Regulation of Mammalian Nucleotide Metabolism and Biosynthesis Andrew N
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
CHEM 461 to CHEM 462 Mod 2013-10-16
CALIFORNIA STATE UNIVERSITY CHANNEL ISLANDS COURSE MODIFICATION PROPOSAL Courses must be submitted by October 15, 2013, and finalized by the end of the fall semester to make the next catalog (2014-15) production DATE (CHANGE DATE EACH TIME REVISED): 10/14/2013; REV 11.13.13 PROGRAM AREA(S) : CHEM Directions: All of sections of this form must be completed for course modifications. Use YELLOWED areas to enter data. All documents are stand alone sources of course information. 1. Indicate Changes and Justification for Each. [Mark an X by all change areas that apply then please follow-up your X’s with justification(s) for each marked item. Be as brief as possible but, use as much space as necessary.] x Course title Course Content Prefix/suffix Course Learning Outcomes x Course number References x Units GE Staffing formula and enrollment limits Other x Prerequisites/Corequisites Reactivate Course x Catalog description Mode of Instruction Justification: Modified CHEM 462 has a new number, since 461 will become Biochemistry I lab. CHEM 462 will also separate classroom and lab component, allowing for greater flexibility on the part of the students. Classroom and laboratory content for the modified CHEM 462. And the new lab class, CHEM 463, will consist of the same lab content as the original CHEM 461. Removes the pre-requisite course CHEM 305, Computer applications in Chemistry, as unnecessary for CHEM 462. Catalog description altered to remove reference to lab fee. 2. Course Information. [Follow accepted catalog format.] (Add additional prefixes -
Analysis of Porcine Adipose Tissue Transcriptome Reveals Differences In
Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition Jordi Corominas, Yuliaxis Ramayo-Caldas, Anna Puig-Oliveras, Jordi Estelle Fabrellas, Anna Castello, Estefania Alves, Ramona N. Pena, Maria Ballester, Josep M. Folch To cite this version: Jordi Corominas, Yuliaxis Ramayo-Caldas, Anna Puig-Oliveras, Jordi Estelle Fabrellas, Anna Castello, et al.. Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition. BMC Genomics, BioMed Central, 2013, 14, 10.1186/1471-2164-14-843. hal-01193819 HAL Id: hal-01193819 https://hal.archives-ouvertes.fr/hal-01193819 Submitted on 29 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Corominas et al. BMC Genomics 2013, 14:843 http://www.biomedcentral.com/1471-2164/14/843 RESEARCH ARTICLE Open Access Analysis of porcine adipose tissue transcriptome reveals differences in de novo fatty acid synthesis in pigs with divergent muscle fatty acid composition Jordi Corominas1,2*, Yuliaxis Ramayo-Caldas1,2, Anna Puig-Oliveras1,2, Jordi Estellé3,4,5, Anna Castelló1, Estefania Alves6, Ramona N Pena7, Maria Ballester1,2 and Josep M Folch1,2 Abstract Background: In pigs, adipose tissue is one of the principal organs involved in the regulation of lipid metabolism. -
Identifying Nucleic Acid-Associated Proteins in Mycobacterium Smegmatis by Mass Spectrometry-Based Proteomics Nastassja L
Kriel et al. BMC Molecular and Cell Biology (2020) 21:19 BMC Molecular and https://doi.org/10.1186/s12860-020-00261-6 Cell Biology RESEARCH ARTICLE Open Access Identifying nucleic acid-associated proteins in Mycobacterium smegmatis by mass spectrometry-based proteomics Nastassja L. Kriel1*, Tiaan Heunis1,2, Samantha L. Sampson1, Nico C. Gey van Pittius1, Monique J. Williams1,3† and Robin M. Warren1† Abstract Background: Transcriptional responses required to maintain cellular homeostasis or to adapt to environmental stress, is in part mediated by several nucleic-acid associated proteins. In this study, we sought to establish an affinity purification-mass spectrometry (AP-MS) approach that would enable the collective identification of nucleic acid- associated proteins in mycobacteria. We hypothesized that targeting the RNA polymerase complex through affinity purification would allow for the identification of RNA- and DNA-associated proteins that not only maintain the bacterial chromosome but also enable transcription and translation. Results: AP-MS analysis of the RNA polymerase β-subunit cross-linked to nucleic acids identified 275 putative nucleic acid-associated proteins in the model organism Mycobacterium smegmatis under standard culturing conditions. The AP-MS approach successfully identified proteins that are known to make up the RNA polymerase complex, as well as several other known RNA polymerase complex-associated proteins such as a DNA polymerase, sigma factors, transcriptional regulators, and helicases. Gene ontology enrichment analysis of the identified proteins revealed that this approach selected for proteins with GO terms associated with nucleic acids and cellular metabolism. Importantly, we identified several proteins of unknown function not previously known to be associated with nucleic acids. -
Noelia Díaz Blanco
Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr. -
THE INFLUENCE of INADEQUATE WATER SUPPLY on METABOLISM in BIOLOGICAL SYSTEMS with EMPHASIS on PROTEIN SYNTHESIS and NUCLEIC ACID ME':Rabolism
TijE INFLU~NCE or INADEQU.4\TE WA,TE;It SUPPLY ON ME'l'ABOLISM IN B;I:OLOGICAL SYSTEMS by S. H. WEST Profes~or Qf Agronomy University of Floriqq PUBLICATION NO.9 of the FLORID.4\ WATER RESOURCES RESEARCH CENTER RES~ARCH PROJECT TECHNICAL COMPLETION REPORT OWRR Projeot Number A~008~fLA Annual Allot~ent Agreement Numbers 14-01 1"0001 .. 1077 (1968) 14 .. 01 or-POQ1.,.1628 (l9q9) 14 ... 31 .. 0001-3009 (1910) ~eport SUblll'l .. tt~dl August 26, 1970 The wQrk upon whic::n thiq r~~ort 'is based was suppo!"t~d in part by funds provideclby t;:he l)pitedStats$ pepartment of the Interior, Office ot Water ResourCes Research, as auth0ri~ed under the Water R~sources Research Act of 1964, TABLE OF CONTENTS Page ABSTRACT • ,. • • • • II • • 'f • • • • , • , • II • ~ • ,. • • • • • • • III ~ • • , • • " • • • ~ • ". • • • 1 P"R.O.)ECT ~Utv1t1A RY • III ••••• ~ • II • ~ ••••••••• ,. ,. • " , , II • II II " III •••• II • • 2 INTRODUCTlON . II • " '1/ ... ~ ........... I II II ••••• I II •• II • II , ••• II • " " II • 3 INITIAL RESEARCH PLAN AND RESULTS .......• ",.... ....... 4 CHARACTER,IZATION OF RNA ACCUMULATED IN DROUGHT ••••.•••• 5 :PROTEIN SYN1HESIS ALTERED BY DROUGHT •••• , •• ~ • ~ •• , •• , • • • 7 LITERA TURE C I TED ., •••••••..... , .••.• , ••..•.•.• "....... 1 1 ABSTRACT THE INFLUENCE OF INADEQUATE WATER SUPPLY ON METABOLISM IN BIOLOGICAL SYSTEMS WITH EMPHASIS ON PROTEIN SYNTHESIS AND NUCLEIC ACID ME':rABOLISM Data have been obtained that show the effect of drought on growth itself and how this reduction in growth may be a result of specific changes in total protein produc tion, nucleic acid metabolism and on functional activity of a fraction of nucleic acids. While the drcught treatments decreased total protein by only 40 percent, growth was re duced 80 percent. -
Structures, Functions, and Mechanisms of Filament Forming Enzymes: a Renaissance of Enzyme Filamentation
Structures, Functions, and Mechanisms of Filament Forming Enzymes: A Renaissance of Enzyme Filamentation A Review By Chad K. Park & Nancy C. Horton Department of Molecular and Cellular Biology University of Arizona Tucson, AZ 85721 N. C. Horton ([email protected], ORCID: 0000-0003-2710-8284) C. K. Park ([email protected], ORCID: 0000-0003-1089-9091) Keywords: Enzyme, Regulation, DNA binding, Nuclease, Run-On Oligomerization, self-association 1 Abstract Filament formation by non-cytoskeletal enzymes has been known for decades, yet only relatively recently has its wide-spread role in enzyme regulation and biology come to be appreciated. This comprehensive review summarizes what is known for each enzyme confirmed to form filamentous structures in vitro, and for the many that are known only to form large self-assemblies within cells. For some enzymes, studies describing both the in vitro filamentous structures and cellular self-assembly formation are also known and described. Special attention is paid to the detailed structures of each type of enzyme filament, as well as the roles the structures play in enzyme regulation and in biology. Where it is known or hypothesized, the advantages conferred by enzyme filamentation are reviewed. Finally, the similarities, differences, and comparison to the SgrAI system are also highlighted. 2 Contents INTRODUCTION…………………………………………………………..4 STRUCTURALLY CHARACTERIZED ENZYME FILAMENTS…….5 Acetyl CoA Carboxylase (ACC)……………………………………………………………………5 Phosphofructokinase (PFK)……………………………………………………………………….6 -
Genomic Profiling of Short- and Long-Term Caloric Restriction Effects in the Liver of Aging Mice
Genomic profiling of short- and long-term caloric restriction effects in the liver of aging mice Shelley X. Cao, Joseph M. Dhahbi, Patricia L. Mote, and Stephen R. Spindler* Department of Biochemistry, University of California, Riverside, CA 92521 Edited by Bruce N. Ames, University of California, Berkeley, CA, and approved July 11, 2001 (received for review June 19, 2001) We present genome-wide microarray expression analysis of 11,000 aging and CR on gene expression. Control young (7-month-old; n ϭ genes in an aging potentially mitotic tissue, the liver. This organ has 3) and old (27-month-old; n ϭ 3) mice were fed 95 kcal of a a major impact on health and homeostasis during aging. The effects semipurified control diet (Harlan Teklad, Madison, WI; no. of life- and health-span-extending caloric restriction (CR) on gene TD94145) per week after weaning. Long-term CR (LT-CR) young expression among young and old mice and between long-term CR (7-month-old; n ϭ 3) and old (27-month-old; n ϭ 3) mice were fed (LT-CR) and short-term CR (ST-CR) were examined. This experimental 53 kcal of a semipurified CR diet (Harlan Teklad; no. TD94146) per design allowed us to accurately distinguish the effects of aging from week after weaning. Short-term CR (ST-CR) mice were 34-month- those of CR on gene expression. Aging was accompanied by changes old control mice that were switched to 80 kcal of CR diet for 2 in gene expression associated with increased inflammation, cellular weeks, followed by 53 kcal for 2 weeks (n ϭ 3). -
A Path Towards SARS-Cov-2 Attenuation: Metabolic Pressure on CTP Synthesis Rules the Virus Evolution
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.162933; this version posted June 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 A path towards SARS-CoV-2 attenuation: metabolic pressure on CTP synthesis rules the virus evolution Zhihua Ou1,2, Christos Ouzounis3, Daxi Wang1,2, Wanying Sun1,2,4, Junhua Li1,2, Weijun Chen2,5*, Philippe Marlière6, Antoine Danchin7,8* 1. BGI-Shenzhen, Shenzhen 518083, China. 2. Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China. 3. Biological Computation and Process Laboratory, Centre for Research and Technology Hellas, Chemical Process and Energy Resources Institute, Thessalonica 57001, Greece 4. BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China. 5. BGI PathoGenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China. 6. TESSSI, The European Syndicate of Synthetic Scientists and Industrialists, 81 rue Réaumur, 75002, Paris, France 7. Kodikos Labs, Institut Cochin, 24, rue du Faubourg Saint-Jacques Paris 75014, France. 8. School of Biomedical Sciences, Li KaShing Faculty of Medicine, Hong Kong University, 21 Sassoon Road, Pokfulam, Hong Kong. * To whom correspondence should be addressed Tel: +331 4441 2551; Fax: +331 4441 2559 E-mail: [email protected] Correspondence may also be addressed to [email protected] Keywords ABCE1; cytoophidia; innate immunity; Maxwell’s demon; Nsp1; phosphoribosyltransferase; queuine bioRxiv preprint doi: https://doi.org/10.1101/2020.06.20.162933; this version posted June 21, 2020. -
NUCLEOTIDE METABOLISM Mark Rush
NUCLEOTIDE METABOLISM Mark Rush Nucleotides serve various metabolic functions. For example, they are: • Substrates (building blocks) for nucleic acid biosynthesis and repair, • The main storage form of “high energy phosphate”, • Components of many “so-called” co-enzymes (NAD, NADP, FAD, CoA), • Components of many activated metabolic intermediates (such as UDPG, SAM), • Major allosteric effectors (such as AMP, ADP, ATP, GTP), • Major second messengers (such as 3',5' cAMP), and • Precursors for the biosynthesis of a variety of important compounds (such as biopterin and histidine). Nucleotide biochemistry can be treated both as an aspect of nitrogen metabolism, along with such compounds as amino acids and porphyrins, and as an aspect of nucleic acid metabolism. When the focus is on the biosynthesis and degradation of nucleotides, in other words on their turnover, the treatment is similar to that of other nitrogenous compounds. When the focus is on the role of nucleotides in overall nucleic acid metabolism, the treatment is included in molecular biology. Both aspects will be considered here with the major emphasis directed toward relating defects in nucleotide turnover to either metabolic diseases or chemotherapy. I. Nomenclature (pages 11 and 12). II. Overall metabolic pathways (page 4). 1) PRPP synthetase. 2) Nucleoside phosphorylases. 3) Phosphoribosyl transferases. nucleotides - 1 III. Biosynthesis of purines and pyrimidines (pages 5, 6, 8). A minimum amount of time will be spent discussing these pathways in lecture. Please examine them carefully in the text and note that: 1) Purine synthesis begins at the nucleotide level, while pyrimidine synthesis does not. 2) Both syntheses are regulated at their committed steps. -
Targeting Pentose Phosphate Pathway for SARS-Cov-2 Therapy
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.19.257022; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Targeting pentose phosphate pathway for SARS-CoV-2 therapy Denisa Bojkova1, Rui Costa2, Marco Bechtel1, Sandra Ciesek1, Martin Michaelis3, Jindrich Cinatl jr.1,4* 1 Institute for Medical Virology, University Hospital, Goethe University Frankfurt am Main, Germany 2 Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre Hospital and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark 3 School of Biosciences, University of Kent, Canterbury, UK 4 Leading author *Correspondence: Jindrich Cinatl jr.([email protected]) bioRxiv preprint doi: https://doi.org/10.1101/2020.08.19.257022; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract It becomes more and more obvious that deregulation of host metabolism play an important role in SARS-CoV-2 pathogenesis with implication for increased risk of severe course of COVID-19. Furthermore, it is expected that COVID-19 patients recovered from severe disease may experience long-term metabolic disorders. Thereby understanding the consequences of SARS-CoV-2 infection on host metabolism can facilitate efforts for effective treatment option. -
Inhibition of IRE1 Modifies Hypoxic Regulation of G6PD, GPI, TKT, TALDO1, PGLS and RPIA Genes Expression in U87 Glioma Cells
ISSN 2409-4943. Ukr. Biochem. J., 2017, Vol. 89, N 1 UDC 577.112:616 doi: https://doi.org/10.15407/ubj89.01.038 INHIBITION OF IRE1 MODIFIES HYPOXIC reGULATION OF G6PD, GPI, TKT, TALDO1, PGLS AND RPIA GENES EXPRESSION IN U87 GLIOMA CELLS O.N H. MI CHENKO1, I. A. GARMASH1,N D. O. MI CHENKO1,2, A. Y. KuZNETSOVA1, O. O. RaTUSHNA1 1Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv; e-mail: [email protected]; 2Bohomolets National Medical University, Kyiv, Ukraine We have studied the effect of hypoxia on the expression level of mRNA of the basic enzymes of pentose- phosphate cycle (G6PD, TKT, TALDO1, PGLS and RPIA) and glucose-6-phosphate isomerase (GPI) in U87 glioma cells in relation to inhibition of IRE1 (inositol requiring enzyme 1). It was shown that hypoxia leads to up-regulation of the expression of GPI and PGLS genes and to down-regulation of TALDO1 and RPIA genes in control glioma cells. Changes for GPI gene were more significant than for other genes. At the same time, inhibition of IRE1 modified the effect of hypoxia on the expression of all studied genes. In particular, it increased sensitivity to hypoxia of G6PD and TKT genes expression and suppressed the effect of hypoxia on the expression of GPI and RPIA genes. Additionally, inhibition of IRE1 eliminated hypoxic regulation of PGLS gene and did not change significantly effect of hypoxia on the expression of TALDO1 gene in glioma cells. Present study demonstrated that hypoxia, which often contributes to tumor growth, affects the expres- sion of most studied genes and inhibition of IRE1 modified the hypoxic regulation of pentose-phosphate cycle gene expressions in a gene specific manner and thus possibly contributes to slower glioma growth, but several aspects of this regulation warrant further investigation. -
IP-WB Antibody Pair
TALDO1 (Human) IP-WB Antibody Pair Catalog # : H00006888-PW1 規格 : [ 1 Set ] List All Specification Application Image Product This IP-WB antibody pair set comes with one antibody for Immunoprecipitation-Western Blot Description: immunoprecipitation and another to detect the precipitated protein in western blot. Reactivity: Human Quality Control Immunoprecipitation-Western Blot (IP-WB) Testing: Immunoprecipitation of TALDO1 transfected lysate using rabbit polyclonal anti-TALDO1 and Protein A Magnetic Bead (U0007), and immunoblotted with rabbit polyclonal anti-TALDO1. Supplied Antibody pair set content: Product: 1. Antibody pair for IP: rabbit polyclonal anti-TALDO1 (300 ul) 2. Antibody pair for WB: rabbit polyclonal anti-TALDO1 (50 ul) Storage Store reagents of the antibody pair set at -20°C or lower. Please aliquot Instruction: to avoid repeated freeze thaw cycle. Reagents should be returned to - 20°C storage immediately after use. MSDS: Download Applications Immunoprecipitation-Western Blot Protocol Download Gene Information Entrez GeneID: 6888 Gene Name: TALDO1 Gene Alias: TAL,TAL-H,TALDOR,TALH Gene transaldolase 1 Description: Omim ID: 602063, 606003 Gene Ontology: Hyperlink Page 1 of 2 2016/5/22 Gene Summary: Transaldolase 1 is a key enzyme of the nonoxidative pentose phosphate pathway providing ribose-5-phosphate for nucleic acid synthesis and NADPH for lipid biosynthesis. This pathway can also maintain glutathione at a reduced state and thus protect sulfhydryl groups and cellular integrity from oxygen radicals. The functional gene of transaldolase 1 is located on chromosome 11 and a pseudogene is identified on chromosome 1 but there are conflicting map locations. The second and third exon of this gene were developed by insertion of a retrotransposable element.