Characterization of Kallikrein-Related Peptidase-8 in Normal Human Epidermis and Psoriasis

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Kallikrein-Related Peptidase-8 in Normal Human Epidermis and Psoriasis Characterization of Kallikrein-related Peptidase-8 in Normal Human Epidermis and Psoriasis by Azza Eissa A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Laboratory Medicine and Pathobiology University of Toronto © Copyright by Azza Eissa 2013 Characterization of Kallikrein-related Paptidase-8 in Normal Human Skin Epidermis and Psoriasis Azza Eissa Doctor of Philosophy Department of Laboratory Medicine and Pathobiology University of Toronto 2013 Abstract Kallikrein-8 (KLK8) is a relatively-uncharacterized epidermal protease. Although proposed to regulate wound-healing and barrier repair in KLK8-deficient mouse skin, KLK8-catalytic activity was never demonstrated in human epidermis and its regulators and targets remain largely unknown. KLK8 overexpression was reported in inflammatory skin diseases, but the underlying mechanisms are poorly understood. In this thesis, we elucidated for the first time KLK8-specific activity in normal human non-palmoplantar stratum corneum and sweat, and identified epidermal regulators and targets that augment its involvement in a skin-barrier proteolytic cascade. Given that inflammatory skin diseases have interlinked immune and epidermal roots, we hypothesized that epidermal KLK8 expression is distinctly regulated by the aberrant T-cell immunity implicated in the two common skin diseases, psoriasis and atopic dermatitis, independent of skin- barrier insults. We profiled secretion of KLK8 by normal human keratinocytes post-treatment with T-helper (Th1, Th17 and Th2) cell-derived cytokines, and investigated the effect of KLK8 overexpression on terminal keratinocyte differentiation and innate immunity gene expression. Our results show that TNFα and IL-17A synergistically induce potent KLK8 hyper-secretion, while IL4 and IL13 reduce its expression. TNFα and IL-17A overexpression and KLK8 ii hyperactivity resulted in hyperkeratosis and upregulation of keratinocyte innate defense genes’ expression mimicking psoriatic lesions. Consistently, KLK8 expression was reduced in lesional skin of atopic dermatitis patients and significantly elevated in lesional skin and sera of psoriatic patients. KLK8 levels correlated with psoriasis skin severity and were significantly reduced by effective treatment with biologic TNFα-blockers, correlating positively with psoriasis clearance. Thus, KLK8 is a new epidermal psoriasis therapeutic target. We performed high throughput screens of small molecule compound libraries to identify KLK8-specific inhibitors and discovered promising KLK8 small molecule inhibitors with IC50s in the nanomolar range. This thesis provides original findings corroborating KLK8 as an active serine protease in normal human skin and a down-stream epidermal respondent to TNFα and IL17A overexpression in psoriatic skin. Our novel KLK8-specific inhibitors may have future potential as topical barrier- enhancing agents in psoriasis. iii Acknowledgments Though my name appears on the cover of this dissertation, it would not have come into existence without the following remarkable individuals: My supervisor, Dr. Eleftherios P. Diamandis – Thank you for providing me with exceptional professional opportunities and teachable moments. I joined the lab as a naïve and enthusiastic young student and will be graduating as a mature professional. Thank you for pushing me to work independently and supporting me continuously. I learned valuable skills from you and I feel fortunate to have you as my supervisor and mentor. Our LMP graduate department coordinator, Dr. Harry Elsholtz – Thank you for being so approachable and resourceful. I appreciate your guidance and open door policy over the years. My thesis advisory committee, Dr. David Irwin, Dr. Sylvia Asa, Dr. Nades Palaniyar and Dr.Herman Yeger – I appreciate all your valued contributions! Thank you for your insightful feedback and advice. Your supervision and thoughtful review of my thesis was most helpful. My sincere appreciation to my external thesis advisor, Dr. Alain Hovnanian, for taking the time to contribute to my thesis and traveling long distance to be present during my thesis defense. Last but not least, the ACDC lab members of the near past and present, my work family – Thank you all for your valuable friendships. Your presence and support in the lab was a blessing. Special thanks to Ferzeen Sammy, Rama Ponda, Denitza Roudeva, Yiannis Prassas, Yijin Yu, Connie Zao, Vanessa Amodeo, Daniela Cretu, Antoninus Scoospialli, Dr. Gennady Poda, Dr. Martin Steinhoff, Dr. Ulf Meyer-Hoffert, Dr. Vinod Chandran, and Dr. Morely Hollenberg for helping me maneuver around some unexpected bumps in my research path and for being great friends, mentors and collaborators. Also, a big thank you to the Natural Science and Engineering Research Council (NSERC), Canada Graduate Scholarship, Ontario Graduate Scholarship (OGS), Helen Marion Walker- Soroptimist Women’s Health Research scholarship and LMP department for funding my research. iv Dedication To My Wonderful Family! To Mama & Baba – for all the sacrifices you made and your endless love and support. Thank you for encouraging me to be fearless in seeking insight and facing challenges. You taught me how to cultivate the right attitude and learn from every single life lesson. You had blind faith in me and supported my aspirations even when you were not sure where they were taking me. Thank you! I am who I am today because of you. To Omer ‘amoory’ – I couldn’t have asked for a better brother & best friend! I am very proud of you. You’ve been our rock. Thank you for being you! To ‘bit al siroor al azama’ Fatma, my extraordinary grandmother who raised six children on her own and faced tough challenges with unequivocal strength, and to our family guru, my dear uncle, ‘amo’ Abdel Salam– If you ask me about superheroes: “Superwoman” and “Superman”, I would say: I know them! Despite the oceans and lands separating us, your superpowers reach and move me. Your leadership, intellect, empathy and wisdom are legendary. They transcend time and place to inspire generations to care and do more. I plan to share your life stories with the world one day! For now, this thesis dedication will serve as a small token of my love and admiration. Thank you for being my inspiring role models! To ‘Denitza’ & ‘Puneet’ – my amazing girlfriends, my sisters! Living together and sharing over 10 years of friendships and laughs was a blast! Our incredible journey as young best friends from completely different backgrounds made me a better person. Thank you for always being there and for cheering me on through my entire undergrad and graduate programs. I couldn’t have done it without you. I love you both. Thank you all for allowing me to live “like a river flows, carried by the surprise of its own unfolding” ~ John O’Donahue. v Table of Contents Chapter 1 ......................................................................................................................................... 1 1 Introduction ................................................................................................................................. 2 1.1 Serine Proteases: Digesting the Basics ................................................................................ 2 1.1.1 General protease classification .................................................................................. 2 1.1.2 Serine proteases catalytic mechanism ........................................................................ 4 1.1.3 Human trypsin-like serine proteases of family S1 clan PA ....................................... 7 1.2 Kallikrein-related Peptidase-8 At a Glance .......................................................................... 7 1.2.1 Discovery of the Kallikrein-related peptidases .......................................................... 7 1.2.2 Genomic and proteomic structure of Kallikrein-related peptidases......................... 10 1.2.3 Molecular properties of Kallikrein-related peptidase-8 ........................................... 12 1.2.4 Kallikrein-related peptidase-8 knock out mouse ..................................................... 14 1.3 Kallikrein-related peptidases in Normal Human Epidermis .............................................. 15 1.3.1 Normal skin structure and function .......................................................................... 15 1.3.2 Kallikrein expression in the skin .............................................................................. 18 1.3.3 Dermatological roles of Kallikrein-related peptidases ............................................ 21 1.3.4 Regulation of epidermal Kallikrein-related peptidases ........................................... 23 1.4 Kallikrein-related peptidases in Skin Diseases .................................................................. 28 1.5 Psoriasis and Atopic Dermatitis ......................................................................................... 33 1.6 Kallikrein-related peptidase-8 in normal and inflamed skin 1.5 Psoriasis and Atopic Dermatitis .......................................................................................................................... 36 1.7 Rationale, Hypotheses and Objectives ............................................................................... 37 1.7.1 Rationale .................................................................................................................. 37 1.7.2 Hypotheses ..............................................................................................................
Recommended publications
  • Newly Developed Serine Protease Inhibitors Decrease Visceral Hypersensitivity in a Post-Inflammatory Rat Model for Irritable Bowel Syndrome
    This item is the archived peer-reviewed author-version of: Newly developed serine protease inhibitors decrease visceral hypersensitivity in a post-inflammatory rat model for irritable bowel syndrome Reference: Ceuleers Hannah, Hanning Nikita, Heirbaut Leen, Van Remoortel Samuel, Joossens Jurgen, van der Veken Pieter, Francque Sven, De Bruyn Michelle, Lambeir Anne-Marie, de Man Joris, ....- New ly developed serine protease inhibitors decrease visceral hypersensitivity in a post-inflammatory rat model for irritable bow el syndrome British journal of pharmacology - ISSN 0007-1188 - 175:17(2018), p. 3516-3533 Full text (Publisher's DOI): https://doi.org/10.1111/BPH.14396 To cite this reference: https://hdl.handle.net/10067/1530780151162165141 Institutional repository IRUA NEWLY DEVELOPED SERINE PROTEASE INHIBITORS DECREASE VISCERAL HYPERSENSITIVITY IN A POST-INFLAMMATORY RAT MODEL FOR IRRITABLE BOWEL SYNDROME. Running title: Serine proteases in visceral hypersensitivity Hannah Ceuleers, Nikita Hanning, Jelena Heirbaut, Samuel Van Remoortel, Michelle De bruyn, Jurgen Joossens, Pieter van der Veken, Anne-Marie Lambeir, Sven M Francque, Joris G De Man, Jean-Pierre Timmermans, Koen Augustyns, Ingrid De Meester, Benedicte Y De Winter Hannah Ceuleers, Nikita Hanning, Jelena Heirbaut, Sven Francque, Joris G De Man, Benedicte Y De Winter, Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium. Samuel Van Remoortel, Jean-Pierre Timmermans, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium. Jurgen Joossens, Pieter van der Veken, Koen Augustyns, Laboratory of Medicinal Chemistry, University of Antwerp, Antwerp, Belgium. Sven Francque, Antwerp University Hospital, Antwerp, Belgium. Michelle De bruyn, Anne-Marie Lambeir, Ingrid De Meester, Laboratory of Medical Biochemistry, University of Antwerp, Antwerp, Belgium.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Serine Proteases with Altered Sensitivity to Activity-Modulating
    (19) & (11) EP 2 045 321 A2 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 08.04.2009 Bulletin 2009/15 C12N 9/00 (2006.01) C12N 15/00 (2006.01) C12Q 1/37 (2006.01) (21) Application number: 09150549.5 (22) Date of filing: 26.05.2006 (84) Designated Contracting States: • Haupts, Ulrich AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 51519 Odenthal (DE) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • Coco, Wayne SK TR 50737 Köln (DE) •Tebbe, Jan (30) Priority: 27.05.2005 EP 05104543 50733 Köln (DE) • Votsmeier, Christian (62) Document number(s) of the earlier application(s) in 50259 Pulheim (DE) accordance with Art. 76 EPC: • Scheidig, Andreas 06763303.2 / 1 883 696 50823 Köln (DE) (71) Applicant: Direvo Biotech AG (74) Representative: von Kreisler Selting Werner 50829 Köln (DE) Patentanwälte P.O. Box 10 22 41 (72) Inventors: 50462 Köln (DE) • Koltermann, André 82057 Icking (DE) Remarks: • Kettling, Ulrich This application was filed on 14-01-2009 as a 81477 München (DE) divisional application to the application mentioned under INID code 62. (54) Serine proteases with altered sensitivity to activity-modulating substances (57) The present invention provides variants of ser- screening of the library in the presence of one or several ine proteases of the S1 class with altered sensitivity to activity-modulating substances, selection of variants with one or more activity-modulating substances. A method altered sensitivity to one or several activity-modulating for the generation of such proteases is disclosed, com- substances and isolation of those polynucleotide se- prising the provision of a protease library encoding poly- quences that encode for the selected variants.
    [Show full text]
  • Downloaded from Genomic Data Common Website (GDC at Accessed on 2019)
    G C A T T A C G G C A T genes Article Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer Ritu Pandey 1,2,*, Muhan Zhou 3, Yuliang Chen 3, Dalila Darmoul 4 , Conner C. Kisiel 2, Valentine N. Nfonsam 5 and Natalia A. Ignatenko 1,2 1 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; [email protected] 2 University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; [email protected] 3 Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; [email protected] (M.Z.); [email protected] (Y.C.) 4 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Lariboisière Hospital, 75010 Paris, France; [email protected] 5 Department of Surgery, Section of Surgical Oncology, University of Arizona, Tucson, AZ 85724, USA; [email protected] * Correspondence: [email protected] Abstract: Colorectal cancer (CRC) remains one of the leading causes of cancer-related death world- wide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated Citation: Pandey, R.; Zhou, M.; Chen, KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) Y.; Darmoul, D.; Kisiel, C.C.; and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome Nfonsam, V.N.; Ignatenko, N.A.
    [Show full text]
  • Complete Amino Acid Sequence of Human Plasma Zn-A2-Glycoprotein and Its Homology to Histocompatibility Antigens
    Proc. Nati. Acad. Sci. USA Vol. 85, pp. 679-683, February 1988 Biochemistry Complete amino acid sequence of human plasma Zn-a2-glycoprotein and its homology to histocompatibility antigens (plasma protein structure/glycan structure//HLA dass I antigens/secretory major histocompatibility complex-related protein/immnnoglobuiln gene superfamily) TOMOHIRO ARAKI*, FUMITAKE GEJYO*t, KEIICHI TAKAGAKI*, HEINZ HAUPT*, H. GERHARD SCHWICKt, WILLY BURGI§, THOMAS MARTI¶, JOHANN SCHALLER¶, EGON RICKLI¶, REINHARD BROSSMER11, PAUL H. ATKINSON**, FRANK W. PUTNAMtt, AND KARL SCHMID*# *Department of Biochemistry, Boston University School of Medicine, Boston University Medical Center, Boston, MA 02118; *Behringwerke AG, 3550 Marburg/Lahn, Federal Republic of Germany; lZentrallaboratorium, Kantonsspital, 5001 Aarau, and lInstitut fOr Biochemie, University of Berne, 3012 Berne, Switzerland; IlDepartment of Biochemistry, University of Heidelberg Medical School, 6900 Heidelberg, Federal Republic of Germany; **Department of Developmental Biology and Cancer, Albert Einstein College of Medicine, Bronx, NY 10461; and ttDepartment of Biology, Indiana University, Bloomington, IN 47405 Contributed by Frank W. Putnam, September 22, 1987 ABSTRACT In the present study the complete amino acid like determinant in common with nephritogenic urinary sequence of human plasma Zn-a2-glycoprotein was deter- glycoproteins (2, 4). mined. This protein whose biological function is unknown In this paper we describe the determination of the com- consists of a single polypeptide chain of 276 amino acid plete amino acid sequence of Zna2gp, including the location residues including 8 tryptophan residues and has a pyroglu- of the two disulfide bridges and the structure of the three tamyl residue at the amino terminus. The location of the two carbohydrate units, and we discuss the possible secondary disuhlde bonds in the polypeptide chain was also established.
    [Show full text]
  • Kallikrein 13: a New Player in Coronaviral Infections
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.971499; this version posted March 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Kallikrein 13: a new player in coronaviral infections. 2 3 Aleksandra Milewska1,2, Katherine Falkowski2, Magdalena Kalinska3, Ewa Bielecka3, 4 Antonina Naskalska1, Pawel Mak4, Adam Lesner5, Marek Ochman6, Maciej Urlik6, Jan 5 Potempa2,7, Tomasz Kantyka3,8, Krzysztof Pyrc1,* 6 7 1 Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian 8 University, Gronostajowa 7a, 30-387 Krakow, Poland. 9 2 Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, 10 Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland. 11 3 Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska 12 Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, 13 Poland. 14 4 Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and 15 Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387, Krakow, Poland. 16 5 University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland. 17 6 Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical 18 University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland. 19 7 Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, 20 Louisville, KY 40202, USA. 21 8 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 22 5020 Bergen, Norway 23 24 25 26 27 28 29 30 31 * Correspondence should be addressed to Krzysztof Pyrc ([email protected]), Virogenetics 32 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 33 Gronostajowa 7, 30-387 Krakow, Poland; Phone number: +48 12 664 61 21; www: 34 http://virogenetics.info/.
    [Show full text]
  • A Broad-Spectrum Humanlung Fibroblast-Derived Mitogen Is A
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 415-419, January 1991 Biochemistry A broad-spectrum human lung fibroblast-derived mitogen is a variant of hepatocyte growth factor (heparin-binding growth factor/plasminogen/epithelial cells/endothelial ceils/melanocytes) JEFFREY S. RUBIN*, ANDREW M.-L. CHAN*, DONALD P. BOTTARO*, WILSON H. BURGESSt, WILLIAM G. TAYLOR*, ALEX C. CECH*, DAVID W. HIRSCHFIELD*, JANE WONG*, TORU MIKI*, PAUL W. FINCH*t, AND STUART A. AARONSON*§ *Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, MD 20892; and tLaboratory of Molecular Biology, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD 20855 Communicated by William H. Daughaday, October 10, 1990 (receivedfor review July 12, 1990) ABSTRACT A heparin-binding mitogen was isolated from Mitogenic Assays. DNA synthesis in the B5/589, BALB/ conditioned medium of human embryonic king fibroblasts. It MK, CCL208, and NIH 3T3 lines (10) and in primary exhibited broad target-cell specificity whose pattern was dis- melanocytes (11) was measured as described elsewhere. For tinct from that of any known growth factor. It rapidly stimu- proliferation assays (12), HUVECs were plated at 4 X 104 lated tyrosine phosphorylation of a 145-kDa protein in respon- cells per 6-cm tissue culture dish in basal medium (in the sive cells, suggesting that its signaling pathways involved presence or absence of heparin) supplemented with recom- activation of a tyrosine kinase. Purification identified a major binant aFGF or basic FGF (bFGF) (10 ng/ml) or HSAC- polypeptide with an apparent molecular mass of 87 kDa under purified, fibroblast-derived growth factor (-'100 ng/ml).
    [Show full text]
  • LCMS Bioanalysis of Antibody Drugs Using Fab-Selective Proteolysis
    C146-E340 LCMS Bioanalysis of Antibody Drugs Using Technical Fab-selective Proteolysis “nSMOL Method” Report — Selection of Signature Peptide — Noriko Iwamoto1, Takashi Shimada1 Abstract: nSMOL (nano-surface and molecular-orientation limited proteolysis) is Shimadzu's completely new, proprietary, and innovative technique for selective proteolysis of Fab region of monoclonal antibodies. nSMOL allows analytical method development of antibody drugs indepen- dent of a variety of antibody drugs. Fab-derived peptide fragments produced by nSMOL can be precisely quantified by multiple reaction monitoring (MRM) using the Shimadzu LCMS-8050/8060 triple quadrupole liquid chromatograph mass spectrometer (TQ-LCMS). This report describes a selection protocol of signature peptides suitable for pharmacokinetic studies. Keywords: nano-surface and molecular-orientation limited proteolysis, antibody drug, bioanalysis, LC/MS/MS 1. Introduction A peptide for quantitation (signature peptide) is selected from the tryptic peptides containing a complementarity-determining region Pharmacokinetic information provides some of the most fundamental (CDR), which defines the specificity of the antibody. However, it is not indicators. The effective drug discovery is supported by the overall possible that the CDR-containing peptide does not have the same pharmacokinetic profile such as for drug efficacy and toxicity. amino acid sequence as that in the endogenous IgGs. At this point, it must be confirmed that there is no competition with the signature The current method used for measuring drug concentration in blood peptide in the biological matrix. is enzyme-linked immunosorbent assay (ELISA). However, there are critical issues with ELISA, including influences from cross-reaction and inhibitory materials. In contrast, by MS, analysis is performed based on the structural information; thus, the aforementioned issues can 2.
    [Show full text]
  • 1 No. Affymetrix ID Gene Symbol Genedescription Gotermsbp Q Value 1. 209351 at KRT14 Keratin 14 Structural Constituent of Cyto
    1 Affymetrix Gene Q No. GeneDescription GOTermsBP ID Symbol value structural constituent of cytoskeleton, intermediate 1. 209351_at KRT14 keratin 14 filament, epidermis development <0.01 biological process unknown, S100 calcium binding calcium ion binding, cellular 2. 204268_at S100A2 protein A2 component unknown <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 3. 33323_r_at SFN stratifin/14-3-3σ binding <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 4. 33322_i_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 5. 201820_at KRT5 keratin 5 filament, epidermis development <0.01 structural constituent of cytoskeleton, intermediate 6. 209125_at KRT6A keratin 6A filament, ectoderm development <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 7. 209260_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 8. 213680_at KRT6B keratin 6B filament, ectoderm development <0.01 receptor activity, cytosol, integral to plasma membrane, cell surface receptor linked signal transduction, sensory perception, tumor-associated calcium visual perception, cell 9. 202286_s_at TACSTD2 signal transducer 2 proliferation, membrane <0.01 structural constituent of cytoskeleton, cytoskeleton, intermediate filament, cell-cell adherens junction, epidermis 10. 200606_at DSP desmoplakin development <0.01 lectin, galactoside- sugar binding, extracellular binding, soluble, 7 space, nucleus, apoptosis, 11. 206400_at LGALS7 (galectin 7) heterophilic cell adhesion <0.01 2 S100 calcium binding calcium ion binding, epidermis 12. 205916_at S100A7 protein A7 (psoriasin 1) development <0.01 S100 calcium binding protein A8 (calgranulin calcium ion binding, extracellular 13.
    [Show full text]
  • Biochemical Characterization of Human Kallikrein 8 and Its Possible Involvement in the Degradation of Extracellular Matrix Proteins
    Biochemical characterization of human kallikrein 8 and its possible involvement in the degradation of extracellular Title matrix proteins Author(s) Rajapakse, Sanath; Ogiwara, Katsueki; Takano, Naoharu; Moriyama, Akihiko; Takahashi, Takayuki Febs Letters, 579(30), 6879-6884 Citation https://doi.org/10.1016/j.febslet.2005.11.039 Issue Date 2005-12-01 Doc URL http://hdl.handle.net/2115/985 Type article (author version) File Information FL579-30.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Biochemical characterization of human kallikrein 8 and its possible involvement in the degradation of extracellular matrix proteins Sanath Rajapaksea, Katsueki Ogiwaraa, Naoharu Takanoa, Akihiko Moriyamab, Takayuki Takahashia,* aDivision of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo, 060-0810 Japan bDivision of Biomolecular Science, Institute of Natural Sciences, Nagoya City University, Nagoya 467-8501, Japan *Correspondence: Takayuki Takahashi, Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan Tel: 81-11-706-2748 Fax: 81-11-706-4851 E-mail: [email protected] 1 Abstract Human kallikrein 8 (KLK8) is a member of the human kallikrein gene family of serine proteases, and its protein, hK8, has recently been suggested to serve as a new ovarian cancer marker. To gain insights into the physiological role of hK8, the active recombinant enzyme was obtained in a pure state for biochemical and enzymatic characterizations. hK8 had trypsin-like activity with a strong preference for Arg over Lys in the P1 position, and its activity was inhibited by typical serine protease inhibitors. The protease degraded casein, fibronectin, gelatin, collagen type IV, fibrinogen, and high-molecular-weight kininogen.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0192073 A1 HABERMANN Et Al
    US 20090192073A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0192073 A1 HABERMANN et al. (43) Pub. Date: Jul. 30, 2009 (54) METHOD FOR PRODUCING INSULIN (30) Foreign Application Priority Data ANALOGS HAVINGADBASICB CHAN TERMINUS Jul. 11, 2006 (DE) ......................... 102OO6031955.9 (75) Inventors: to thisETErt an Publication Classification Frankfurt am Main (DE) (51) Int. Cl. A638/28 (2006.01) Correspondence Address: CI2P 2L/06 (2006.01) ANDREA Q. RYAN C07K I4/62 (2006.01) SANOF-AVENTIS U.S. LLC 104.1 ROUTE 202-206, MAIL CODE: D303A BRIDGEWATER, NJ 08807 (US) (52) U.S. Cl. ............................. 514/3; 435/68.1:530/303 (73) Assignee: SANOF-AVENTS DEUTSCHLAND GMBH, Frankfurtr am Main (DE)(DE (57) ABSTRACT (21) Appl. No.: 12/349,854 1-1. The invention relates to a method for producing a type of (22) Filed: Jan. 7, 2009 insulin by genetically engineering a precursor thereof and Related U.S. Application Data converting said precursor to the respective insulin in an .S. App enzyme-catalyzed ligation reaction with lysine amide or argi (63) Continuation of application No. PCT/EP2007/ nine amide, or by lysine or arginine which is modified by 005933, filed on Jul. 5, 2007. protective groups, and optionally Subsequent hydrolysis. US 2009/0192073 A1 Jul. 30, 2009 METHOD FOR PRODUCING INSULIN acids and the B chain with 30 amino acids. The chains are ANALOGS HAVING ADIBASIC B CHAIN linked together by 2 disulfide bridges. Insulin preparations TERMINUS have been employed for many years for the therapy of diabe tes. Moreover, not only are naturally occurring insulins used, but more recently also insulin derivatives and analogs.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]