Cells Signal Transduction Cascades in Endothelial Complement C3a

Total Page:16

File Type:pdf, Size:1020Kb

Cells Signal Transduction Cascades in Endothelial Complement C3a Complement C3a and C5a Induce Different Signal Transduction Cascades in Endothelial Cells This information is current as Ingrid U. Schraufstatter, Khanh Trieu, Lyudmila Sikora, P. of September 26, 2021. Sriramarao and Richard DiScipio J Immunol 2002; 169:2102-2110; ; doi: 10.4049/jimmunol.169.4.2102 http://www.jimmunol.org/content/169/4/2102 Downloaded from References This article cites 79 articles, 40 of which you can access for free at: http://www.jimmunol.org/content/169/4/2102.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Complement C3a and C5a Induce Different Signal Transduction Cascades in Endothelial Cells1 Ingrid U. Schraufstatter,2* Khanh Trieu,* Lyudmila Sikora,† P. Sriramarao,† and Richard DiScipio† In leukocytes, C3a and C5a cause chemotaxis in a Gi-dependent, pertussis toxin (PT)-sensitive fashion. Because we found that HUVECs and immortalized human dermal microvascular endothelial cells express small numbers of C3aRs and C5aRs, we asked what the function of these receptors was on these cells. Activation of the C3aR caused transient formation of actin stress fibers, which was not PT-sensitive, but depended on rho activation implying coupling to G␣12 or G␣13. Activation of the C5aR caused a delayed and sustained cytoskeletal response, which was blocked by PT, and resulted in cell retraction, increased paracellular permeability, and facilitated eosinophil transmigration. C5a, but not C3a, was chemotactic for human immortalized dermal microvascular endothelial cells. The response to C5a was blocked by inhibitors of phosphatidylinositol-3-kinase, src kinase, and Downloaded from of the epidermal growth factor (EGF) receptor (EGFR) as well as by neutralizing Abs against the EGFR and heparin-binding EGF-like factor. Furthermore, immune precipitations showed that the EGFR was phosphorylated following stimulation with C5a. The C5aR in endothelial cells thus uses a signaling cascade–transactivation of the EGFR–that does not exist in leukocytes, while the C3aR couples to a different G protein, presumably G␣12/13. The Journal of Immunology, 2002, 169: 2102–2110. omplement activation leads to the production of the ana- tion of these receptors on cell types other than leukocytes is http://www.jimmunol.org/ phylatoxins C3a and C5a, which are basic polypeptides under active investigation. C of 74–77 aa derived from the ␣-chains of their parent Both the C3aR and the C5aR are GPCRs, which couple to the proteins. C3a and C5a are known for their stimulatory effect on pertussis toxin (PT)-sensitive Gi␣ (21–24) and to the PT-insensi- leukocytes including chemotaxis of neutrophils, eosinophils, and tive G␣16 (25, 26) in leukocytes. Leukocytes are very rich in Gi␣, monocytes (1–5). Furthermore, the anaphylatoxins can also induce and G␣16 expression is limited to cells of hemopoietic lineage (27). smooth muscle contraction (6) and can evoke an increase in vas- Because G protein usage is not absolute, it is conceivable that other cular permeability (7, 8). cell types use additional G proteins and/or signal transduction However, it has been appreciated only recently that the expres- cascades. by guest on September 26, 2021 sion of anaphylatoxin receptors is not limited to leukocytes. In In this study, we report that cultured human endothelial cells particular, expression of the C5aR is widespread and has been express C3aRs and C5aRs, and that the two receptors use different shown in liver, lung, kidney, and the CNS (9–12). Although it was signal transduction cascades to activate cellular responses distinct reported that expression of C5aRs is low on endothelial cells (13, from those on leukocytes. 14), it is incorrect to conclude that activation of these receptors is functionally irrelevant, because engagement of a few hundred G Materials and Methods protein-coupled receptors (GPCRs)3 per cell is sufficient for Purification of C3a and C5a maximal cell activation (15). Indeed, it has been suggested that Human C3a and C5a were produced after cleavage of their parent proteins, endothelial cell-derived superoxide generation played a role in C3 and C5, respectively, using a fluid phase C3/C5 convertase, CVF, and C5a-mediated pulmonary injury (16). Still less is known about Bb (28). C3a and C5a were collected after direct passage through DEAE- C3aRs on nonhemopoietic cells. Their expression has been de- Sephacel equilibrated in 20 mM imidazole HCl (pH 7)/0.075 M NaCl. Then, the anaphylatoxins were adsorbed onto CM-Sephadex (Amersham scribed in the CNS (17, 18), on epithelial cells (19), and on Pharmacia Biotech, Piscataway, NJ), and eluted with 0.25 M NaCl. The endothelial cells following ischemia/reperfusion (20). The func- synthetic polypeptide consisting of the 21 terminal amino acids of C3a, C3a (57–77), was a kind gift of Dr. T. E. Hugli (La Jolla Institute for Molecular Medicine, San Diego, CA). Cell culture Departments of *Cancer Biology and †Vascular Biology, La Jolla Institute for Mo- lecular Medicine, San Diego, CA 92121 HUVECs were obtained from Clonetics (San Diego, CA) and used between passage 5 and 7. Human immortalized dermal microvascular endothelial Received for publication December 19, 2001. Accepted for publication June 19, 2002. cells (HMECs; Ref. 29) were obtained from the Center for Disease Control The costs of publication of this article were defrayed in part by the payment of page (Atlanta, GA). The cells were grown in endothelial growth medium as charges. This article must therefore be hereby marked advertisement in accordance recommended by the supplier (Clonetics). with 18 U.S.C. Section 1734 solely to indicate this fact. HMECs or HUVECs were seeded at low density on collagen-coated 1 This work was supported by National Institute Health Grants HL55657 (to I.U.S.) coverslips and grown in endothelial growth medium (Clonetics) containing and AI35796 (to P.S.). 10% FCS. On the day of the experiment, cells were serum starved for 2 h 2 Address correspondence and reprint requests to Dr. Ingrid U. Schraufstatter, De- (HUVECs) or 3–4 h (HMECs) and stimulated with C3a or C5a for the time partment of Cancer Biology, La Jolla Institute for Molecular Medicine, 4570 Exec- indicated for each experiment. For immuneprecipitations, HMECs were utive Drive, #100, San Diego, CA 92121. E-mail address: [email protected] serum starved for 16 h. All experiments were performed at 37°C in a tissue 3 Abbreviations used in this paper: GPCR, G protein-coupled receptor; HMEC, hu- culture incubator. man immortalized dermal microvascular endothelial cell; EGF, epidermal growth To block Gi␣, endothelial cells were incubated for 16 h with 100 ng/ml factor; EGFR, EGF receptor; PT, pertussis toxin; LPA, lysophosphatidic acid; HB- of PT (List Biological Laboratories, Campbell, CA). Rho was inhibited EGF, heparin-binding EGF-like factor; F-actin, filamentous actin. with C3 botulinum toxin (10 ␮g/ml; List Biological Laboratories) for 24 h, Copyright © 2002 by The American Association of Immunologists, Inc. 0022-1767/02/$02.00 The Journal of Immunology 2103 which leads to inactivation of rho in ϳ90% of endothelial cells (30). Rho Immuneprecipitations of the EGFR ␮ kinase, a downstream target of rho, was inhibited with 10 M Y27632 (gift 2 of Yoshitomi Pharmaceuticals, Osaka, Japan) added 30 min before the HMECs were grown to confluence on 100-mm tissue culture plates, serum addition of the stimulus (31). Similarly, tyrphostin AG 1478 (1 ␮Min starved for 18 h, incubated with 5 ml fresh serum-free media, stimulated DMSO; Calbiochem, La Jolla, CA), a specific inhibitor of the epithelial with 50 nM C5a, 500 nM C3a, or 30 ng/ml of EGF for the indicated times ␮ growth factor (EGF) receptor (EGFR; Ref. 32), and PP2 (Calbiochem), a at 37°C, placed on ice, washed once with PBS, and lysed in 400 l lysis specific inhibitor of src kinase, (33) were added for 30 min before the buffer (150 mM NaCl, 25 mM Tris (pH 7.5), 1 mM EDTA, 2 mM sodium addition of stimulus. All blocking Abs were used at 10 ␮g/ml. vanadate, 10 mM NaF, 2 mM sodium pyrophosphate, 1% Nonidet P-40, 2 ␮g/ml aprotinine, 2 ␮g/ml leupeptin, 2 mM PMSF, 10% glycerol). Fol- lowing centrifugation for 10 min at 10,000 ϫ g, the protein content in the FACS analysis supernatants was determined using the bicinchoninic acid reagents (Pierce, Rockford, IL). Ab (rabbit polyclonal anti-EGFR Ab, 5 ␮g/sample; Upstate For FACS analysis, HMECs or HUVECs were trypsinized shortly, placed Biotechnology, Lake Placid, NY) was added to each sample containing 0.8 in PBS containing 2% FCS, incubated for 30 min on ice with anti-C5aR or mg protein, and the samples were rotated for2hat4°C. Protein A/G anti-C3aR Ab (1/200 dilution; both from BD PharMingen, San Diego, CA), Sepharose (30 ␮l of a 50% slurry; Amersham Pharmacia Biotech) was washed three times with PBS/FCS, and labeled with mouse- or rabbit- added for 30 min, and the samples were washed three times in lysis buffer biotinylated IgG for 30 min.
Recommended publications
  • Collective Cell Migration in Morphogenesis, Regeneration and Cancer
    REVIEWS Collective cell migration in morphogenesis, regeneration and cancer Peter Friedl*‡ and Darren Gilmour§ Abstract | The collective migration of cells as a cohesive group is a hallmark of the tissue remodelling events that underlie embryonic morphogenesis, wound repair and cancer invasion. In such migration, cells move as sheets, strands, clusters or ducts rather than individually, and use similar actin- and myosin-mediated protrusions and guidance by extrinsic chemotactic and mechanical cues as used by single migratory cells. However, cadherin-based junctions between cells additionally maintain ‘supracellular’ properties, such as collective polarization, force generation, decision making and, eventually, complex tissue organization. Comparing different types of collective migration at the molecular and cellular level reveals a common mechanistic theme between developmental and cancer research. Invasion The migration of single cells is the best-studied mecha- Defining collective cell migration A hallmark of cancer, nism of cell movement in vitro and is known to contri- Three hallmarks characterize collective cell migration. measured as cells breaking bute to many physiological motility processes in vivo, First, the cells remain physically and functionally con- away from their origin through such as development, immune surveillance and cancer nected such that the integrity of cell–cell junctions is the basement membrane. 1,2 4,6,10 We use this term to mean all metastasis . Single cell migration allows cells to position preserved during movement . Second, multicellular forms of cell movement themselves in tissues or secondary growths, as they do polarity and ‘supracellular’ organization of the actin through three-dimensional during morphogenesis and cancer, or to transiently pass cytoskeleton generate traction and protrusion force for tissue that involve a change through the tissue, as shown by immune cells.
    [Show full text]
  • Cytoselect™ 24-Well Cell Haptotaxis Assay (8 Μm, Fibronectin-Coated, Colorimetric Format)
    Product Manual CytoSelect™ 24-Well Cell Haptotaxis Assay (8 µm, Fibronectin-Coated, Colorimetric Format) Catalog Number CBA-100-FN 12 assays FOR RESEARCH USE ONLY Not for use in diagnostic procedures Introduction Cell migration is a highly integrated, multistep process that orchestrates embryonic morphogenesis, tissue repair and regeneration. It plays a pivotal role in the disease progression of cancer, mental retardation, atherosclerosis, and arthritis. The initial response of a cell to a migration-promoting agent is to polarize and extend protrusions in the direction of the attractant; these protrusions can consist of large, broad lamellipodia or spike-like filopodia. In either case, these protrusions are driven by actin polymerization and can be stabilized by extracellular matrix (ECM) adhesion or cell-cell interactions (via transmembrane receptors). Cell Biolabs CytoSelect™ Cell Haptotaxis Assay Kit utilizes polycarbonate membrane inserts (8 µm pore size) to assay the migratory properties of cells, the bottom side of the insert is coated with Fibronectin. The kit contains sufficient reagents for the evaluation of 12 samples. The 8 µm pore size is optimal for epithelial and fibroblast cell migration. However, in the case of leukocyte chemotaxis, a smaller pore size (3 µm) is recommended. Assay Principle The CytoSelect™ Cell Haptotaxis Assay Kit contains polycarbonate membrane inserts (8 µm pore size) in a 24-well plate. The membrane serves as a barrier to discriminate migratory cells from non- migratory cells. Migratory cells are able to extend protrusions towards the gradient of extracellular matrix density (via actin cytoskeleton reorganization) and ultimately pass through the pores of the polycarbonate membrane. Finally, the cells are removed from the top of the membrane and the migratory cells are stained and quantified.
    [Show full text]
  • A Microfluidic Device for Measuring Cell Migration
    www.nature.com/scientificreports OPEN A microfluidic device for measuring cell migration towards substrate- bound and soluble chemokine Received: 31 May 2016 Accepted: 17 October 2016 gradients Published: 07 November 2016 Jan Schwarz1, Veronika Bierbaum1, Jack Merrin1, Tino Frank2, Robert Hauschild1, Tobias Bollenbach1,†, Savaş Tay2,3, Michael Sixt1 & Matthias Mehling1,4 Cellular locomotion is a central hallmark of eukaryotic life. It is governed by cell-extrinsic molecular factors, which can either emerge in the soluble phase or as immobilized, often adhesive ligands. To encode for direction, every cue must be present as a spatial or temporal gradient. Here, we developed a microfluidic chamber that allows measurement of cell migration in combined response to surface immobilized and soluble molecular gradients. As a proof of principle we study the response of dendritic cells to their major guidance cues, chemokines. The majority of data on chemokine gradient sensing is based on in vitro studies employing soluble gradients. Despite evidence suggesting that in vivo chemokines are often immobilized to sugar residues, limited information is available how cells respond to immobilized chemokines. We tracked migration of dendritic cells towards immobilized gradients of the chemokine CCL21 and varying superimposed soluble gradients of CCL19. Differential migratory patterns illustrate the potential of our setup to quantitatively study the competitive response to both types of gradients. Beyond chemokines our approach is broadly applicable to alternative systems of chemo- and haptotaxis such as cells migrating along gradients of adhesion receptor ligands vs. any soluble cue. The ability of cells to migrate is fundamental to many physiological processes, such as embryogenesis, regen- eration, tissue repair and protective immunity1.
    [Show full text]
  • A Hybrid Computational Model for Collective Cell Durotaxis
    Biomechanics and Modeling in Mechanobiology https://doi.org/10.1007/s10237-018-1010-2 ORIGINAL PAPER A hybrid computational model for collective cell durotaxis Jorge Escribano1 · Raimon Sunyer2,5 · María Teresa Sánchez3 · Xavier Trepat2,4,5,6 · Pere Roca-Cusachs2,4 · José Manuel García-Aznar1 Received: 13 September 2017 / Accepted: 17 February 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Collective cell migration is regulated by a complex set of mechanical interactions and cellular mechanisms. Collective migration emerges from mechanisms occurring at single cell level, involving processes like contraction, polymerization and depolymerization, of cell–cell interactions and of cell–substrate adhesion. Here, we present a computational framework which simulates the dynamics of this emergent behavior conditioned by substrates with stiffness gradients. The computational model reproduces the cell’s ability to move toward the stiffer part of the substrate, process known as durotaxis. It combines the continuous formulation of truss elements and a particle-based approach to simulate the dynamics of cell–matrix adhesions and cell–cell interactions. Using this hybrid approach, researchers can quickly create a quantitative model to understand the regulatory role of different mechanical conditions on the dynamics of collective cell migration. Our model shows that durotaxis occurs due to the ability of cells to deform the substrate more in the part of lower stiffness than in the stiffer part. This effect explains why cell collective movement is more effective than single cell movement in stiffness gradient conditions. In addition, we numerically evaluate how gradient stiffness properties, cell monolayer size and force transmission between cells and extracellular matrix are crucial in regulating durotaxis.
    [Show full text]
  • Lymphocytes Perform Reverse Adhesive Haptotaxis Mediated By
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs242883. doi:10.1242/jcs.242883 RESEARCH ARTICLE Lymphocytes perform reverse adhesive haptotaxis mediated by LFA-1 integrins Xuan Luo1, Valentine Seveau de Noray1, Laurene Aoun1, Martine Biarnes-Pelicot1, Pierre-Olivier Strale2, Vincent Studer3, Marie-Pierre Valignat1 and Olivier Theodoly1,* ABSTRACT ligands ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 Cell guidance by anchored molecules, or haptotaxis, is crucial in (vascular cell adhesion molecule-1). ICAM-1 is particularly development, immunology and cancer. Adhesive haptotaxis, or important for transmigration in nearby portals (Park et al., 2010; guidance by adhesion molecules, is well established for Sumagin and Sarelius, 2010), suggesting that integrins might guide mesenchymal cells such as fibroblasts, whereas its existence leukocytes towards and through extravasation sites. After remains unreported for amoeboid cells that require less or no diapedesis, leukocytes migrate in three-dimensional environments adhesion in order to migrate. We show that, in vitro, amoeboid of tissues and organs, where integrin-mediated adhesion was shown human T lymphocytes develop adhesive haptotaxis mediated by to be dispensable for motility (Lämmermann et al., 2008; Park et al., densities of integrin ligands expressed by high endothelial venules. 2010). Nevertheless, integrins remain crucial in vivo for efficient Moreover, lymphocytes orient towards increasing adhesion with VLA- homing, and the microenvironment of inflamed tissues is known to enhance motility in an integrin-dependent manner (Hons et al., 4 integrins (also known as integrin α4β1), like all mesenchymal cells, but towards decreasing adhesion with LFA-1 integrins (also known as 2018; Lämmermann et al., 2013; Overstreet et al., 2013).
    [Show full text]
  • Combinatorial Nanodot Stripe Assay to Systematically Study Cell Haptotaxis Mcolisi Dlamini1,2,3, Timothy E
    Dlamini et al. Microsystems & Nanoengineering (2020) 6:114 Microsystems & Nanoengineering https://doi.org/10.1038/s41378-020-00223-0 www.nature.com/micronano ARTICLE Open Access Combinatorial nanodot stripe assay to systematically study cell haptotaxis Mcolisi Dlamini1,2,3, Timothy E. Kennedy3,4 and David Juncker 1,2,3,4 Abstract Haptotaxis is critical to cell guidance and development and has been studied in vitro using either gradients or stripe assays that present a binary choice between full and zero coverage of a protein cue. However, stripes offer only a choice between extremes, while for gradients, cell receptor saturation, migration history, and directional persistence confound the interpretation of cellular responses. Here, we introduce nanodot stripe assays (NSAs) formed by adjacent stripes of nanodot arrays with different surface coverage. Twenty-one pairwise combinations were designed using 0, 1, 3, 10, 30, 44 and 100% stripes and were patterned with 200 × 200, 400 × 400 or 800 × 800 nm2 nanodots. We studied the migration choices of C2C12 myoblasts that express neogenin on NSAs (and three-step gradients) of netrin-1. The reference surface between the nanodots was backfilled with a mixture of polyethylene glycol and poly-D-lysine to minimize nonspecific cell response. Unexpectedly, cell response was independent of nanodot size. Relative to a 0% stripe, cells increasingly chose the high-density stripe with up to ~90% of cells on stripes with 10% coverage and higher. Cell preference for higher vs. lower netrin-1 coverage was observed only for coverage ratios >2.3, with cell preference plateauing at ~80% for ratios ≥4. The combinatorial NSA enables quantitative studies of cell haptotaxis over the full range of surface coverages and ratios and provides a means to elucidate haptotactic mechanisms.
    [Show full text]
  • Chemotaxis and Haptotaxis of Human Malignant Mesothelioma Cells: Effects of Fibronectin, Laminin, Type IV Collagen, and an Autocrine Motility Factor-Like Substance1
    [CANCER RESEARCH 53. 4376-4.1K2. September 15. 199.1] Chemotaxis and Haptotaxis of Human Malignant Mesothelioma Cells: Effects of Fibronectin, Laminin, Type IV Collagen, and an Autocrine Motility Factor-like Substance1 Julius Klominek,2 Karl-Henrik Robert, and Karl-Costa Sundqvist De/hirlment of Lung Medium1 /./. K.¡,Medicine [K-H. R.j. unii Clinical lininiinolog\\ [J. K,, K-(!. S.[. Karolinska Institute til Huililin^e University Hospital, S-Ì41Kt>Huddinge. Sweden ABSTRACT the highly invasive behavior clinically relevant métastasesare not common in MM. Mesotheliomas are often accompanied by pleural A human malignant pleural mesothelioma cell line (STAY) was studied effusion which may contribute to the local tumor spread. However, in with respect to production of the extracellular matrix components lumi patients without effusion and when the tumor invades adjacent extra- nili, type IV collagen, and fibronectin, and interactions with these proteins in vitro. We also analyzed S'l'AV cell serum-free conditioned medium with thoracal locations, the dissemination probably requires an active lo respect to the possible presence of "autocrine motility factor-like" sub comotion of mesothelioma cells rather than reimplantation of floating stance. Sodium dodecylsulfale-polyacrylamide gel electrophoresis of bio- cells. synthetically labeled STAY serum-free conditioned medium showed that Tumor cell invasion is a complex multistep process that requires STAY cells released several proteins into the medium, including compo successful infiltration of tumor cells from the primary site through nents with molecular weights of 850,000, 540,000 and 440.000. Using tissue barriers. Invading MM cells most likely interact both with Western blotting we identified these proteins as luminili, type IY collagen, soluble ECM molecules present in pleural fluid (5, 6) and with in and fihronectin, respectively.
    [Show full text]
  • A Haptotaxis Assay for Neutrophils Using Optical Patterning and a High-Content Approach Received: 5 September 2016 Joannie Roy 1,2, Javier Mazzaferri 1, János G
    www.nature.com/scientificreports OPEN A Haptotaxis Assay for Neutrophils using Optical Patterning and a High-content Approach Received: 5 September 2016 Joannie Roy 1,2, Javier Mazzaferri 1, János G. Filep1,3 & Santiago Costantino1,2,4 Accepted: 21 April 2017 Neutrophil recruitment guided by chemotactic cues is a central event in host defense against infection Published: xx xx xxxx and tissue injury. While the mechanisms underlying neutrophil chemotaxis have been extensively studied, these are just recently being addressed by using high-content approaches or surface-bound chemotactic gradients (haptotaxis) in vitro. Here, we report a haptotaxis assay, based on the classic under-agarose assay, which combines an optical patterning technique to generate surface-bound formyl peptide gradients as well as an automated imaging and analysis of a large number of migration trajectories. We show that human neutrophils migrate on covalently-bound formyl-peptide gradients, which influence the speed and frequency of neutrophil penetration under the agarose. Analysis revealed that neutrophils migrating on surface-bound patterns accumulate in the region of the highest peptide concentration, thereby mimicking in vivo events. We propose the use of a chemotactic precision index, gyration tensors and neutrophil penetration rate for characterizing haptotaxis. This high-content assay provides a simple approach that can be applied for studying molecular mechanisms underlying haptotaxis on user-defined gradient shape. Neutrophils are rapidly recruited into infected or injured tissues where they play a pivotal role in host defense against invading pathogens and in wound healing1. Neutrophil trafficking into inflamed tissues is governed by chemotactic molecules secreted by invading bacteria and tissue-resident sentinel cells2 and coordinated expres- sion of adhesion molecules on neutrophils and endothelial cells3.
    [Show full text]
  • Directional Cell Migration Guided by a Strain Gradient
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451494; this version posted July 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Directional Cell Migration Guided by a Strain Gradient Feiyu Yang1, Yubing Sun1,2,3* 1Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA 2Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA 3Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA *Correspondence to [email protected] (Yubing Sun) KEYWORDS Single cell migration, cell stretching device, strain gradient, focal adhesion, tensotaxis, mechanotransduction. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451494; this version posted July 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Strain gradients, the percentage of the deformation changed across a continuous field by applying forces, have been observed in developing tissues due to the inherent heterogeneity of the mechanical properties. The directional movement of cells are essential for proper cell localization, and it is well-established that cells establish directional migration in responses to gradients of chemicals, rigidity, density of extracellular matrices, and topography of substrates. However, it is unclear whether strain gradients imposed on cells due to tissue growth are sufficient to drive directional cell migration. In this work, we develop a programmable uniaxial cell stretch device coupled with geometrical constraints to create controllable strain gradients on cells.
    [Show full text]
  • Identification of the Major Chemokines That Regulate Cell Influxes in Peritoneal Dialysis Patients1
    Identification of the Major Chemokines that Regulate Cell Influxes in Peritoneal Dialysis Patients1 Janneke Tekstra,2 Caroline E. Visser, Cornelis W. Tuk, Joke J.E. Brouwer-Steenbergen, Curt W. Burger, Raymond T. Krediet, and Robert H.J. Beelen (P < 0.05). One of the monocyte-alfracting chemo- J. Tekstra, CE. Visser. C.W. Tuk, J.J.E. Brouwer- kines, RANTES, could not be detected in any of the Steenbergen, R.H.J. Beelen. Department of Cell Biol- effluents, whereas the other, MCP-i , was significantly ogy and Immunology. Faculty of Medicine, Vrije Uni- elevated during peritonitis (P < 0.02). In contrastto the versiteit. Amsterdam, The Netherlands other chemokines measured, MCP-1 concentration C.W. Burger. Department of Gynecology. Academic was relatively high in steady-state peritoneal dialy- Hospital Vrije Universiteit. Amsterdam. The Netherlands sates. An absolute correlation between dialysate MCP-1 concentration and the number of macro- R.T. Krediet. Department of Nephrology. Academic Medical Center. Amsterdam. The Netherlands phages in these effluents was absent. However, in a 48-well chemotaxis assay, monocyte migration to- (J. Am. Soc. Nephrol. 1 996; 7:2379-2384) ward peritonitis, as well as steady-state patient dialy- sates, could be blocked with antibodies to MCP-i . It ABSTRACT was concluded, therefore, that MCP-1 is the most To investigate which members of the recently discov- important monocyfe chemoaltractant in peritoneal ered family of chemotactic cytokines (chemokines) dialysis steady-state and peritonitis patients; whereas, are important in leukocyte recruitment to a bacterial besides interleukin-8, huGROa was identified as a inflammation site, four different chemokines in the major neutrophil-attracting chemokine in the perito- effluent of peritoneal dialysis patients suffering from nitis situation.
    [Show full text]
  • Haptotaxis Is Cell Type Specific and Limited by Substrate Adhesiveness
    Cellular and Molecular Bioengineering (Ó 2015) DOI: 10.1007/s12195-015-0398-3 Haptotaxis is Cell Type Specific and Limited by Substrate Adhesiveness 1 2 1 1 3 JESSICA H. WEN, ONKIU CHOI, HERMES TAYLOR-WEINER, ALEXANDER FUHRMANN, JEROME V. KARPIAK, 3,4 1,5 ADAH ALMUTAIRI, and ADAM J. ENGLER 1Department of Bioengineering, UC San Diego, La Jolla, CA 92093, USA; 2Department of Biomedical Engineering, National Yang-Ming University, Beitou District, Taipei City 112, Taiwan; 3Department of Biomedical Sciences, UC San Diego, La Jolla, CA 92093, USA; 4Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA; and 5Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA (Received 23 April 2015; accepted 22 May 2015) Associate Editor Michael R. King oversaw the review of this article. Abstract—Motile cells navigate through tissue by relying on these cues are often found together in vivo via normal tactile cues from gradients provided by extracellular matrix tissue variation or pathological conditions, e.g., the such as ligand density or stiffness. Mesenchymal stem cells post-infarct myocardial scar that is stiffer than, (MSCs) and fibroblasts encounter adhesive or ‘haptotactic’ and compositionally different from, healthy cardiac gradients at the interface between healthy and fibrotic tissue 4,36,38 as they migrate towards an injury site. Mimicking this muscle. These gradients are thought to aid in phenomenon, we developed tunable RGD and collagen directional migration through tissue; for example, gradients in polyacrylamide hydrogels of physiologically mesenchymal stem cells (MSCs) whose fate can be relevant stiffness using density gradient multilayer polymer- regulated by ECM stiffness14,42,45 also durotax or mi- ization to better understand how such ligand gradients grate in the direction of an increasing stiffness gradi- regulate migratory behaviors.
    [Show full text]
  • CBA-101-COL-Haptotaxis-Assay.Pdf
    Introduction Cell migration is a highly integrated, multistep process that orchestrates embryonic morphogenesis, tissue repair and regeneration. It plays a pivotal role in the disease progression of cancer, mental retardation, atherosclerosis, and arthritis. The initial response of a cell to a migration-promoting agent is to polarize and extend protrusions in the direction of the attractant; these protrusions can consist of large, broad lamellipodia or spike-like filopodia. In either case, these protrusions are driven by actin polymerization and can be stabilized by extracellular matrix (ECM) adhesion or cell-cell interactions (via transmembrane receptors). Cell Biolabs CytoSelect™ Cell Haptotaxis Assay Kit utilizes polycarbonate membrane inserts (8 µm pore size) to assay the migratory properties of cells, the bottom side of the insert is coated with Collagen I. The kit contains sufficient reagents for the evaluation of 12 samples. The 8 µm pore size is optimal for epithelial and fibroblast cell migration. The kit does not require you to prelabel the cells with Calcein AM. Migratory cells are lysed and detected by the patented CyQuant® GR Dye. The CytoSelect™ Cell Haptotaxis Assay Kit contains polycarbonate membrane inserts (8 µm pore size) in a 24-well plate. The membrane serves as a barrier to discriminate migratory cells from non- migratory cells. Migratory cells are able to extend protrusions towards the gradient of extracellular matrix density (via actin cytoskeleton reorganization) and ultimately pass through the pores of the polycarbonate membrane. Finally, the cells are removed from the top of the membrane and the migratory cells are lysed and detected by the patented CyQuant® GR Dye.
    [Show full text]