Floral Structure and Pollination in Relation to Fruit Set in Cynanchum Otophyllum Schneid
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alexander Krings Herbarium, Department of Plant Biology North Carolina State University Raleigh, North Carolina 27695-7612, U.S.A
Index of names and types in West Indian Gonolobinae (Apocynace- ae: Asclepiadoideae), including fourteen new lectotypifications, one neotypification, A new name, and A new combination Alexander Krings Herbarium, Department of Plant Biology North Carolina State University Raleigh, North Carolina 27695-7612, U.S.A. [email protected] ABSTRACT Types and their location of deposit are provided for taxa of subtribe Gonolobinae (Apocynaceae: Asclepiadoideae) in the West Indies. The following fourteen taxa are lectotypified: Gonolobus bayatensis Urb., G. broadwayae Schltr., G. ciliatus Schltr., G. dictyopetalus Urb. & Ekman, G. ekmanii Urb., G. nipensis Urb., G. sintenisii Schltr., G. tigrinus Griseb., G. tobagensis Urb., G. variifolius Schltr., Ibatia mollis Griseb., Poicilla costata Urb., Poicilla tamnifolia Griseb., and Poicillopsis crispiflora Urb. Gonolobus grenadensis Schltr. is neotypified. A new name and a new combination in Matelea Aubl. are respectively proposed for Jacaima parvifolia Proctor and J. costata (Urb.) Rendle var. goodfriendii Proctor. RESUMEN Se aportan tipos y su localización de taxa de la subtribu Gonolobinae (Apocynaceae: Asclepiadoideae) en las Indias Occidentales. Se lectotipifican los siguientes catorce taxa: Gonolobus bayatensis Urb., G. broadwayae Schltr., G. ciliatus Schltr., G. dictyopetalus Urb. & Ekman, G. ekmanii Urb., G. nipensis Urb., G. sintenisii Schltr., G. tigrinus Griseb., G. tobagensis Urb., G. variifolius Schltr., Ibatia mollis Griseb., Poicilla costata Urb., Poicilla tamnifolia Griseb., y Poicillopsis crispiflora Urb. Se neotipifica Gonolobus grenadensis Schltr. Se propone un nombre y una combinación nueva en Matelea Aubl. para Jacaima parvifolia Proctor y J. costata (Urb.) Rendle var. goodfriendii Proctor respectivamente. INTRODUCTION Subtribe Gonolobinae (Apocynaceae: Asclepiadoideae) comprises about fifty species in the West Indies, here defined to include the Greater and Lesser Antilles, the Bahamas, Trinidad and Tobago, Aruba and the Neth- erland Antilles, and the Cayman Islands. -
International Journal of Universal Pharmacy and Bio
255 | P a g e International Standard Serial Number (ISSN): 2319-8141 International Journal of Universal Pharmacy and Bio Sciences 8(1): January-February 2019 INTERNATIONAL JOURNAL OF UNIVERSAL PHARMACY AND BIO SCIENCES IMPACT FACTOR 4.018*** ICV 6.16*** Pharmaceutical Sciences Review Article……!!! MEDICINAL PLANTS WITH MULTIPURPOSE USE DR. S. SENTHILKUMAR KARUR, TAMILNADU, INDIA. KEYWORDS: ABSTRACT Medicinal plants, Medicinal plants have been available in human societies since Phytochmeicals, Pharmacology, time immemorial. Indeed, the uses of plants were discovered Ethnomedicinal plants, by ancient people by the method of trial and error. The Therapeutic uses. system of traditional medicine had their root in the uses of FOR CORRESPONDENCE: plants by these people and survived only by the oral DR. S. SENTHILKUMAR* communications from generation to generation. Obviously, ADDRESS: plants have been prized for their aromatic, flowering and drug KARUR, TAMILNADU, INDIA. yielding qualities. Their drug values are lies in . phytochemiclas present in the plants. The forest and remote rural places decade, a dramatic increase in exports of valuable plants arrests the worldwide interest in traditional health system. Most of these plants being taken from the wild, hundreds of species our now threatened with extinction because of over-exploitation. Since past decade there has been a considerable interest towards the uses of herbal medicine. Tribal and rural communities use a number of plants for the treatment of various human diseases and disorders. Full text available on www.ijupbs.com 256 | P a g e International Standard Serial Number (ISSN): 2319-8141 INTRODUCTION: Medicinal plants have been used in virtually all cultures as a source of medicine. -
Apocynaceae: Asclepiadoideae)
The pollination and scent ecology of selected Cape milkweeds (Apocynaceae: Asclepiadoideae) Yolanda Tendai Chirango THESIS Submitted in fulfillment of the requirements of the degree of Master of Sciences (Biological Sciences) March 2017 University of Cape Town Supervised by: J. J. Midgely, S-L. Steenhuisen and A. Shuttleworth The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town !!! Name:!Yolanda!Tendai!Chirango! Student!Number:!CHRYOL001! Course:!BIO5010W! !!! !!! Declaration!! !!! I!know!that!plagiarism!is!wrong.!Plagiarism!is!to!use!another’s!work!and!pretend! that!it!is!one’s!own.!! Each!contribution!to,!and!quotation!in,!this!Master’s!Thesis!from!the!work(s)!of! other!people!has!been!attributed,!and!has!been!cited!and!referenced.!! !!! This!thesis!is!my!own!work.!! ! I!have!not!allowed,!and!will!not!allow,!anyone!to!copy!my!work!with!the!intention!of! passing!it!off!as!his!or!her!own!work.!! !!! !!! Signature!______________________________!! Date!___________________13!March!2017_______________!! ! ! 2! ! Acknowledgments ......................................................................................................... 5 Dedication ..................................................................................................................... -
Australia Lacks Stem Succulents but Is It Depauperate in Plants With
Available online at www.sciencedirect.com ScienceDirect Australia lacks stem succulents but is it depauperate in plants with crassulacean acid metabolism (CAM)? 1,2 3 3 Joseph AM Holtum , Lillian P Hancock , Erika J Edwards , 4 5 6 Michael D Crisp , Darren M Crayn , Rowan Sage and 2 Klaus Winter In the flora of Australia, the driest vegetated continent, [1,2,3]. Crassulacean acid metabolism (CAM), a water- crassulacean acid metabolism (CAM), the most water-use use efficient form of photosynthesis typically associated efficient form of photosynthesis, is documented in only 0.6% of with leaf and stem succulence, also appears poorly repre- native species. Most are epiphytes and only seven terrestrial. sented in Australia. If 6% of vascular plants worldwide However, much of Australia is unsurveyed, and carbon isotope exhibit CAM [4], Australia should host 1300 CAM signature, commonly used to assess photosynthetic pathway species [5]. At present CAM has been documented in diversity, does not distinguish between plants with low-levels of only 120 named species (Table 1). Most are epiphytes, a CAM and C3 plants. We provide the first census of CAM for the mere seven are terrestrial. Australian flora and suggest that the real frequency of CAM in the flora is double that currently known, with the number of Ellenberg [2] suggested that rainfall in arid Australia is too terrestrial CAM species probably 10-fold greater. Still unpredictable to support the massive water-storing suc- unresolved is the question why the large stem-succulent life — culent life-form found amongst cacti, agaves and form is absent from the native Australian flora even though euphorbs. -
Apocynaceae of Namibia
S T R E L I T Z I A 34 The Apocynaceae of Namibia P.V. Bruyns Bolus Herbarium Department of Biological Sciences University of Cape Town Rondebosch 7701 Pretoria 2014 S T R E L I T Z I A This series has replaced Memoirs of the Botanical Survey of South Africa and Annals of the Kirstenbosch Botanic Gardens, which the South African National Biodiversity Institute (SANBI) inherited from its predecessor organisa- tions. The plant genus Strelitzia occurs naturally in the eastern parts of southern Africa. It comprises three arbores- cent species, known as wild bananas, and two acaulescent species, known as crane flowers or bird-of-paradise flowers. The logo of SANBI is partly based on the striking inflorescence of Strelitzia reginae, a native of the Eastern Cape and KwaZulu-Natal that has become a garden favourite worldwide. It symbolises the commitment of SANBI to champion the exploration, conservation, sustainable use, appreciation and enjoyment of South Africa’s excep- tionally rich biodiversity for all people. EDITOR: Alicia Grobler PROOFREADER: Yolande Steenkamp COVER DESIGN & LAYOUT: Elizma Fouché FRONT COVER PHOTOGRAPH: Peter Bruyns BACK COVER PHOTOGRAPHS: Colleen Mannheimer (top) Peter Bruyns (bottom) Citing this publication BRUYNS, P.V. 2014. The Apocynaceae of Namibia. Strelitzia 34. South African National Biodiversity Institute, Pretoria. ISBN: 978-1-919976-98-3 Obtainable from: SANBI Bookshop, Private Bag X101, Pretoria, 0001 South Africa Tel.: +27 12 843 5000 E-mail: [email protected] Website: www.sanbi.org Printed by: Seriti Printing, Tel.: +27 12 333 9757, Website: www.seritiprinting.co.za Address: Unit 6, 49 Eland Street, Koedoespoort, Pretoria, 0001 South Africa Copyright © 2014 by South African National Biodiversity Institute (SANBI) All rights reserved. -
Number 11 – July 17, 2017 Honeyvine Milkweed Honeyvine Milkweed (Ampelamus Albi- Dus Or Cynanchum Laeve) Is a Native, Per
Number 11 – July 17, 2017 Honeyvine Milkweed I have always thought of this plant as a weed. Recently I spent some time pull- Honeyvine milkweed (Ampelamus albi- ing new shoots from a bed for about the dus or Cynanchum laeve) is a native, per- third time this summer. It is aggressive ennial vine that spreads by seed and long and persistent and I know it will be spreading roots. The stems are slender, back. Unfortunately, herbicides are not smooth, twining, and without the charac- an option for this particular site. Re- teristic milky sap that is typically present peated hand removal can eventually with other milkweed species. The leaves eliminate it. are dark green, smooth and large, grow- ing up to 6 inches long. They are heart- I have learned, however, that to many shaped on long petioles and opposite on this plant is desirable as it serves as a the stem, which helps to distinguish this food source for the Monarch butterfly. species from similar looking weedy vines Butterfly gardening is quite popular now such as bindweeds. Flowers appear mid- with the decline of the Monarch popula- summer and are long lasting. Flowers tion. I came across one-pint plants are small, whitish or pinkish, sweetly fra- available for sale on eBay. Had I have grant, and borne in clusters – very differ- known this plant was so desirable I ent in appearance than the funnel shaped would have been carefully potting up flowers of bindweed and morningglory those new shoots. Upon telling my hus- vines. The flowers will develop into a 3 to band about my findings and actions, he 6 inch long, smooth, green seed pod that replied with, “and that’s why we’re not is similar to that of common milkweed. -
La Flora Patrimonial De Quito Descubierta Por La Expedición De
AVANCES EN CIENCIAS E INGENIERÍAS ARTÍCULO/ARTICLE SECCIÓN/SECTION B La flora patrimonial de Quito descubierta por la expedición de Humboldt y Bonpland en el año 1802 Carlos Ruales1,∗ Juan E. Guevara2 1Universidad San Francisco de Quito, Colegio de Agricultura, Alimentos y Nutrición. Diego de Robles y Vía Interoceánica, Quito, Ecuador. 2Herbario Alfredo Paredes (QAP), Facultad de Filosofía y Letras, Universidad Central del Ecuador Apartado Postal 17-01-2177, Quito, Ecuador. ∗Autor principal/Corresponding author, e-mail: [email protected] Editado por/Edited by: D. F. Cisneros-Heredia, M.Sc. Recibido/Received: 04/14/2010. Aceptado/Accepted: 08/25/2010. Publicado en línea/Published on Web: 12/08/2010. Impreso/Printed: 12/08/2010. Abstract The results from this research are based on historical data and data from herbarium co- llections prepared by Alexander von Humboldt and Aimé Bonpland in 1802 in the city of Quito and its surroundings. In the research, 142 species from the Humboldt and Bonpland’s collections have been selected because of their patrimonial value for the city’s inhabitants; those species were collected for the first time in this area and the plant collections include type-specimens used to describe the species. Twenty-five species are endemic to Ecuador and from those, Cynanchum serpyllifolium (Asclepiadaceae) has not been found for more than 100 years, while Aetheolaena ledifolia (Asteraceae) and Cyperus multifolius (Cypera- ceae) are only known from their type-collections made in 1802. Almost 80 per cent of the collected species were herbs, which showed the advanced human intervention at the time. These premises help to propose a plan that manages patrimonial plant concepts in Quito and its surrounding towns and to increase the appropriation and valorization processes. -
Biota Colombiana • Vol
Biota Colombiana • Vol. 10 - Números 1 y 2, 2009 Volumen especial de la Orinoquia Una publicación del / A publication of: Instituto Alexander von Humboldt En asocio con / In collaboration with: Instituto de Ciencias Naturales de la Universidad Nacional de Colombia BIOTA COLOMBIANA Instituto de Investigaciones Marinas y Costeras - Invemar Missouri Botanical Garden ISSN 0124-5376 Volumen 10 • Números 1 y 2, enero - diciembre de 2009 Volumen especial de la Orinoquia TABLA DE CONTENIDO / TABLE OF CONTENTS Flora de la Estrella Fluvial de Inírida (Guainía, Colombia) – D. Cárdenas, N. Castaño & S. Sua . 1 Insectos de la Orinoquia colombiana: evaluación a partir de la Colección Entomológica del Instituto Alexander von Humboldt (IAvH) – I. Morales-C. & C. Medina . .31 Escarabajos coprófagos (Coleoptera: Scarabaeinae) de la Orinoquia colombiana – C. Medina & L. Pulido . .55 Lista de los moluscos (Gastropoda-Bivalvia) dulceacuícolas y estuarinos de la cuenca del Orinoco (Venezuela) – C. Lasso, R. Martínez-E., J. Capelo, M. Morales-B. & A. Sánchez-M. .63 Lista de los crustáceos decápodos de la cuenca del río Orinoco (Colombia-Venezuela) – G. Pereira, C. Lasso, J. Mora-D., C. Magalhães, M. Morales-B. & M. Campos. .75 Peces de la Estrella Fluvial Inírida: ríos Guaviare, Inírida, Atabapo y Orinoco (Orinoquia colombiana) – C. Lasso, J. Usma, F. Villa, M. Sierra-Q., A. Ortega-L., L. Mesa, M. Patiño, O. Lasso-A., M. Morales-B., K. González-O., M. Quiceno, A. Ferrer & C. Suárez . .89 Lista de los peces del delta del río Orinoco, Venezuela – C. Lasso, P. Sánchez-D., O. Lasso-A., R. Martín, H. Samudio, K. González-O., J. Hernández-A. -
The Phylogenetic and Evolutionary Study of Japanese Asclepiadoideae(Apocynaceae)
The phylogenetic and evolutionary study of Japanese Asclepiadoideae(Apocynaceae) 著者 山城 考 学位授与機関 Tohoku University 学位授与番号 2132 URL http://hdl.handle.net/10097/45710 DoctoralThesis TohokuUniversity ThePhylogeneticandEvolutionaryStudyofJapanese Asclepiadoideae(Apocynaceae) (日 本 産 ガ ガ イ モ 亜 科(キ ョ ウ チ ク トウ科)の 系 統 ・進 化 学 的 研 究) 2003 TadashiYamashiro CONTENTS Abstract 2 4 ChapterI.Generalintroduction 7 ChapterII.TaxonomicalrevisiononsomeIapaneseAsclepiadoideaespecies 2 Q / ChapterIII.ChromosomenumbersofJapaneseAsclepiadoideaespecies 3 0 ChapterIV、PollinationbiologyofIapaneseAsclepiadoideaespecies ChapterV.Acomparativestudyofreproductivecharacteristicsandgeneticdiversitiesonan autogamousderivativeT・matsumuraeanditsprogenitorT・tanahae 56 ChapterVI.Molecularphylogenyofレfη`etoxicumanditsalliedgenera 75 ChapterVII.EvolutionarytrendsofIapaneseVincetoxi`um 96 Ac㎞owledgement 100 References 101 1 ABSTRACT ThesubfamilyAsclepiadoideae(Apocynaceae)comprisesapproximately2,000species, andmainlyoccurstropicalandsubtropicalregionsthroughtheworld.lnJapan,35species belongingtoninegenerahavebeenrecorded.Altholユghmanytaxonomicstudieshavebeen conductedsofar,thestudiestreatingecologicalandphylogeneticalaspectsarequitefew. Therefore,Ifirs走conductedtaxonomicre-examinationforIapaneseAsclepiadoideaebasedon themorphologicalobservationofherbariumspecimensandlivingPlants.Furthermore cytotaxonomicstudy,pollinatorobserva且ons,breedingsystemanalysisofanautogamous species,andmolecUlarphylogeneticanalysisonVincetoxicumanditsalliedgenerawere performed.Then,IdiscussedevolutionarytrendsandhistoriesforVincetoxicumandits -
Morphological Screening of Endangered Medicinal Plants Of
Botanical Communication Biosci. Biotech. Res. Comm. 9(3): 406-414 (2016) Morphological screening of endangered medicinal plants of milkweed family from Thar desert, Rajasthan, India Sunita Arora and Sonam Meena Department of Botany, Jai Narain Vyas University, Jodhpur Rajasthan, India ABSTRACT The indigenous systems of medicine in India are Ayurvedic, Siddha and Unani. These traditional systems of medicine together with homeopathy and folkcare medicine play an important role in the health care system of the popula- tion. Sarcostemma viminale (L.) R.Br. and Ceropegia bulbosa Roxb. belongs to the milkweed family i.e. Asclepiadace, distributed in various habitats in semi-arid region of Thar desert of Rajasthan. This work was carried out to explore morphological pecularities of whole plant of both the representatives of the family. Sarcostemma viminale (L.) R.Br. is used to cure diarrhoea, oedema, stomach problems and tuberculosis. Ceropegia bulbosa is used to cure deafness, tubers are used in the treatment of kidney stone, urinary tracts diseases and they are eaten by ladies to enhance fer- tility and viability. Pollinial apparatus is a signifi cant feature of Asclepiadaceae to characterize species and genera. Morphological study revelaed principle characteristic differences and similarities in both the representatives plants. True xerophytic features of Sarcostemma viminale (L.) R.Br. are, presence of milky latex, highly reduced leaves, green globarous stem, and strong tap root affi xed fi rmly in stony and rocky substratum in association with other xero- phytic plants of stressed conditions. Ceropegia bulbosa Roxb. var. bulbosa and var. lushii (Grah.) Hook.f. is perennial, twining, herb of sandy substratum, bearing tubers, needs support of other xerophytic bushes/ shrubs. -
Of Heterostemma Tanjorense W
ALKALOIDS IN TISSUE CULTURE OF HETEROSTEMMA TANJORENSE W. & A. (ASCLEPIADACEAE) THESIS Submitted to the . GOA UNIVERSITY for award of the Degree of DOCTOR OF PHILOSOPHY in Marine Biotechnology by L. H. BHONSLE, M. Pharr DEPARTMENT OF MARINE SCIENCES AND MARINE BIOTECHNOLOGY GOA UNIVERSITY Taleigao, Goa-403 205 NOVEMBER, 1995. telorune This is to certify that the thesis entitled " Alkaloids in Tissue Culture of Heterostemma tEllorense, W. & A. (Asclepiadaceae) submitted by Shri. L. H. Bhonsle for the award of the degree of Doctor of Philosophy in Marine Biotechnology is based ' on the results of field surveys/laboratory experiments carried ojet by him under 111.3 supervision, The thesis or any part thereof has not previously been submitted for any other degree or diploma. ti Place Goa University . Dr, U. M. H. Sangodkar, Taleigao Plateau Head of Department, Marine Sciences & Marine Biotechnology, Date 3 /II ( +e-19 6. Goa University, Goa, STATEMENT As required under the University ordinance'0.19.8 (vi) I state that the present thesis entitled " Alkaloids in Tissue Culture of Heterostemma tanjorense, W. & A. (Asclepiadacae) " is my original contribution and that the same has not been submitted on any previous occasion. The present study is the first comprehensive study of its kind from this. field, The literature concerning the problem investigated has been cited. Due acknowledgements been made whereever facilities have been availed of TABLE OF CONTENTS ACKNOWLEDGEMENT SYNOPSIS iii LIST OF ABBREVIATIONS vii CHAPTER I INTRODUCTION 1 -
A Revision of Phyllachora (Ascomycotina) on Hosts in the Angiosperm Family Asclepiadaceae, Including P
Fungal Diversity A revision of Phyllachora (Ascomycotina) on hosts in the angiosperm family Asclepiadaceae, including P. gloriana sp. novo on Tylophora benthamii from Australia Ceridwen A. Pearce1*, Paul Reddell2 and Kevin D. Hyde3 I Australian Tropical Mycology Research Centre, PO Box 312, Kuranda, 4872, Queensland, Australia; * e-mail: [email protected] 2 CSIRO Tropical Forest Research Centre, PO Box 780, Atherton, 4883, Queensland, Australia 3 Centre for Research in Fungal Diversity, Department of Ecology and Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong Pearce, C.A., Reddell, P. and Hyde, K.D. (1999). A revision of Phyllachora (Ascomycotina) on hosts in the angiosperm family Asclepiadaceae, including P. gloriana sp. novo on Tylophora benthamii from Australia. Fungal Diversity 3: 123-138. We have monographed species of Phyllachora occurring on the pantropical plant family Asclepiadaceae using traditional taxonomic methods. Eight Phyllachora species have been described previously from the Asclepiadaceae. We have found that five of these taxa are untenable. In addition, P. gloriana sp. novo on Tylophora benthamii, north Queensland, Australia, is described. Phyllachora gloriana differs from other Phyllachora species occurring on the Asclepiadaceae in having larger ascospores surrounded by a distinct mucilaginous sheath, and larger asci with an apical apparatus. The accepted Phyllachora species from the Asclepiadaceae are described and illustrated with interference contrast micrographs. Key words: foliicolous fungi, tar spots, taxonomy Introduction The Phyllachoraceae are a diverse family of micro fungi currently recognised as comprising 42 genera and more than 1100 species worldwide (Hawksworth et al., 1995). Most members of this family are obligate biotrophs which produce black "tar spots" on leaves and stems of their host plants.