bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451494; this version posted July 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Directional Cell Migration Guided by a Strain Gradient Feiyu Yang1, Yubing Sun1,2,3* 1Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA 2Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA 3Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA *Correspondence to
[email protected] (Yubing Sun) KEYWORDS Single cell migration, cell stretching device, strain gradient, focal adhesion, tensotaxis, mechanotransduction. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.07.451494; this version posted July 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Strain gradients, the percentage of the deformation changed across a continuous field by applying forces, have been observed in developing tissues due to the inherent heterogeneity of the mechanical properties. The directional movement of cells are essential for proper cell localization, and it is well-established that cells establish directional migration in responses to gradients of chemicals, rigidity, density of extracellular matrices, and topography of substrates. However, it is unclear whether strain gradients imposed on cells due to tissue growth are sufficient to drive directional cell migration. In this work, we develop a programmable uniaxial cell stretch device coupled with geometrical constraints to create controllable strain gradients on cells.