Lake Tanganyika Framework Fisheries Management Plan

Total Page:16

File Type:pdf, Size:1020Kb

Lake Tanganyika Framework Fisheries Management Plan FAO/NORWAYGOVERNMENT GCP/INT/648/NOR COOPERATIVE PROGRAMME Field Report F-2 (En) ies FISHCODE MANAGEMENT LAKE TANGANYIKA FRAMEWORK FISHERIES MANAGEMENT PLAN the Implementation of the Code of Conduct for Responsible Fisher for Responsible of Conduct Code of the Implementation the FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Sub-programme F: Assistance to Developing Countries for improving the.Provision of Scientific Advice for Fisheries Management for Fisheries Advice of Scientific the.Provision for improving Countries to Developing F: Assistance Sub-programme FAO/Norway Programme of Assistance to Developing Countries for for Countries of Assistance Developing to Programme FAO/Norway Rome, April 1999 FAO/NORWAY GOVERNMENT GCP/INT/648/NOR COOPERATIVE PROGRAMME Field Report F-2 (En) FISHCODE MANAGEMENT FAO/NORWAY PROGRAMME OF ASSISTANCE TO DEVELOPING COUNTRIES FOR THE IMPLEMENTATION OF THE CODE OF CONDUCT FOR RESPONSIBLE FISHERIES SUB-PROGRAMME F: ASSISTANCE TO DEVELOPING COUNTRIES FOR IMPROVING THE PROVISION OF SCIENTIFIC ADVICE FOR FISHERIES MANAGEMENT LAKE TANGANYIKA FRAMEWORK FISHERIES MANAGEMENT PLAN by J. Eric Reynolds Consultant GCP/INT/648/NOR FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, April 1999 The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of the United Nations or the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -- iii -- PREPARATION OF THIS DOCUMENT This document was prepared as a contribution to setting up a Fisheries Management Plan for Lake Tanganyika, in close cooperation with the project Research for the Management of the Fisheries on Lake Tanganyika (LTR) GCP/RAF/271/FIN. -- v -- TABLE OF CONTENTS A. INTRODUCTION ....................................................................................................................................... 1 B. BACKGROUND ..........................................................................................................................................2 C. CCRF AND LTR RESEARCH INVENTORIES OF LAKE TANGANYIKA FISHERIES................ 3 CCRF principles............................................................................................................................................3 Multi-disciplinary ‘readings’ of fisheries characteristics and management needs .................................... 4 D. BASIC FISHERIES CHARACTERISTICS .............................................................................................4 D.1 DISTRIBUTION OF CATCH AND EFFORT...................................................................................................4 D.2 RECENT DEVELOPMENTS IN ARTISANAL AND INDUSTRIAL FISHING .....................................................5 D.3 LOCAL ARTISANAL AND TRADITIONAL FISHERS ....................................................................................6 D.4 PROCESSING AND MARKETING ................................................................................................................6 D.5 LOCAL PROCESSORS AND TRADERS ........................................................................................................7 E. FISHERIES MANAGEMENT PROBLEMS AND PROSPECTS..........................................................8 E.1 ECOLOGICAL DIMENSIONS ......................................................................................................................8 Pelagic fish production................................................................................................................................. 8 Variations in stocks and yields ..................................................................................................................... 8 E.2 HUMAN WELFARE DIMENSIONS ............................................................................................................10 Fisheries as livelihood ................................................................................................................................10 Increasing demand for fish ........................................................................................................................ 11 Resource access issues................................................................................................................................ 11 Local participation in management decision-making ............................................................................... 12 Equity issues................................................................................................................................................12 E.3 INSTITUTIONAL AND LEGAL DIMENSIONS.............................................................................................13 Institutional capabilities .............................................................................................................................13 Legislative frameworks ...............................................................................................................................13 Monitoring needs ........................................................................................................................................ 14 Local views on possible options to regulate fishing...................................................................................14 F. LAKE TANGANYIKA FFMP: POLICY CONSIDERATIONS .......................................................... 15 Management policy challenges .................................................................................................................. 15 F.1 PROCESS (1): ADAPTIVE MANAGEMENT ...............................................................................................16 F.2 PRECAUTION:UNCERTAINTY,COMPLICATION, AND MULTI-DISCIPLINARY PERSPECTIVES..............17 F.3 PARTNERSHIP:CO-MANAGEMENT.........................................................................................................18 F.4 PROPRIETORSHIP:RESOURCE ACCESS AND USE RIGHTS ....................................................................18 F.5 POLICING:COMMUNITY INVOLVEMENT IN MCS.................................................................................19 F.6 PROCESS (2): HOLISTIC MANAGEMENT ................................................................................................20 Process and larger systems .........................................................................................................................20 Fishing and non-fishing sector interactions..............................................................................................20 Micro-level interactions .............................................................................................................................. 21 Coastal area management ..........................................................................................................................21 Macro-level interactions .............................................................................................................................22 G. LAKE TANGANYIKA FFMP: INITIAL MANAGEMENT ACTIONS............................................. 22 G.1 ADOPTION OF CCRF POLICY MATRIX .................................................................................................23 G.2 PARTNERSHIP ARRANGEMENTS AND LOCAL CONTROL OF RESOURCE ACCESS ................................. 23 G.3 INSTITUTIONAL MODALITIES ................................................................................................................24 Modification of CIFA Sub-Committee Terms of Reference......................................................................24 G.4 LEGAL MODALITIES...............................................................................................................................25 General provisions ...................................................................................................................................... 25 Zambia and Tanzania................................................................................................................................. 26 Democratic Republic of Congo and Burundi ............................................................................................26 Harmonisation of fisheries regulations .....................................................................................................27 -- vi -- G.5 MONITORING,CONTROL AND SURVEILLANCE (MCS) ........................................................................27 Lake Tanganyika Monitoring Programme (LTMP)..................................................................................27 Promoting compliance................................................................................................................................ 27 G.6 POSSIBLE TECHNICAL MEASURES TO REGULATE FISHING..................................................................28 Beach seine restrictions .............................................................................................................................. 28 Purse seine restrictions ...............................................................................................................................29 G.7 POSSIBLE INPUT CONTROLS TO REGULATE FISHING ...........................................................................29
Recommended publications
  • Lates Niloticus) Ecological Risk Screening Summary
    U.S. Fish and Wildlife Service Nile Perch (Lates niloticus) Ecological Risk Screening Summary Web Version – September 2014 Photo: © Biopix: N Sloth 1 Native Range, and Status in the United States Native Range From Schofield (2011): “Much of central, western and eastern Africa: Nile River (below Murchison Falls), as well as the Congo, Niger, Volga, Senegal rivers and lakes Chad and Turkana (Greenwood 1966 [cited by Schofield (2011) but not accessed for this report]). Also present in the brackish Lake Mariot near Alexandria, Egypt.” Lates niloticus Ecological Risk Screening Summary U.S. Fish and Wildlife Service – Web Version - 8/14/2012 Status in the United States From Schofield (2011): “Scientists from Texas traveled to Tanzania in 1974-1975 to investigate the introduction potential of Lates spp. into Texas reservoirs (Thompson et al. 1977 [cited by Schofield (2011) but not accessed for this report]). Temperature tolerance and trophic dynamics were studied for three species (L. angustifrons, L. microlepis and L. mariae). Subsequently, several individuals of these three species were shipped to Heart of the Hills Research Station (HOHRS) in Ingram, Texas in 1975 (Rutledge and Lyons 1976 [cited by Schofield (2011) but not accessed for this report]). Also in 1975, Nile perch (L. niloticus) were transferred from Lake Turkana, Kenya, to HOHRS. All fishes were held in indoor, closed-circulating systems (Rutledge and Lyons 1976).” “From 1978 to 1985, Lates spp. was released into various Texas reservoirs (Howells and Garrett 1992 [cited by Schofield (2011) but not accessed for this report]). Almost 70,000 Lates spp. larvae were stocked into Victor Braunig (Bexar Co.), Coleto Creek (Goliad Co.) and Fairfield (Freestone Co.) reservoirs between 1978 and 1984.
    [Show full text]
  • Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
    Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae.
    [Show full text]
  • Description of Two New Species of Sea Bass (Teleostei: Latidae: Lates) from Myanmar and Sri Lanka
    Zootaxa 3314: 1–16 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Description of two new species of sea bass (Teleostei: Latidae: Lates) from Myanmar and Sri Lanka ROHAN PETHIYAGODA1 & ANTHONY C. GILL1,2 1Australian Museum, 6 College Street, Sydney NSW 2010, Australia. E-mail: [email protected] 2Macleay Museum and School of Biological Sciences, Macleay Building A12, University of Sydney, Sydney NSW 2006, Australia. E-mail: [email protected] Abstract Two new species of Lates Cuvier are described. Lates lakdiva, new species, from western Sri Lanka, differs from its Indo- Pacific congeners by its lesser body depth, 26.6‒27.6% SL; 5 rows of scales in transverse line between base of third dorsal- fin spine and lateral line; 31‒34 serrae on the posterior edge of the preoperculum; third anal-fin spine longer than second; 47‒52 lateral-line scales on body; and greatest depth of maxilla less than eye diameter. Lates uwisara, new species, from eastern Myanmar, is distinguished by possessing 7 scales in transverse line between base of third dorsal-fin spine and lat- eral line; eye diameter 4.4‒4.7% SL; body depth 28.4‒34.5% SL; and third anal-fin spine shorter than the second. Despite substantial genetic variation, L. calcarifer sensu lato is widely distributed, from tropical Australia through Indonesia, Sin- gapore and Thailand, westwards to at least the west coast of India. Caution is urged in translocating Lates in the Indo- Pacific region as other yet unrecognized species likely exist.
    [Show full text]
  • Isotopic Reconstruction of the African Humid Period and Congo Air Boundary Migration at Lake Tana, Ethiopia
    Quaternary Science Reviews 83 (2014) 58e67 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Isotopic reconstruction of the African Humid Period and Congo Air Boundary migration at Lake Tana, Ethiopia Kassandra Costa a,c,*, James Russell a,*, Bronwen Konecky a,d, Henry Lamb b a Department of Geological Sciences, Brown University, Box 1846, Providence, RI 02912, USA b Institute of Geography and Earth Sciences, University of Wales, Aberystwyth SY23 3DB, UK c Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA d School of Earth & Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0340, USA article info abstract Article history: The African Humid Period of the early to mid-Holocene (12,000e5000 years ago) had dramatic ecological Received 7 June 2013 and societal consequences, including the expansion of vegetation and civilization into the “green Sahara.” Received in revised form While the humid period itself is well documented throughout northern and equatorial Africa, mecha- 9 October 2013 nisms behind observed regional variability in the timing and magnitude of the humid period remain Accepted 28 October 2013 disputed. This paper presents a new hydrogen isotope record from leaf waxes (dD ) in a 15,000-year Available online wax sediment core from Lake Tana, Ethiopia (12N, 37E) to provide insight into the timing, duration, and intensity of the African Humid Period over northeastern Africa. dDwax at Lake Tana ranges between Keywords: À & À & Tropical paleoclimate 80 and 170 , with an abrupt transition from D-enriched to D-depleted waxes between 13,000 e e East Africa 11,500 years before present (13 11.5 ka).
    [Show full text]
  • Towards a Regional Information Base for Lake Tanganyika Research
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • Assessment of the Status of Lates Stappersii (Centropomidae) Stock in Lift-Net Fishery in Lake Tanganyika, Kigoma, Tanzania
    ASSESSMENT OF THE STATUS OF LATES STAPPERSII (CENTROPOMIDAE) STOCK IN LIFT-NET FISHERY IN LAKE TANGANYIKA, KIGOMA, TANZANIA 1IA Kimirei and 2YD Mgaya 1Tanzania Fisheries Research Institute, Box 90, Kigoma Tanzania. [email protected] 2Faculty of Aquatic Sciences and Technology, University of Dar es Salaam, P.O. Box 60091, Dar es Salaam, Tanzania. [email protected] (Corresponding author) ABSTRACT An assessment of the status of Lates stappersii (Boulenger, 1914) stock in the lift-net fishery in Lake Tanganyika, Kigoma area, was carried out from January to December 2003. Results indicated that breeding is seasonal with peaks in February, July-August and December, and so was catch composition, with peaks in March, May and July–August that followed the abundance of its prey, Stolothrissa tanganicae. Catch per unit effort was similar between wet and dry seasons and peaked synchronously at all study sites probably as an indication of its abundance during those months; but also it could mean that the fishes were caught from the same general area. The unselective nature of the lift-net, a common fishing gear in the lake, could be exerting pressure on the pelagic resource, that leads to local over-fishing if not controlled. There is need to institute minimum fish size and mesh size limits and licensing, on a lake-wide basis, as fisheries management measures to safeguard against overexploitation of this highly variable and mobile yet important pelagic fish resource. INTRODUCTION stappersii is now important in the southern There are four endemic Lates species to Lake sector of the lake (Zambia) (Coenen et al.
    [Show full text]
  • Maritime Trade on Lake Tanganyika Trade Opportunities for Zambia
    Maritime Trade on Lake Tanganyika Trade Opportunities for Zambia Commissioned by the Netherlands Enterprise Agency Maritime Trade on Lake Tanganyika Trade Opportunities for Zambia Maritime Trade on Lake Tanganyika Trade Opportunities for Zambia Rotterdam, July 2019 Table of contents Preface 3 Abbreviations and Acronyms 4 1 Introduction 5 2 Transport and Logistics 10 3 International and Regional Trade 19 4 Trade Opportunities 29 5 Recommendations and Action Plan 41 References 48 Annex A Trade Statistics 50 Annex B Trade Potential 52 Annex C Maps 53 Maritime Trade on Lake Tanganyika 2 Preface This market study was prepared by Ecorys for the Netherlands Enterprise Agency (RVO). The study provides information on trade opportunities between the countries on the shores of Lake Tanganyika, with a particular focus on Zambia and the port in Mpulungu. As such this study fills a gap, as previous studies were mostly focused on the infrastructure and logistics aspects of maritime trade on Lake Tanganyika. *** The study was prepared by Michael Fuenfzig (team leader & trade expert), Mutale Mangamu (national expert), Marten van den Bossche (maritime transport expert). We also thank Niza Juma from Ecorys Zambia (PMTC) for her support. This study is based on desk research, the analysis of trade statistics, and site visits and interviews with stakeholders around Lake Tanganyika. In Zambia Lusaka, Kasama, Mbala and Mpulungu were visited, in Tanzania, Kigoma and Dar es Salaam, and in Burundi, Bujumbura. The study team highly appreciates all the efforts made by the RVO, the Netherlands Ministry of Foreign Affairs and other stakeholders. Without their cooperation and valuable contributions this report would not have been possible.
    [Show full text]
  • Lepidiolamprologus Kamambae, a New Species of Cichlid Fish (Teleostei: Cichlidae) from Lake Tanganyika
    Zootaxa 3492: 30–48 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:F49C00E7-C7CF-4C2C-A888-A3CAA030E9F4 Lepidiolamprologus kamambae, a new species of cichlid fish (Teleostei: Cichlidae) from Lake Tanganyika SVEN O. KULLANDER1, MAGNUS KARLSSON2 & MIKAEL KARLSSON2 1Department of Vertebrate Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden. E-mail: [email protected] 2African Diving Ltd, P. O. Box 7095, Dar es Salaam, Tanzania. E-mail: [email protected] Abstract Lepidiolamprologus kamambae is described from the Kamamba Island off the southeastern coast of Lake Tanganyika. It is similar to L. elongatus, L. kendalli, and L. mimicus in the presence of three horizontal rows of dark blotches along the sides. It differs from those species in the presence of a distinct suborbital stripe across the cheek. It is further distinguished from L. elongatus and L. mimicus by the presence of a marbled pattern on the top of the head, and narrower interorbital width (4.9–5.9% of SL vs. 6.0–7.0%). It is distinguished from L. kendalli by a shorter last dorsal-fin spine (11.2–13.3% of SL vs. 13.3–15.1 %) and presence of distinct dark blotches on the side instead of contiguous blotches forming stripes separated by light interspaces. Lepidiolamprologus profundicola is unique in the genus having the cheeks covered with small scales. Scales are absent from the cheek in L. kamambae, and in the other species scales are either absent or very few and deeply embedded.
    [Show full text]
  • Biodiversity in Sub-Saharan Africa and Its Islands Conservation, Management and Sustainable Use
    Biodiversity in Sub-Saharan Africa and its Islands Conservation, Management and Sustainable Use Occasional Papers of the IUCN Species Survival Commission No. 6 IUCN - The World Conservation Union IUCN Species Survival Commission Role of the SSC The Species Survival Commission (SSC) is IUCN's primary source of the 4. To provide advice, information, and expertise to the Secretariat of the scientific and technical information required for the maintenance of biologi- Convention on International Trade in Endangered Species of Wild Fauna cal diversity through the conservation of endangered and vulnerable species and Flora (CITES) and other international agreements affecting conser- of fauna and flora, whilst recommending and promoting measures for their vation of species or biological diversity. conservation, and for the management of other species of conservation con- cern. Its objective is to mobilize action to prevent the extinction of species, 5. To carry out specific tasks on behalf of the Union, including: sub-species and discrete populations of fauna and flora, thereby not only maintaining biological diversity but improving the status of endangered and • coordination of a programme of activities for the conservation of bio- vulnerable species. logical diversity within the framework of the IUCN Conservation Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitoring 1. To participate in the further development, promotion and implementation the status of species and populations of conservation concern. of the World Conservation Strategy; to advise on the development of IUCN's Conservation Programme; to support the implementation of the • development and review of conservation action plans and priorities Programme' and to assist in the development, screening, and monitoring for species and their populations.
    [Show full text]
  • Climate Warming Reduces Fish Production and Benthic Habitat in Lake Tanganyika, One of the Most Biodiverse Freshwater Ecosystems
    Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems Andrew S. Cohena,1, Elizabeth L. Gerguricha,2, Benjamin M. Kraemerb, Michael M. McGluec, Peter B. McIntyreb, James M. Russelld, Jack D. Simmonsa,3, and Peter W. Swarzenskie,4 aDepartment of Geosciences, University of Arizona, Tucson, AZ 85721; bCenter for Limnology, University of Wisconsin, Madison, WI 53706; cDepartment of Earth and Environmental Sciences, University of Kentucky, Lexington, KY 40506; dDepartment of Earth, Environmental and Planetary Sciences, Brown University, Providence, RI 02912; and ePacific Coastal and Marine Science Center, US Geological Survey, Santa Cruz, CA 95060 Edited by Heike K. Lotze, Dalhousie University, Halifax, NS, Canada, and accepted by Editorial Board Member Alan Hastings June 17, 2016 (received for review February 26, 2016) Warming climates are rapidly transforming lake ecosystems world- on catch potential. Documentation of fishery yields and envi- wide, but the breadth of changes in tropical lakes is poorly ronmental conditions is sparse before the mid-20th century, documented. Sustainable management of freshwater fisheries making it difficult to infer the key drivers of ecosystem change. and biodiversity requires accounting for historical and ongoing An alternative source of historical data on ecosystem dynamics stressors such as climate change and harvest intensity. This is can be derived from sediment cores from the lake bottom. problematic in tropical Africa, where records of ecosystem change Merging paleoclimatic and paleoecological perspectives has en- are limited and local populations rely heavily on lakes for nutri- abled estimation of fish population sizes and community dy- tion. Here, using a ∼1,500-y paleoecological record, we show that namics before and after the onset of major fisheries elsewhere declines in fishery species and endemic molluscs began well before (13, 14), filling the information void before active monitoring.
    [Show full text]
  • Early Anthropogenic Impact on Western Central African Rainforests
    Early anthropogenic impact on Western Central SEE COMMENTARY African rainforests 2,600 y ago Yannick Garcina,1, Pierre Deschampsb, Guillemette Menot´ c, Geoffroy de Saulieud, Enno Schefuße, David Sebagf,g,h, Lydie M. Duponte, Richard Oslislyd,i, Brian Brademannj, Kevin G. Mbusnumk, Jean-Michel Onanal,m, Andrew A. Akon, Laura S. Eppo, Rik Tjallingiij, Manfred R. Streckera, Achim Brauerj, and Dirk Sachsep aInstitute of Earth and Environmental Science, University of Potsdam, 14476 Potsdam, Germany; bAix-Marseille Universite,´ CNRS, IRD, College` de France, Centre Europeen´ de Recherche et d’Enseignement des Geosciences´ de l’Environnement UM34, 13545 Aix-en-Provence, France; cUniv Lyon, Ens de Lyon, Universite´ Lyon 1, CNRS, UMR 5276 LGL-TPE, 69342 Lyon, France; dPatrimoines Locaux et Gouvernance UMR 208, IRD, MNHN, 75005 Paris, France; eMARUM–Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany; fNormandie Universite,´ UNIROUEN, UNICAEN, CNRS, M2C, 76000 Rouen, France; gHSM, LMI Picass’Eau, IRD, Universite´ de Montpellier, 34095 Montpellier, France; hInstitute of Earth Surface Dynamics, Geopolis, University of Lausanne, 1015 Lausanne, Switzerland; iAgence Nationale des Parcs Nationaux, 20379 Libreville, Gabon; jSection 5.2, Climate Dynamics and Landscape Evolution, GFZ–German Research Centre for Geosciences, 14473 Potsdam, Germany; kLaboratoire de Chimie de l’Environnement FRE 3416, Aix-Marseille Universite,´ CNRS, 13545 Aix-en-Provence, France; lDepartment of Plant Biology, Faculty of Sciences, University of Yaounde´ I, Yaounde,´ Cameroon; mHerbier National du Cameroun, Institut de Recherche Agricole pour le Developpement,´ Yaounde,´ Cameroon; nInstitute of Geological and Mining Research, Yaounde,´ Cameroon; oAlfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany; and pSection 5.1, Geomorphology, GFZ–German Research Centre for Geosciences, 14473 Potsdam, Germany Edited by Sarah J.
    [Show full text]
  • Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye
    Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye To cite this version: Lambert Niyoyitungiye. Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality. Biodiversity and Ecology. Assam University Silchar (Inde), 2019. English. tel-02536191 HAL Id: tel-02536191 https://hal.archives-ouvertes.fr/tel-02536191 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “LIMNOLOGICAL STUDY OF LAKE TANGANYIKA, AFRICA WITH SPECIAL EMPHASIS ON PISCICULTURAL POTENTIALITY” A THESIS SUBMITTED TO ASSAM UNIVERSITY FOR PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LIFE SCIENCE AND BIOINFORMATICS By Lambert Niyoyitungiye (Ph.D. Registration No.Ph.D/3038/2016) Department of Life Science and Bioinformatics School of Life Sciences Assam University Silchar - 788011 India Under the Supervision of Dr.Anirudha Giri from Assam University, Silchar & Co-Supervision of Prof. Bhanu Prakash Mishra from Mizoram University, Aizawl Defence date: 17 September, 2019 To Almighty and merciful God & To My beloved parents with love i MEMBERS OF EXAMINATION BOARD iv Contents Niyoyitungiye, 2019 CONTENTS Page Numbers CHAPTER-I INTRODUCTION .............................................................. 1-7 I.1 Background and Motivation of the Study ..........................................
    [Show full text]