Double Bass Survival Guide David Gage String Instruments
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Second Bassoon: Specialist, Support, Teamwork Dick Hanemaayer Amsterdam, Holland (!E Following Article first Appeared in the Dutch Magazine “De Fagot”
THE DOUBLE REED 103 Second Bassoon: Specialist, Support, Teamwork Dick Hanemaayer Amsterdam, Holland (!e following article first appeared in the Dutch magazine “De Fagot”. It is reprinted here with permission in an English translation by James Aylward. Ed.) t used to be that orchestras, when they appointed a new second bassoon, would not take the best player, but a lesser one on instruction from the !rst bassoonist: the prima donna. "e !rst bassoonist would then blame the second for everything that went wrong. It was also not uncommon that the !rst bassoonist, when Ihe made a mistake, to shake an accusatory !nger at his colleague in clear view of the conductor. Nowadays it is clear that the second bassoon is not someone who is not good enough to play !rst, but a specialist in his own right. Jos de Lange and Ronald Karten, respectively second and !rst bassoonist from the Royal Concertgebouw Orchestra explain.) BASS VOICE Jos de Lange: What makes the second bassoon more interesting over the other woodwinds is that the bassoon is the bass. In the orchestra there are usually four voices: soprano, alto, tenor and bass. All the high winds are either soprano or alto, almost never tenor. !e "rst bassoon is o#en the tenor or the alto, and the second is the bass. !e bassoons are the tenor and bass of the woodwinds. !e second bassoon is the only bass and performs an important and rewarding function. One of the tasks of the second bassoon is to control the pitch, in other words to decide how high a chord is to be played. -
The Science of String Instruments
The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D. -
Laker Drumline Marching Bass Drum Technique
Laker Drumline Marching Bass Drum Technique This packet is intended to define a base framework of knowledge to adequately play a marching bass drum at the collegiate level. We understand that every high school drumline has its own approach to technique, so it’s crucial that ALL prospective members approach their hands with a fresh mind and a clean slate. Mastery of the following concepts & terminology will dramatically improve your experience during the audition process and beyond. Happy drumming! APPROACH The technique outlined in this packet is designed to maximize efficiency of motion and sound quality. It is necessary to use a high velocity stroke while keeping your grip and your muscles relaxed. Keep these key points in mind as you work to refine the music in this packet. Tension in your upper body, lack of oxygen to your muscles, and squeezing the stick are good examples of technique errors that will hinder your ability to achieve the sound quality, efficiency, and control that we strive for. GRIP Fulcrum Place the mallet perpendicularly across the second segment of your index finger. Place your thumb on the mallet so that the thumbnail is directly across from your index finger. ** This is the essential point of contact between your hands and the stick. It should be thought of as the primary pressure point in your fingers and pivot point on the stick. The entire pad of your thumb should remain in contact with the mallet at all times. As a bass drummer, about 60% of the pressure in your hands should lie in the fulcrum. -
10 - Pathways to Harmony, Chapter 1
Pathways to Harmony, Chapter 1. The Keyboard and Treble Clef Chapter 2. Bass Clef In this chapter you will: 1.Write bass clefs 2. Write some low notes 3. Match low notes on the keyboard with notes on the staff 4. Write eighth notes 5. Identify notes on ledger lines 6. Identify sharps and flats on the keyboard 7.Write sharps and flats on the staff 8. Write enharmonic equivalents date: 2.1 Write bass clefs • The symbol at the beginning of the above staff, , is an F or bass clef. • The F or bass clef says that the fourth line of the staff is the F below the piano’s middle C. This clef is used to write low notes. DRAW five bass clefs. After each clef, which itself includes two dots, put another dot on the F line. © Gilbert DeBenedetti - 10 - www.gmajormusictheory.org Pathways to Harmony, Chapter 1. The Keyboard and Treble Clef 2.2 Write some low notes •The notes on the spaces of a staff with bass clef starting from the bottom space are: A, C, E and G as in All Cows Eat Grass. •The notes on the lines of a staff with bass clef starting from the bottom line are: G, B, D, F and A as in Good Boys Do Fine Always. 1. IDENTIFY the notes in the song “This Old Man.” PLAY it. 2. WRITE the notes and bass clefs for the song, “Go Tell Aunt Rhodie” Q = quarter note H = half note W = whole note © Gilbert DeBenedetti - 11 - www.gmajormusictheory.org Pathways to Harmony, Chapter 1. -
The Identification of Basic Problems Found in the Bassoon Parts of a Selected Group of Band Compositions
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 5-1966 The Identification of Basic Problems Found in the Bassoon Parts of a Selected Group of Band Compositions J. Wayne Johnson Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Music Commons Recommended Citation Johnson, J. Wayne, "The Identification of Basic Problems Found in the Bassoon Parts of a Selected Group of Band Compositions" (1966). All Graduate Theses and Dissertations. 2804. https://digitalcommons.usu.edu/etd/2804 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. THE IDENTIFICATION OF BAS~C PROBLEMS FOUND IN THE BASSOON PARTS OF A SELECTED GROUP OF BAND COMPOSITI ONS by J. Wayne Johnson A thesis submitted in partial fulfillment of the r equ irements for the degree of MASTER OF SCIENCE in Music Education UTAH STATE UNIVERSITY Logan , Ut a h 1966 TABLE OF CONTENTS INTRODUCTION A BRIEF HISTORY OF THE BASSOON 3 THE I NSTRUMENT 20 Testing the bassoon 20 Removing moisture 22 Oiling 23 Suspending the bassoon 24 The reed 24 Adjusting the reed 25 Testing the r eed 28 Care of the reed 29 TONAL PROBLEMS FOUND IN BAND MUSIC 31 Range and embouchure ad j ustment 31 Embouchure · 35 Intonation 37 Breath control 38 Tonguing 40 KEY SIGNATURES AND RELATED FINGERINGS 43 INTERPRETIVE ASPECTS 50 Terms and symbols Rhythm patterns SUMMARY 55 LITERATURE CITED 56 LIST OF FIGURES Figure Page 1. -
A Performer's Guide to Hertl's Concerto for Double Bass
A Performer's Guide To Frantisek Hertl's Concerto for Double Bass Item Type text; Electronic Dissertation Authors Roederer, Jason Kyle Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 06/10/2021 15:16:02 Link to Item http://hdl.handle.net/10150/194487 A PERFORMER’S GUIDE TO HERTL’S CONCERTO FOR DOUBLE BASS by Jason Kyle Roederer ________________________ Copyright © Jason Kyle Roederer 2009 A Document Submitted to the Faculty of the SCHOOL OF MUSIC In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF MUSICAL ARTS In the Graduate College THE UNIVERSITY OF ARIZONA 2009 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Document Committee, we certify that we have read the document prepared by Jason Kyle Roederer entitled A Performer’s Guide to Hertl’s Concerto for Double Bass and recommend that it be accepted as fulfilling the document requirement for the Degree of Doctor of Musical Arts _______________________________________________________Date: April 17, 2009 Patrick Neher _______________________________________________________Date: April 17, 2009 Mark Rush _______________________________________________________Date: April 17, 2009 Thomas Patterson Final approval and acceptance of this document is contingent upon the candidate’s submission of the final copies of the document to the Graduate College. I hereby certify that I have read this document prepared under my direction and recommend that it be accepted as fulfilling the document requirement. -
Keyboard Playing and the Mechanization of Polyphony in Italian Music, Circa 1600
Keyboard Playing and the Mechanization of Polyphony in Italian Music, Circa 1600 By Leon Chisholm A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Music in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Kate van Orden, Co-Chair Professor James Q. Davies, Co-Chair Professor Mary Ann Smart Professor Massimo Mazzotti Summer 2015 Keyboard Playing and the Mechanization of Polyphony in Italian Music, Circa 1600 Copyright 2015 by Leon Chisholm Abstract Keyboard Playing and the Mechanization of Polyphony in Italian Music, Circa 1600 by Leon Chisholm Doctor of Philosophy in Music University of California, Berkeley Professor Kate van Orden, Co-Chair Professor James Q. Davies, Co-Chair Keyboard instruments are ubiquitous in the history of European music. Despite the centrality of keyboards to everyday music making, their influence over the ways in which musicians have conceptualized music and, consequently, the music that they have created has received little attention. This dissertation explores how keyboard playing fits into revolutionary developments in music around 1600 – a period which roughly coincided with the emergence of the keyboard as the multipurpose instrument that has served musicians ever since. During the sixteenth century, keyboard playing became an increasingly common mode of experiencing polyphonic music, challenging the longstanding status of ensemble singing as the paradigmatic vehicle for the art of counterpoint – and ultimately replacing it in the eighteenth century. The competing paradigms differed radically: whereas ensemble singing comprised a group of musicians using their bodies as instruments, keyboard playing involved a lone musician operating a machine with her hands. -
Physical Modeling of the Singing Voice
Malte Kob Physical Modeling of the Singing Voice 6000 5000 4000 3000 Frequency [Hz] 2000 1000 0 0 0.5 1 1.5 Time [s] logoV PHYSICAL MODELING OF THE SINGING VOICE Von der FakulÄat furÄ Elektrotechnik und Informationstechnik der Rheinisch-WestfÄalischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines DOKTORS DER INGENIEURWISSENSCHAFTEN genehmigte Dissertation vorgelegt von Diplom-Ingenieur Malte Kob aus Hamburg Berichter: UniversitÄatsprofessor Dr. rer. nat. Michael VorlÄander UniversitÄatsprofessor Dr.-Ing. Peter Vary Professor Dr.-Ing. JuÄrgen Meyer Tag der muÄndlichen PruÄfung: 18. Juni 2002 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfuÄgbar. Die Deutsche Bibliothek – CIP-Einheitsaufnahme Kob, Malte: Physical modeling of the singing voice / vorgelegt von Malte Kob. - Berlin : Logos-Verl., 2002 Zugl.: Aachen, Techn. Hochsch., Diss., 2002 ISBN 3-89722-997-8 c Copyright Logos Verlag Berlin 2002 Alle Rechte vorbehalten. ISBN 3-89722-997-8 Logos Verlag Berlin Comeniushof, Gubener Str. 47, 10243 Berlin Tel.: +49 030 42 85 10 90 Fax: +49 030 42 85 10 92 INTERNET: http://www.logos-verlag.de ii Meinen Eltern. iii Contents Abstract { Zusammenfassung vii Introduction 1 1 The singer 3 1.1 Voice signal . 4 1.1.1 Harmonic structure . 5 1.1.2 Pitch and amplitude . 6 1.1.3 Harmonics and noise . 7 1.1.4 Choir sound . 8 1.2 Singing styles . 9 1.2.1 Registers . 9 1.2.2 Overtone singing . 10 1.3 Discussion . 11 2 Vocal folds 13 2.1 Biomechanics . 13 2.2 Vocal fold models . 16 2.2.1 Two-mass models . 17 2.2.2 Other models . -
The String Family
The String Family When you look at a string instrument, the first thing you'll probably notice is that it's made of wood, so why is it called a string instrument? The bodies of the string instruments, which are hollow inside to allow sound to vibrate within them, are made of different kinds of wood, but the part of the instrument that makes the sound is the strings, which are made of nylon, steel or sometimes gut. The strings are played most often by drawing a bow across them. The handle of the bow is made of wood and the strings of the bow are actually horsehair from horses' tails! Sometimes the musicians will use their fingers to pluck the strings, and occasionally they will turn the bow upside down and play the strings with the wooden handle. The strings are the largest family of instruments in the orchestra and they come in four sizes: the violin, which is the smallest, viola, cello, and the biggest, the double bass, sometimes called the contrabass. (Bass is pronounced "base," as in "baseball.") The smaller instruments, the violin and viola, make higher-pitched sounds, while the larger cello and double bass produce low rich sounds. They are all similarly shaped, with curvy wooden bodies and wooden necks. The strings stretch over the body and neck and attach to small decorative heads, where they are tuned with small tuning pegs. The violin is the smallest instrument of the string family, and makes the highest sounds. There are more violins in the orchestra than any other instrument they are divided into two groups: first and second. -
Catgut Acoustical Society Journal
http://oac.cdlib.org/findaid/ark:/13030/c8gt5p1r Online items available Guide to the Catgut Acoustical Society Newsletter and Journal MUS.1000 Music Library Braun Music Center 541 Lasuen Mall Stanford University Stanford, California, 94305-3076 650-723-1212 [email protected] © 2013 The Board of Trustees of Stanford University. All rights reserved. Guide to the Catgut Acoustical MUS.1000 1 Society Newsletter and Journal MUS.1000 Descriptive Summary Title: Catgut Acoustical Society Journal: An International Publication Devoted to Research in the Theory, Design, Construction, and History of Stringed Instruments and to Related Areas of Acoustical Study. Dates: 1964-2004 Collection number: MUS.1000 Collection size: 50 journals Repository: Stanford Music Library, Stanford University Libraries, Stanford, California 94305-3076 Language of Material: English Access Access to articles where copyright permission has not been granted may be consulted in the Stanford University Libraries under call number ML1 .C359. Copyright permissions Stanford University Libraries has made every attempt to locate and receive permission to digitize and make the articles available on this website from the copyright holders of articles in the Catgut Newsletter and Journal. It was not possible to locate all of the copyright holders for all articles. If you believe that you hold copyright to an article on this web site and do not wish for it to appear here, please write to [email protected]. Sponsor Note This electronic journal was produced with generous financial support from the CAS Forum and the Violin Society of America. Journal History and Description The Catgut Acoustical Society grew out of the research collaboration of Carleen Hutchins, Frederick Saunders, John Schelleng, and Robert Fryxell, all amateur string players who were also interested in the acoustics of the violin and string instruments in the late 1950s and early 1960s. -
A Guide to Extended Techniques for the Violoncello - By
Where will it END? -Or- A guide to extended techniques for the Violoncello - By Dylan Messina 1 Table of Contents Part I. Techniques 1. Harmonics……………………………………………………….....6 “Artificial” or “false” harmonics Harmonic trills 2. Bowing Techniques………………………………………………..16 Ricochet Bowing beyond the bridge Bowing the tailpiece Two-handed bowing Bowing on string wrapping “Ugubu” or “point-tap” effect Bowing underneath the bridge Scratch tone Two-bow technique 3. Col Legno............................................................................................................21 Col legno battuto Col legno tratto 4. Pizzicato...............................................................................................................22 “Bartok” Dead Thumb-Stopped Tremolo Fingernail Quasi chitarra Beyond bridge 5. Percussion………………………………………………………….25 Fingerschlag Body percussion 6. Scordatura…………………………………………………….….28 2 Part II. Documentation Bibliography………………………………………………………..29 3 Introduction My intent in creating this project was to provide composers of today with a new resource; a technical yet pragmatic guide to writing with extended techniques on the cello. The cello has a wondrously broad spectrum of sonic possibility, yet must be approached in a different way than other string instruments, owing to its construction, playing orientation, and physical mass. Throughout the history of the cello, many resources regarding the core technique of the cello have been published; this book makes no attempt to expand on those sources. Divers resources are also available regarding the cello’s role in orchestration; these books, however, revolve mostly around the use of the instrument as part of a sonically traditional sensibility. The techniques discussed in this book, rather, are the so-called “extended” techniques; those that are comparatively rare in music of the common practice, and usually not involved within the elemental skills of cello playing, save as fringe oddities or practice techniques. -
Acoustical Studies on the Flat-Backed and Round- Backed Double Bass
Acoustical Studies on the Flat-backed and Round- backed Double Bass Dissertation zur Erlangung des Doktorats der Philosophie eingereicht an der Universität für Musik und darstellende Kunst Wien von Mag. Andrew William Brown Betreuer: O. Prof. Mag. Gregor Widholm emer. O. Univ.-Prof. Mag. Dr. Franz Födermayr Wien, April 2004 “Nearer confidences of the gods did Sisyphus covet; his work was his reward” i Table of Contents List of Figures iii List of Tables ix Forward x 1 The Back Plate of the Double Bass 1 1.1 Introduction 1 1.2 The Form of the Double Bass 2 1.3 The Form of Other Bowed Instruments 4 2 Surveys and Literature on the Flat-backed and Round-backed Double Bass 12 2.1 Surveys of Instrument Makers 12 2.2 Surveys Among Musicians 20 2.3 Literature on the Acoustics of the Flat-backed Bass and 25 the Round-Backed Double Bass 3 Experimental Techniques in Bowed Instrument Research 31 3.1 Frequency Response Curves of Radiated Sound 32 3.2 Near-Field Acoustical Holography 33 3.3 Input Admittance 34 3.4 Modal Analysis 36 3.5 Finite Element Analysis 38 3.6 Laser Optical Methods 39 3.7 Combined Methods 41 3.8 Summary 42 ii 4 The Double Bass Under Acoustical Study 46 4.1 The Double Bass as a Static Structure 48 4.2 The Double Bass as a Sound Source 53 5 Experiments 56 5.1 Test Instruments 56 5.2 Setup of Frequency Response Measurements 58 5.3 Setup of Input Admittance Measurements 66 5.4 Setup of Laser Vibrometry Measurements 68 5.5 Setup of Listening Tests 69 6 Results 73 6.1 Results of Radiated Frequency Response Measurements 73 6.2 Results of Input Admittance Measurements 79 6.3 Results of Laser Vibrometry Measurements.