4.1 Conclusions ...................................... 33 4.2 Future work ...................................... 35 References 37 Part II Paper A 53 Paper B 81 Paper C 103 Paper D 131 Preface This thesis is the result of five years’ effort. In keeping with the tradition, this doctoral thesis is a compilation thesis that consists of two parts. Part I presents a general introduction and description of the problem that is addressed, and outlines some of the key ideas and concepts needed to understand the appended papers in Part II. The research presented in this thesis is interdisciplinary in nature. As such, a comprehensive introduction to each relevant disci- pline would be beyond the scope of Part I. Consequently, I focus only on those aspects and issues that I consider essential to understand the papers in Part II, and motivate the rationale and the approach behind the work presented in this thesis. I found the studies that resulted in the production of this thesis to be rewarding and satisfying, mainly for two reasons. First, because they enabled me to use a mathematical approach while exploring the intersection of several different disciplines including cogni- tive science, artificial intelligence, information theory and ubiquitous computing. Second, because I had the benefit of collaborating with knowledgeable and inspiring people at all stages while continuously being challenged to further my development as an independent and responsible researcher. The work has generated many useful experiences and has al- ready been recognized by some pioneers in the field as innovative and stimulating, which has resulted in co-authored publications. I joined EISLAB after finishing an M.Sc. in computer engineering with specialization in applied artificial intelligence and a B.Sc. in computer science. Immediately after joining the lab (and also during my recruitment process) I was introduced to the concept that Internet- connected sensors and actuators are being embedded everywhere and in everything, and the great challenges and opportunities that are being created as a result. At that time, most workers in the field and at EISLAB were focused on aspects such as communication, sensing and energy harvesting, which are very important topics even today. Moreover, EISLAB had done some very interesting work on using these Internet-connected sensors and actuators in human, infrastructure and environmental monitoring, home automation, and intelligent transportation systems. However, many of the existing applications are not adaptive and depend heavily on human labor. From this perspective, my supervisor Jerker Delsing has argued that we must start thinking about how we can enable the Internet of Things to per- form more brainlike computation in order to address the growing challenges it presents. Together with my assistant supervisor Fredrik Sandin, at the time a newly hired postdoc with a background in Physics, we set out to determine how this vision could be realized by reviewing the literature and critically thinking about how to approach the problem. After having spent several months and a great deal of effort exploring biologically plausible mod- els for information processing and psychologically inspired models of cognition, we decided to investigate a hybrid approach that integrates some key aspects of both these approaches in a single mathematical framework. X Preface There are many people who have helped me to reach this point and I owe them all a debt of gratitude. First, I would like to thank my supervisors Jerker Delsing, Fredrik Sandin and Lennart Gustafsson. I thank Jerker for his support and guidance; Fredrik for being my day-to-day supervisor, and for always challenging me to think deeper and reach further; and Lennart for believing from the very beginning that I am well prepared and strongly motivated to pursue research and education. I also thank my co-authors, Ross Gayler and Magnus Sahlgren, for their inputs, sugges- tions and enlightening discussions. In addition, I thank Chris Eliasmith for never hesitating to take the time to answer my questions, and Serge Thill for his helpful comments. The work for this thesis was carried out mostly at the Department of Computer Science, Electrical and Space Engineering of Luleå University of Technology in Luleå, Sweden. I ex- tend my sincere thanks to everyone in the department for providing a pleasant working at- mosphere. During the work leading up to this thesis I was fortunate to have the opportunity to visit other research groups. I am thankful to Asad Khan and Andrew Paplinski for hosting me during my visit at Monash University in Australia, and Pentti Kanerva and Bruno Olshausen for hosting me during my visit at the University of California, Berkeley. Furthermore, I thank all the
Recommended publications
  • The Ouroboros Model, Proposal for Self-Organizing General Cognition Substantiated
    Opinion The Ouroboros Model, Proposal for Self-Organizing General Cognition Substantiated Knud Thomsen Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland; [email protected] Abstract: The Ouroboros Model has been proposed as a biologically-inspired comprehensive cog- nitive architecture for general intelligence, comprising natural and artificial manifestations. The approach addresses very diverse fundamental desiderata of research in natural cognition and also artificial intelligence, AI. Here, it is described how the postulated structures have met with supportive evidence over recent years. The associated hypothesized processes could remedy pressing problems plaguing many, and even the most powerful current implementations of AI, including in particular deep neural networks. Some selected recent findings from very different fields are summoned, which illustrate the status and substantiate the proposal. Keywords: biological inspired cognitive architecture; deep neural networks; auto-catalytic genera- tion; self-reflective control; efficiency; robustness; common sense; transparency; trustworthiness 1. Introduction The Ouroboros Model was conceptualized as the basic structure for efficient self- Citation: Thomsen, K. The organizing cognition some time ago [1]. The intention there was to explain facets of natural Ouroboros Model, Proposal for cognition and to derive design recommendations for general artificial intelligence at the Self-Organizing General Cognition same time. Whereas it has been argued based on general considerations that this approach Substantiated. AI 2021, 2, 89–105. can shed some light on a wide variety of topics and problems, in terms of specific and https://doi.org/10.3390/ai2010007 comprehensive implementations the Ouroboros Model still is severely underexplored. Beyond some very rudimentary realizations in safeguards and safety installations, no Academic Editors: Rafał Drezewski˙ actual artificially intelligent system of this type has been built so far.
    [Show full text]
  • Real-Time System for Driver Fatigue Detection Based on a Recurrent Neuronal Network
    Journal of Imaging Article Real-Time System for Driver Fatigue Detection Based on a Recurrent Neuronal Network Younes Ed-Doughmi 1,* , Najlae Idrissi 1 and Youssef Hbali 2 1 Department Computer Science, FST, University Sultan Moulay Sliman, 23000 Beni Mellal, Morocco; [email protected] 2 Computer Systems Engineering Laboratory Cadi Ayyad University, Faculty of Sciences Semlalia, 40000 Marrakech, Morocco; [email protected] * Correspondence: [email protected] Received: 6 January 2020; Accepted: 25 February 2020; Published: 4 March 2020 Abstract: In recent years, the rise of car accident fatalities has grown significantly around the world. Hence, road security has become a global concern and a challenging problem that needs to be solved. The deaths caused by road accidents are still increasing and currently viewed as a significant general medical issue. The most recent developments have made in advancing knowledge and scientific capacities of vehicles, enabling them to see and examine street situations to counteract mishaps and secure travelers. Therefore, the analysis of driver’s behaviors on the road has become one of the leading research subjects in recent years, particularly drowsiness, as it grants the most elevated factor of mishaps and is the primary source of death on roads. This paper presents a way to analyze and anticipate driver drowsiness by applying a Recurrent Neural Network over a sequence frame driver’s face. We used a dataset to shape and approve our model and implemented repetitive neural network architecture multi-layer model-based 3D Convolutional Networks to detect driver drowsiness. After a training session, we obtained a promising accuracy that approaches a 92% acceptance rate, which made it possible to develop a real-time driver monitoring system to reduce road accidents.
    [Show full text]
  • Cognitive Computing Systems: Potential and Future
    Cognitive Computing Systems: Potential and Future Venkat N Gudivada, Sharath Pankanti, Guna Seetharaman, and Yu Zhang March 2019 1 Characteristics of Cognitive Computing Systems Autonomous systems are self-contained and self-regulated entities which continually evolve them- selves in real-time in response to changes in their environment. Fundamental to this evolution is learning and development. Cognition is the basis for autonomous systems. Human cognition refers to those processes and systems that enable humans to perform both mundane and specialized tasks. Machine cognition refers to similar processes and systems that enable computers perform tasks at a level that rivals human performance. While human cognition employs biological and nat- ural means – brain and mind – for its realization, machine cognition views cognition as a type of computation. Cognitive Computing Systems are autonomous systems and are based on machine cognition. A cognitive system views the mind as a highly parallel information processor, uses vari- ous models for representing information, and employs algorithms for transforming and reasoning with the information. In contrast with conventional software systems, cognitive computing systems effectively deal with ambiguity, and conflicting and missing data. They fuse several sources of multi-modal data and incorporate context into computation. In making a decision or answering a query, they quantify uncertainty, generate multiple hypotheses and supporting evidence, and score hypotheses based on evidence. In other words, cognitive computing systems provide multiple ranked decisions and answers. These systems can elucidate reasoning underlying their decisions/answers. They are stateful, and understand various nuances of communication with humans. They are self-aware, and continuously learn, adapt, and evolve.
    [Show full text]
  • A Knowledge-Based Cognitive Architecture Supported by Machine Learning Algorithms for Interpretable Monitoring of Large-Scale Satellite Networks
    sensors Article A Knowledge-Based Cognitive Architecture Supported by Machine Learning Algorithms for Interpretable Monitoring of Large-Scale Satellite Networks John Oyekan 1, Windo Hutabarat 1, Christopher Turner 2,* , Ashutosh Tiwari 1, Hongmei He 3 and Raymon Gompelman 4 1 Department of Automatic Control and Systems Engineering, University of Sheffield, Portobello Street, Sheffield S1 3JD, UK; j.oyekan@sheffield.ac.uk (J.O.); w.hutabarat@sheffield.ac.uk (W.H.); a.tiwari@sheffield.ac.uk (A.T.) 2 Surrey Business School, University of Surrey, Guildford, Surrey GU2 7XH, UK 3 School of Computer Science and Informatics, De Montfort University, The Gateway, Leicester LE1 9BH, UK; [email protected] 4 IDirect UK Ltd., Derwent House, University Way, Cranfield, Bedfordshire MK43 0AZ, UK; [email protected] * Correspondence: [email protected] Abstract: Cyber–physical systems such as satellite telecommunications networks generate vast amounts of data and currently, very crude data processing is used to extract salient information. Only a small subset of data is used reactively by operators for troubleshooting and finding problems. Sometimes, problematic events in the network may go undetected for weeks before they are reported. This becomes even more challenging as the size of the network grows due to the continuous prolif- Citation: Oyekan, J.; Hutabarat, W.; eration of Internet of Things type devices. To overcome these challenges, this research proposes a Turner, C.; Tiwari, A.; He, H.; knowledge-based cognitive architecture supported by machine learning algorithms for monitoring Gompelman, R. A Knowledge-Based satellite network traffic. The architecture is capable of supporting and augmenting infrastructure Cognitive Architecture Supported by Machine Learning Algorithms for engineers in finding and understanding the causes of faults in network through the fusion of the Interpretable Monitoring of results of machine learning models and rules derived from human domain experience.
    [Show full text]
  • Reinforcement Learning for Adaptive Theory of Mind in the Sigma Cognitive Architecture
    Reinforcement Learning for Adaptive Theory of Mind in the Sigma Cognitive Architecture David V. Pynadath1, Paul S. Rosenbloom1;2, and Stacy C. Marsella3 1 Institute for Creative Technologies 2 Department of Computer Science University of Southern California, Los Angeles CA, USA 3 Northeastern University, Boston MA, USA Abstract. One of the most common applications of human intelligence is so- cial interaction, where people must make effective decisions despite uncertainty about the potential behavior of others around them. Reinforcement learning (RL) provides one method for agents to acquire knowledge about such interactions. We investigate different methods of multiagent reinforcement learning within the Sigma cognitive architecture. We leverage Sigma’s architectural mechanism for gradient descent to realize four different approaches to multiagent learning: (1) with no explicit model of the other agent, (2) with a model of the other agent as following an unknown stationary policy, (3) with prior knowledge of the other agent’s possible reward functions, and (4) through inverse reinforcement learn- ing (IRL) of the other agent’s reward function. While the first three variations re-create existing approaches from the literature, the fourth represents a novel combination of RL and IRL for social decision-making. We show how all four styles of adaptive Theory of Mind are realized through Sigma’s same gradient descent algorithm, and we illustrate their behavior within an abstract negotiation task. 1 Introduction Human intelligence faces the daily challenge of interacting with other people. To make effective decisions, people must form beliefs about others and generate expectations about the behavior of others to inform their own behavior.
    [Show full text]
  • Neural Cognitive Architectures for Never-Ending Learning
    Neural Cognitive Architectures for Never-Ending Learning Author Committee Emmanouil Antonios Platanios Tom Mitchelly www.platanios.org Eric Horvitzz [email protected] Rich Caruanaz Graham Neubigy Abstract Allen Newell argued that the human mind functions as a single system and proposed the notion of a unified theory of cognition (UTC). Most existing work on UTCs has focused on symbolic approaches, such as the Soar architecture (Laird, 2012) and the ACT-R (Anderson et al., 2004) system. However, such approaches limit a system’s ability to perceive information of arbitrary modalities, require a significant amount of human input, and are restrictive in terms of the learning mechanisms they support (supervised learning, semi-supervised learning, reinforcement learning, etc.). For this reason, researchers in machine learning have recently shifted their focus towards subsymbolic processing with methods such as deep learning. Deep learning systems have become a standard for solving prediction problems in multiple application areas including computer vision, natural language processing, and robotics. However, many real-world problems require integrating multiple, distinct modalities of information (e.g., image, audio, language, etc.) in ways that machine learning models cannot currently handle well. Moreover, most deep learning approaches are not able to utilize information learned from solving one problem to directly help in solving another. They are also not capable of never-ending learning, failing on problems that are dynamic, ever-changing, and not fixed a priori, which is true of problems in the real world due to the dynamicity of nature. In this thesis, we aim to bridge the gap between UTCs, deep learning, and never-ending learning.
    [Show full text]
  • Using Memristors in a Functional Spiking-Neuron Model of Activity-Silent Working Memory
    Using memristors in a functional spiking-neuron model of activity-silent working memory Joppe Wik Boekestijn (s2754215) July 2, 2021 Internal Supervisor(s): Dr. Jelmer Borst (Artificial Intelligence, University of Groningen) Second Internal Supervisor: Thomas Tiotto (Artificial Intelligence, University of Groningen) Artificial Intelligence University of Groningen, The Netherlands Abstract In this paper, a spiking-neuron model of human working memory by Pals et al. (2020) is adapted to use Nb-doped SrTiO3 memristors in the underlying architecture. Memristors are promising devices in neuromorphic computing due to their ability to simulate synapses of ar- tificial neuron networks in an efficient manner. The spiking-neuron model introduced by Pals et al. (2020) learns by means of short-term synaptic plasticity (STSP). In this mechanism neu- rons are adapted to incorporate a calcium and resources property. Here a novel learning rule, mSTSP, is introduced, where the calcium property is effectively programmed on memristors. The model performs a delayed-response task. Investigating the neural activity and performance of the model with the STSP or mSTSP learning rules shows remarkable similarities, meaning that memristors can be successfully used in a spiking-neuron model that has shown functional human behaviour. Shortcomings of the Nb-doped SrTiO3 memristor prevent programming the entire spiking-neuron model on memristors. A promising new memristive device, the diffusive memristor, might prove to be ideal for realising the entire model on hardware directly. 1 Introduction In recent years it has become clear that computers are using an ever-increasing number of resources. Up until 2011 advancements in the semiconductor industry followed ‘Moore’s law’, which states that every second year the number of transistors doubles, for the same cost, in an integrated circuit (IC).
    [Show full text]
  • Connectionist Models of Cognition Michael S. C. Thomas and James L
    Connectionist models of cognition Michael S. C. Thomas and James L. McClelland 1 1. Introduction In this chapter, we review computer models of cognition that have focused on the use of neural networks. These architectures were inspired by research into how computation works in the brain and subsequent work has produced models of cognition with a distinctive flavor. Processing is characterized by patterns of activation across simple processing units connected together into complex networks. Knowledge is stored in the strength of the connections between units. It is for this reason that this approach to understanding cognition has gained the name of connectionism. 2. Background Over the last twenty years, connectionist modeling has formed an influential approach to the computational study of cognition. It is distinguished by its appeal to principles of neural computation to inspire the primitives that are included in its cognitive level models. Also known as artificial neural network (ANN) or parallel distributed processing (PDP) models, connectionism has been applied to a diverse range of cognitive abilities, including models of memory, attention, perception, action, language, concept formation, and reasoning (see, e.g., Houghton, 2005). While many of these models seek to capture adult function, connectionism places an emphasis on learning internal representations. This has led to an increasing focus on developmental phenomena and the origins of knowledge. Although, at its heart, connectionism comprises a set of computational formalisms,
    [Show full text]
  • Tomcat: Theory of Mind-Based Cognitive Architecture for Teams
    ToMCAT: Theory of Mind-based Cognitive Architecture for Teams September 25, 2019 1 Bay of Pigs invasion (April 1961) Cuban missile crisis (October 1962) Planned by the same team! The difference? Team dynamics. Source: Tetlock & Gardner, Superforecasting (2015) 2 What happens when one or more of the team members are machines? 3 Outline ● Architecture/overview & mission design (Adarsh) ● Hierarchical planning (Clay) ● Dialogue system (Mihai) ● Probabilistic Modeling (Kobus/Emily) ● fNIRS (Kobus/Emily) 4 ToMCAT Architecture Local environment Human teammate 5 Webcam sensor integration 6 Mission design criteria ● Induces emotion (must not be boring!) ● Natural language processing and dialogue can play a significant role. ● Requires hierarchical planning and decision making (inherent in Minecraft’s crafting system) ● Supports interesting multiplayer interactions (competition/cooperation) ● Supports perturbations 7 Starter mission: Search & Rescue with Crafting Context: Creepers have attacked the village, and the survivors are holed up in rooms in their houses, having blockaded the doors against the creepers. But they haven’t got long... Goal: Rescue villagers from creeper-infested village, within some time limit. Features ● Induces emotion (time limit, creepers are dangerous) ● Hierarchical planning (need to craft a weapon to defend against creepers) ● Plan monitoring (need to monitor player health) ● Natural language dialogue (the player can get hints from the agent) ● Natural extension to multiplayer mission. 8 Starter mission: Search & Rescue
    [Show full text]
  • MODELS of COGNITION: the CLASSICAL/CONNECTIONIST DEBATE Suzanne E. Mccalden Submitted in Partial Fulfillrnent of the Requirernen
    MODELS OF COGNITION: THE CLASSICAL/CONNECTIONIST DEBATE Suzanne E. McCalden Submitted in partial fulfillrnent of the requirernents for the degree of Masters of Arts Dalhousie University Halifax, Nova Scotia August, 2000 @ Copyright by Suzanne E. McCalden National Library Bibliothèque nationale I*l of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, nie Wellingtm Ottawa ON K1A ON4 UnawaON K1AW Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence dowing the exclwive pemettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seii reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic fonnats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts firom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent êeimprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. For David, Richard, Gordon, Douglas, and especially Evelyn . TABLE OF CONTENTS Table of Contents v Acknowledgements vii Introduction 1 Chapter One: The Classical Theory of Cognition 4 Chapter Two: Comectionisrn and the Systematicity 34 Challenge Chapter Three: Connectionism v. The Language of 69 Thought Hypothesis Bibliography ABSTRACT Fodorts the language of thought hypothesis (LOT) and Smolensky's connectionism are examined. The systematicity debate is also examined.
    [Show full text]
  • Integer SDM and Modular Composite Representation Dissertation V35 Final
    INTEGER SPARSE DISTRIBUTED MEMORY AND MODULAR COMPOSITE REPRESENTATION by Javier Snaider A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Major: Computer Science The University of Memphis August, 2012 Acknowledgements I would like to thank my dissertation chair, Dr. Stan Franklin, for his unconditional support and encouragement, and for having given me the opportunity to change my life. He guided my first steps in the academic world, allowing me to work with him and his team on elucidating the profound mystery of how the mind works. I would also like to thank the members of my committee, Dr. Vinhthuy Phan, Dr. King-Ip Lin, and Dr. Vasile Rus. Their comments and suggestions helped me to improve the content of this dissertation. I am thankful to Penti Kanerva, who introduced the seminal ideas of my research many years ago, and for his insights and suggestions in the early stages of this work. I am grateful to all my colleagues at the CCRG group at the University of Memphis, especially to Ryan McCall. Our meetings and discussions opened my mind to new ideas. I am greatly thankful to my friend and colleague Steve Strain for our discussions, and especially for his help editing this manuscript and patiently teaching me to write with clarity. Without his amazing job, this dissertation would hardly be intelligible. I will always be in debt to Dr. Andrew Olney for his generous support during my years in the University of Memphis, and for being my second advisor, guiding me academically and professionally in my career.
    [Show full text]
  • The Cognitive Computing Era Is Here: Are You Ready?
    The Cognitive Computing Era is Here: Are You Ready? By Peter Fingar. Based on excerpts from the new book Cognitive Computing: A Brief Guide for Game Changers www.mkpress.com/cc Artificial Intelligence is likely to change our civilization as much as, or more than, any technology thats come before, even writing. --Miles Brundage and Joanna Bryson, Future Tense The smart machine era will be the most disruptive in the history of IT. -- Gartner The Disruptive Era of Smart Machines is Upon Us. Without question, Cognitive Computing is a game-changer for businesses across every industry. --Accenture, Turning Cognitive Computing into Business Value, Today! The Cognitive Computing Era will change what it means to be a business as much or more than the introduction of modern Management by Taylor, Sloan and Drucker in the early 20th century. --Peter Fingar, Cognitive Computing: A Brief Guide for Game Changers The era of cognitive systems is dawning and building on today s computer programming era. All machines, for now, require programming, and by definition programming does not allow for alternate scenarios that have not been programmed. To allow alternating outcomes would require going up a level, creating a self-learning Artificial Intelligence (AI) system. Via biomimicry and neuroscience, Cognitive Computing does this, taking computing concepts to a whole new level. Once-futuristic capabilities are becoming mainstream. Let s take a peek at the three eras of computing. Fast forward to 2011 when IBM s Watson won Jeopardy! Google recently made a $500 million acquisition of DeepMind. Facebook recently hired NYU professor Yann LeCun, a respected pioneer in AI.
    [Show full text]