Interspecific Variation of Thermoregulation Between Small Migratory and Resident Passerines in Wenzhou

Total Page:16

File Type:pdf, Size:1020Kb

Interspecific Variation of Thermoregulation Between Small Migratory and Resident Passerines in Wenzhou ZOOLOGICAL RESEARCH Interspecific variation of thermoregulation between small migratory and resident passerines in Wenzhou Qing-Gang QIAO1, Hong-Ji LIANG1, Min-Lan BAI1, Wei-Hong ZHENG1,2, Jin-Song LIU1,2,* 1 School of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, China 2 Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou 325035, China ABSTRACT thermogenesis. Taken together, these data illustrate small migratory and resident passerines that exhibit Physiological adaptation arises from several the different characteristics of thermoregulation. fundamental sources of phenotypic variation. Most analyses of metabolic adaptation in birds have Keywords: Basal metabolic rate; Body temperature; focused on the basal metabolic rate (BMR), the Thermal conductance; Eophona migratoria; Lonchura lower limit of avian metabolic heat production. In this striata; Aegithalos concinnus study, we investigated thermoregulation in three passerine species; the yellow-billed grosbeak INTRODUCTION1 Eophona migratoria, white-rumped munia Lonchura striata and black-throated bushtit Aegithalos Heat production in response to ambient temperature is concinnus, in Wenzhou, China. Metabolic rate was commonly referred to as facultative, or adaptive, thermogenesis measured using the closed-circuit respirometer (Angilletta et al., 2010; Silva, 2006; Zhou et al., 2016). containing 3.5 L animal chambers. Body temperature Endotherms primarily use mechanisms that equalize rates of (Tb) was measured during metabolic measurements heat production and loss to maintain a high and constant body using a lubricated thermocouple. The minimum temperature (Corp et al., 1997; Liu et al., 2004a). The necessity thermal conductance of these species was of maintaining an optimal body temperature is one of the major calculated by measuring their Tb and metabolic rates. factors influencing the abundance and distribution of birds (Liu The yellow-billed grosbeak remained largely et al., 2005; Weathers, 1979), and birds have evolved many normothermic, and the white-rumped munia and morphological and physiological adaptations to achieve this black-throated bushtit exhibited variable Tb at ambient (Swanson & Merkord, 2013; Wiersma et al., 2007). temperatures (Ta). Mean metabolic rates within Physiological adaptation arises from several fundamental thermal neutral zone were 2.48±0.09 O2 (mL)/g/h for sources of phenotypic variation. Most analyses of metabolic yellow-billed grosbeaks, 3.44±0.16 O2 (mL)/g/h for adaptation in birds have focused on the basal metabolic rate white-rumped munias, and 3.55±0.20 O2 (mL)/g/h for (BMR), the lower limit of avian metabolic heat production black-throated bushtits, respectively. Minimum (McKechnie et al., 2006; McNab, 2009). BMR is a standardized thermal conductance of yellow-billed grosbeak, baseline metabolic parameter that reflects a species’ resting white-rumped munia and black-throated bushtit were energy requirements in the absence of the increased metabolic 0.13±0.00, 0.36±0.01, and 0.37±0.01 O2 (mL)/g/h/˚C, demands associated with thermoregulation, digestion, activity respectively. The ecophysiological characteristics of or circadian rhythms (McKechnie, 2008; McNab, 2009; Zhou et these species were: (1) the yellowbilled grosbeak al., 2016). BMR is a widely-accepted benchmark of metabolic had relatively high Tb and BMR, a low lower critical expenditure for birds that is commonly used as a measure of temperature and thermal conductance, and a metabolic rate that was relatively insensitive to Received: 05 Feburary 2016; Accepted: 20 May 2016 variation in Ta; all of which are typical of cold adapted species and explain its broader geographic Foundation items: This study was financially supported by grants from distribution; (2) the white-rumped munia and black- the National Natural Science Foundation of China (No. 31470472), the throated bushtit had high thermal conductance, National Undergraduate “Innovation” Project and the Zhejiang lower critical temperature, and relatively low BMR, Province “Xinmiao” Project all which are adapted to warm environments where *Corresponding author, E-mail: [email protected] there is little selection pressure for metabolic DOI:10.13918/j.issn.2095-8137.2016.3.167 Science Press Zoological Research 37(3): 167-175, 2016 167 the energetic cost of thermoregulation. It has consequently been the focus of considerable research interest from MATERIALS AND METHODS environmental physiologists and comparative physiologists (e.g., Liu et al., 2005; Zheng et al., 2014a). Animals Ambient temperature (Ta) is considered one of the most important environmental factors affecting birds because it Seven yellow-billed grosbeaks (six male, one female), ten causes marked changes in their energy expenditure (Nzama et white-rumped munias (six male, four female) and nine black- al., 2010) and has driven the evolution of a suite of throated bushtits (seven male, two female) were captured by morphological and physiological adaptations (Swanson et al., mist nets in Wenzhou city (N27°29', E120°51'), Zhejiang 2014). A considerable body of research has been conducted to Province, China. The yellow-billed grosbeak Eophona examine the effects of temperature on animal adaptation, migratoria is a granivorous and insectivorous migratory bird. survival, and reproductive success (Sgueo et al., 2012; Zhou et The white-rumped munia Lonchura striata is a gregarious bird al., 2016). In a comparative study of small birds with different that feeds mainly on seeds. The black-throated bushtit habitats and habits, Rezende et al. (2002) recently emphasized Aegithalos concinnus mainly feeds on small insects and spiders, the ecological significance of BMR. For example, tropical birds as well as small seeds, fruits and berries (particularly typically have a lower BMR than cold temperate birds, which is raspberries). The climate in Wenzhou is warm-temperate with thought to be an adaptation to avoid heat stress and conserve the mean annual temperature is 18 ˚C. There are seven months water (Weathers, 1997; Wiersma et al., 2007). Conversely, the of the year (March through September) in which the maximum higher BMR of cold temperate and Arctic birds is thought to be temperature is above 37 ˚C (Zheng et al., 2008a; 2014a). All an adaptation to colder temperatures and shorter breeding experiments were carried out from October to December 2012. seasons (Klaassen, 1995; Zheng et al., 2014b). It has been Animals were kept in individual cages (50 cm×30 cm×20 cm) suggested that the BMR of a number of long-distance migratory under natural photoperiod (14L:10D) with lights on at 0600h birds is lower in their tropical overwintering range than at their and temperature (25 ˚C). Food and water were supplied ad temperate breeding grounds (Lindström & Klaassen, 2003; libitum. Yellow-billed grosbeaks and white-rumped munias were Zheng et al., 2013). The higher metabolic capacities of high fed millet seeds, and black-throated bushtits were fed bird cake latitude species may involve a combination of genetic and mealworm Tenebriomolitor larvae. The mean body mass responses to climatic factors (Liknes & Swanson, 2011; of yellow-billed grosbeaks, white-rumped munias and black- Swanson, 2010; Wikelski et al., 2003). These findings indicate throated bushtits was 50.5±0.6 g (47.9-52.4 g), 12.6±0.3 g that environmental conditions are very important in shaping the (11.1-14.5 g) and 6.8±0.1 g (6.4-7.4 g), respectively. All thermoregulatory features of a species. There is now experimental procedures were approved by the Wenzhou City considerable evidence to show that the metabolic Animal Care and Use Committee, Zhejiang Province, China characteristics of birds are part of a network of physiological (Wu et al., 2015). mechanisms that mediate major life-history trade-offs (Wikelski et al., 2003). Measurement of metabolic rate The yellow-billed grosbeak Eophona migratoria is a migratory Oxygen consumption was measured using a closed-circuit bird that inhabits vast areas of northeast Asia. The white- respirometer according to the methods described by Górecki rumped munia Lonchura striata is a common resident breeder (1975) and Liu et al. (2004a; 2005). The volume of the in southern China and South Asia. The distribution of the black- metabolic chamber was 3.5 L and its temperature was throated bushtit Aegithalos concinnus ranges from the foothills controlled by a water bath in Artificial Climatic Engine (BIC-300, of the Himalayas, across northern India through Nepal, to Shanghai) and maintained to ±0.5 ˚C. Every bird was tested northern Vietnam and Taiwan (MacKinnon & Phillipps, 2000). only one Ta per day with at least two days between tests (Xia et Although all three species experience the same temperature al., 2013). Oxygen consumption rates were measured over a and photoperiod in autumn and winter in Wenzhou, the yellow- temperature range of 5 ˚C to 35 ˚C. Food was withheld four billed grosbeak is a Palearctic bird that migrates to Wenzhou in hours before animals were placed in the metabolic chamber to winter whereas the white-rumped munia and black-throated minimize the heat increment associated with feeding before bushtit are Indomalayan species that are resident in Wenzhou, each test. Birds were weighed to the nearest 0.1 g before being and their thermoregulatory responses could differ (e.g., climatic put in the chamber. Water and CO2 were absorbed from the air differences across the ranges). To test the hypothesis
Recommended publications
  • TRAFFIC Bulletin Volume 32, No. 2 (October 2020) (3.6 MB Pdf)
    VOL. 32 NO. 2 32 NO. VOL. TRAFFIC 2 BULLETIN ONLINE TRADE IN SOUTHEAST ASIAN AMPHIBIANS BIRD SINGING COMPETITIONS UNDER COVID CONSUMER AWARENESS IN MYANMAR EVALUATING MARKET INTERVENTIONS TRAFFIC is a leading non-governmental organisation working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development. For further information contact: The Executive Director TRAFFIC David Attenborough Building Pembroke Street Cambridge CB2 3QZ UK Telephone: (44) (0) 1223 277427 E-mail: [email protected] Website: www.traffic.org With thanks to The Rufford Foundation for contributimg to the production costs of the TRAFFIC Bulletin is a strategic alliance of OCTOBER 2020 OCTOBER The journal of TRAFFIC disseminates information on the trade in wild animal and plant resources GLOBAL TRAFFIC was established TRAFFIC International David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, UK. in 1976 to perform what Tel: (44) 1223 277427; E-mail: [email protected] AFRICA remains a unique role as a Central Africa Office c/o IUCN, Regional Office for Central Africa, global specialist, leading and PO Box 5506, Yaoundé, Cameroon. Tel: (237) 2206 7409; Fax: (237) 2221 6497; E-mail: [email protected] supporting efforts to identify Southern Africa Office c/o IUCN ESARO, 1st floor, Block E Hatfield Gardens, 333 Grosvenor Street, and address conservation P.O. Box 11536, Hatfield, Pretoria, 0028, South Africa Tel: (27) 12 342 8304/5; Fax: (27) 12 342 8289; E-mail: [email protected] challenges and solutions East Africa Office c/o WWF TCO, Plot 252 Kiko Street, Mikocheni, PO Box 105985, Dar es Salaam, Tanzania.
    [Show full text]
  • Proposal 2017-C-15 Below)
    AOS Classification Committee – North and Middle America Proposal Set 2017-C 15 March 2017 No. Page Title 01 02 Revise the linear sequence of genera in Fringillidae, and transfer Serinus mozambicus to Crithagra 02 09 Split Brown Creeper (Certhia americana) into two species 03 16 Transfer Violet-bellied Hummingbird from Damophila to Juliamyia 04 18 Elevate Colaptes auratus mexicanoides to species rank 05 23 Split Nashville Warbler (Oreothlypis ruficapilla) into two species 06 26 Adopt new English names for Melozone biarcuata and Melozone cabanisi 07 29 Lump Thayer’s Gull (Larus thayeri) with Iceland Gull (Larus glaucoides) 08 43 Change the spelling of the English names of Le Conte’s Thrasher (Toxostoma lecontei) and Le Conte’s Sparrow (Ammodramus leconteii) 09 46 Add Common Scoter (Melanitta nigra) to the Main List 10 49 Add Blyth’s Reed Warbler (Acrocephalus dumetorum) to the Main List 11 52 Add Chatham Albatross (Thalassarche eremita) to the Main List 12 55 Add Red-legged Honeycreeper (Cyanerpes cyaneus) to the U.S. list 13 57 Add nine species recorded from Greenland to the Main List 14 68 Split Bell’s Vireo (Vireo bellii) into two species 1 2017-C-1 N&MA Classification Committee pp. 658-679 Revise the linear sequence of genera in Fringillidae, and transfer Serinus mozambicus to Crithagra Background: In the past decade, several phylogenetic papers have elucidated relationships within the Fringillidae (Arnaiz-Villena et al. 2007, 2008, Nguembock et al. 2009, Lerner et al. 2011, Zuccon et al. 2012). NACC already has taken a series of actions (reviewed below) based on this research.
    [Show full text]
  • ED45E Rare and Scarce Species Hierarchy.Pdf
    104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233
    [Show full text]
  • GSSB HCV Assessment Report 2020 Rev20200815.Pdf
    CONTENTS PAGE NO. 1.0 Introduction and Background 1 - 4 2.0 Description of the Assessment Area 5 - 9 3.0 HCV Assessment Team 10 4.0 Methods 10 - 17 5.0 Assessment Findings/ HCV Identification 17 - 20 6.0 HCV Management and Monitoring 21 - 22 7.0 References 23 8.0 Addendum 24-25 9.0 Annexes 26 - 59 ii LIST OF FIGURES PAGE NO. Figure 1.1 Location of the Project Area 4 Figure 2.1 Average rainfall 2009-2015 7 Figure 2.2 Average temperature 2009-2015 7 Figure 2.3 Average humidity 2009-2015 8 Figure 2.3 Fire scar 1983 across Sabah 9 Figure 4.1 Illustration of mist netting for the bird survey 13 Figure 4.2 Illustration of stream transect method 15 Figure 4.3 Illustration of remote cameras placement 15 LIST OF TABLES PAGE NO. Table 2.1 Vegetation Type 9 Table 4.1 Summary of the timeline of HCV Assessment 10 Table 4.2 Transect lines coordinates 11 – 13 Table 4.3 Road survey coordinates 12 Table 4.4 Mist nets coordinate in Bengkoka Forest Reserve 14 Table 4.5 Mist nets coordinate in Tambalugu Forest Reserve 14 Table 4.6 Remote cameras coordinate in Bengkoka Forest Reserve 16 Table 4.7 Remote cameras coordinate in Tambalugu Forest Reserve 16 Table 5.1 Findings of large and medium-sized mammals 18 Table 5.2 Findings of bird species 18 - 19 Table 6.1 HCV Management and Monitoring - Precautionary Approach 21 - 22 Table 7.1 Summary of threats to the HCV in the project area 25 iii Update from the Last Version (14 February 2020) The purpose of this section is to highlight the changes made in the document from the previous report.
    [Show full text]
  • Complete Mitochondrial Genome of the Chinese Hwamei Garrulax Canorus
    Complete mitochondrial genome of the Chinese Hwamei Garrulax canorus (Aves: Passeriformes): the first representative of the Leiothrichidae family with a duplicated control region D.S. Chen1*, C.J. Qian1*, Q.Q. Ren1,2, P. Wang1, J. Yuan1, L. Jiang1, D. Bi1, Q. Zhang1, Y. Wang1 and X.Z. Kan1,2 1Provincial Key Laboratory of the Conservation and Exploitation Research of Biological Resources in Anhui, College of Life Sciences, Anhui Normal University, Wuhu, China 2The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu, China *These authors contributed equally to this study. Corresponding author: X.Z. Kan E-mail: [email protected] Genet. Mol. Res. 14 (3): 8964-8976 (2015) Received January 11, 2015 Accepted May 8, 2015 Published August 7, 2015 DOI http://dx.doi.org/10.4238/2015.August.7.5 ABSTRACT. The Chinese Hwamei Garrulax canorus, a member of the family Leiothrichidae, is commonly found in central and southern China, northern Indochina, and on Hainan Island. In this study, we sequenced the complete mitochondrial genome of G. canorus. The circular mitochondrial genome is 17,785 bp in length and includes 13 protein-coding genes, 22 transfer RNA (tRNA) genes, and two ribosomal RNA genes. In addition, two copies of highly Genetics and Molecular Research 14 (3): 8964-8976 (2015) ©FUNPEC-RP www.funpecrp.com.br Mitogenome of Garrulax canorus 8965 similar putative control regions were observed in the mitochondrial genome. As found in other vertebrates, most of the genes are coded on the H-strand, except for one protein-coding gene (nad6; NADH dehydrogenase subunit 6) and eight tRNA genes (tRNAGln, tRNAAla, tRNAAsn, tRNACys, tRNATyr, tRNASer(UCN), tRNAPro, and tRNAGlu).
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • Passive Citizen Science: the Role of Social Media in Wildlife Observations
    Passive citizen science: the role of social media in wildlife observations 1Y* 1Y 1Y Thomas Edwards , Christopher B. Jones , Sarah E. Perkins2, Padraig Corcoran 1 School Of Computer Science and Informatics, Cardiff University, Cardiff, UK 2 School of Biosciences, Cardiff University, Cardiff, CF10 3AX YThese authors contributed equally to this work. * [email protected] Abstract Citizen science plays an important role in observing the natural environment. While conventional citizen science consists of organized campaigns to observe a particular phenomenon or species there are also many ad hoc observations of the environment in social media. These data constitute a valuable resource for `passive citizen science' - the use of social media that are unconnected to any particular citizen science program, but represent an untapped dataset of ecological value. We explore the value of passive citizen science, by evaluating species distributions using the photo sharing site Flickr. The data are evaluated relative to those submitted to the National Biodiversity Network (NBN) Atlas, the largest collection of species distribution data in the UK. Our study focuses on the 1500 best represented species on NBN, and common invasive species within UK, and compares the spatial and temporal distribution with NBN data. We also introduce an innovative image verification technique that uses the Google Cloud Vision API in combination with species taxonomic data to determine the likelihood that a mention of a species on Flickr represents a given species. The spatial and temporal analyses for our case studies suggest that the Flickr dataset best reflects the NBN dataset when considering a purely spatial distribution with no time constraints.
    [Show full text]
  • Programs and Field Trips
    CONTENTS Welcome from Kathy Martin, NAOC-V Conference Chair ………………………….………………..…...…..………………..….…… 2 Conference Organizers & Committees …………………………………………………………………..…...…………..……………….. 3 - 6 NAOC-V General Information ……………………………………………………………………………………………….…..………….. 6 - 11 Registration & Information .. Council & Business Meetings ……………………………………….……………………..……….………………………………………………………………………………………………………………….…………………………………..…..……...….. 11 6 Workshops ……………………….………….……...………………………………………………………………………………..………..………... 12 Symposia ………………………………….……...……………………………………………………………………………………………………..... 13 Abstracts – Online login information …………………………..……...………….………………………………………….……..……... 13 Presentation Guidelines for Oral and Poster Presentations …...………...………………………………………...……….…... 14 Instructions for Session Chairs .. 15 Additional Social & Special Events…………… ……………………………..………………….………...………………………...…………………………………………………..…………………………………………………….……….……... 15 Student Travel Awards …………………………………………..………...……………….………………………………..…...………... 18 - 20 Postdoctoral Travel Awardees …………………………………..………...………………………………..……………………….………... 20 Student Presentation Award Information ……………………...………...……………………………………..……………………..... 20 Function Schedule …………………………………………………………………………………………..……………………..…………. 22 – 26 Sunday, 12 August Tuesday, 14 August .. .. .. 22 Wednesday, 15 August– ………………………………...…… ………………………………………… ……………..... Thursday, 16 August ……………………………………….…………..………………………………………………………………… …... 23 Friday, 17 August ………………………………………….…………...………………………………………………………………………..... 24 Saturday,
    [Show full text]
  • The Relationships of the Starlings (Sturnidae: Sturnini) and the Mockingbirds (Sturnidae: Mimini)
    THE RELATIONSHIPS OF THE STARLINGS (STURNIDAE: STURNINI) AND THE MOCKINGBIRDS (STURNIDAE: MIMINI) CHARLESG. SIBLEYAND JON E. AHLQUIST Departmentof Biologyand PeabodyMuseum of Natural History,Yale University, New Haven, Connecticut 06511 USA ABSTRACT.--OldWorld starlingshave been thought to be related to crowsand their allies, to weaverbirds, or to New World troupials. New World mockingbirdsand thrashershave usually been placed near the thrushesand/or wrens. DNA-DNA hybridization data indi- cated that starlingsand mockingbirdsare more closelyrelated to each other than either is to any other living taxon. Some avian systematistsdoubted this conclusion.Therefore, a more extensiveDNA hybridizationstudy was conducted,and a successfulsearch was made for other evidence of the relationshipbetween starlingsand mockingbirds.The resultssup- port our original conclusionthat the two groupsdiverged from a commonancestor in the late Oligoceneor early Miocene, about 23-28 million yearsago, and that their relationship may be expressedin our passerineclassification, based on DNA comparisons,by placing them as sistertribes in the Family Sturnidae,Superfamily Turdoidea, Parvorder Muscicapae, Suborder Passeres.Their next nearest relatives are the members of the Turdidae, including the typical thrushes,erithacine chats,and muscicapineflycatchers. Received 15 March 1983, acceptedI November1983. STARLINGS are confined to the Old World, dine thrushesinclude Turdus,Catharus, Hylocich- mockingbirdsand thrashersto the New World. la, Zootheraand Myadestes.d) Cinclusis
    [Show full text]
  • SICHUAN (Including Northern Yunnan)
    Temminck’s Tragopan (all photos by Dave Farrow unless indicated otherwise) SICHUAN (Including Northern Yunnan) 16/19 MAY – 7 JUNE 2018 LEADER: DAVE FARROW The Birdquest tour to Sichuan this year was a great success, with a slightly altered itinerary to usual due to the closure of Jiuzhaigou, and we enjoyed a very smooth and enjoyable trip around the spectacular and endemic-rich mountain and plateau landscapes of this striking province. Gamebirds featured strongly with 14 species seen, the highlights of them including a male Temminck’s Tragopan grazing in the gloom, Chinese Monal trotting across high pastures, White Eared and Blue Eared Pheasants, Lady Amherst’s and Golden Pheasants, Chinese Grouse and Tibetan Partridge. Next were the Parrotbills, with Three-toed, Great and Golden, Grey-hooded and Fulvous charming us, Laughingthrushes included Red-winged, Buffy, Barred, Snowy-cheeked and Plain, we saw more Leaf Warblers than we knew what to do with, and marvelled at the gorgeous colours of Sharpe’s, Pink-rumped, Vinaceous, Three-banded and Red-fronted Rosefinches, the exciting Przevalski’s Finch, the red pulse of Firethroats plus the unreal blue of Grandala. Our bird of the trip? Well, there was that Red Panda that we watched for ages! 1 BirdQuest Tour Report: Sichuan Including Northern Yunnan 2018 www.birdquest-tours.com Our tour began with a short extension in Yunnan, based in Lijiang city, with the purpose of finding some of the local specialities including the rare White-speckled Laughingthrush, which survives here in small numbers. Once our small group had arrived in the bustling city of Lijiang we began our birding in an area of hills that had clearly been totally cleared of forest in the fairly recent past, with a few trees standing above the hillsides of scrub.
    [Show full text]
  • Ecography E4831 Yamaura, Y., Katoh, K
    Ecography E4831 Yamaura, Y., Katoh, K. and Takahashi, T. 2006. Reversing habitat loss: deciduous habitat fragmentation matters to birds in a larch plantation matrix. – Ecography 29: 827–834. Appendix. Assignment of bird species to groups. Common name Scientific name Season Winter guild Breeding guild Nest location Black-faced bunting Emberiza spodocephala Breeding Ground, Ground, early successional shrub Blue-and-white flycatcher Cyanoptila cyanomelana Breeding Flycatcher Ground Brambling Fringilla montifringilla Winter Seed Shrub Brown thrush Turdus chrysolaus Breeding Ground Shrub Brown-eared bulbul Hypsipetes amaurotis Breeding Omnivore Shrub Bullfinch Pyrrhula pyrrhula Both Seed Canopy, Shrub hemlock-fir Bush warbler Cettia diphone Breeding Shrub Shrub Coal tit Parus ater Both Canopy, Canopy, Tree hemlock-fir hemlock-fir Copper pheasant Phasianus soemmerringii Breeding Ground Ground Eastern crowned warbler Pylloscopus coronatus Breeding Shrub Ground Goldcrest Regulus regulus Winter Canopy, Tree hemlock-fir Great spotted woodpecker Dendrocopos major Winter Stem Tree Great tit Parus major Both Canopy Canopy Tree Indian tree pipit Anthus hodgsoni Breeding Ground, Ground early successional Japanese grey thrush Turdus cardis Breeding Ground Shrub Japanese grosbeak Eophona personata Both Seed Canopy Tree Japanese pygmy woodpecker Dendrocopos kizuki Both Stem Stem Tree Japanese white-eye Zosterops japonica Both Canopy Canopy Shrub Jay Garrulus glandarius Both Seed Omnivore Tree “Large woodpeckers” Breeding Stem Tree Long-tailed tit Aegithalos
    [Show full text]
  • Preliminary Report on Wildlife Inventories and Assessment in SFM Project Areas
    Preliminary Report on Wildlife Inventories and Assessment in SFM Project Areas Timimbang – Botitian Forest Reserve Prepared by: Rayner Bili Sabah Forestry Department. Survey Period 7th May – 16th May 2014 Date of Report: 18th June 2014 Table of Contents Acknowledgment Abstract List of abbreviations 1.0 INTRODUCTION 1.1 Study Area 1.2 Objectives 2.0 METHODOLOGY 2.1 Recce Walked 2.2 Night Spotting 2.3 Morning Drive 2.4 Camera Trapping 2.5 Interviews 2.6 Opportunistic Sighting 3.0 RESULTS 3.1 Mammals 3.2 Birds 4.0 DISCUSSION 5.0 RECOMMENDATION References Annex I : List of participant and time table Annex II : Datasheet of night spotting Annex III : Datasheet of morning drive Annex IV : Datasheet recce walks Annex V : Opportunistic wildlife sighting sheet Annex VI : Camera trapping datasheet Annex VII : Description of IUCN red list Annex VIII : Photos Acknowledgement By this opportunity, I would like to deeply indebted to Beluran District Forest Officer (DFO) and Assistant District Forest Officers (ADFOs), Forest Rangers, Forester and all forest staff’s of SFM Timimbang-Botitian (Ali Shah Bidin, Mensih Saidin, Jamation Jamion, Jumiting Sauyang and Rozaimee Ahmad) for their help and support during the rapid wildlife survey and assessment in SFM Timimbang-Botitian project area. My sincere thank goes to Mr. Awang Azrul (ADFO) for organizing our accommodation and providing permission to carry out the wildlife survey and for his continuous support for the smooth execution of the programs due the survey requires night movement inside the SFM Timimbang-Botitian forest reserves. Deepest thanks to Mr. Zainal Kula, Mr. Sarinus Aniong and Mr.
    [Show full text]