Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9201617 Metabolism of vasoactive peptides by aminopeptidase M Benter, Ibrahim Fadil, Ph.D. The Ohio State University, 1991 UMI 300 N. Zeeb RA Ann Arbor, MI 48106 METABOLISM OF VASOACTIVE PEPTIDES E« AMTNOPEPTIDASE M DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Ibrahim Fadil Benter, B.S. ***** The Ohio State University 1991 Dissertation Ocmmittee: Approved by P a tric k E. Ward John J. Enyeart Richard Fertel Gopi A. Tejwani Department of Pharmacology EEDICATED TO MY MDTHER, whose love and support kept me going over the years AND My EMHER, who guided my life with his uncarpranising principles **** ACKNOWLEDGEMENTS There are many that I owe a debt of gratitude far the help they have given me alcng the way. First, I express sy appreciation to Dr. Patrick Ward, for his guidance and instruction throughout sy graduate study. To Judy and Jack Enyeart for their help and friendship. To Dr. Gopi Tejwani for his help and encouragement over the years. To Dr. Richard Fertel, who helped me better understand where I am and where I am going to. Special thanks to sy friend and colleague, Dr. Saleem Ahmad, for being a good partner. To sy wife, I give sy deepest appreciation for her love, understanding and constant seaport throughout sy educational endeavors. Her personal sacrifices and unselfishness have helped to make t h is achivement p o ssib le. i i i VITA 1985 B.S. The University of Florida, Gainesville, Florida. Major: Chemistry. PUBLICATIONS Stier,C.T., I.F.Beriter and S.Levine Thrcntocxane A2 in severe hypertension and stroke in stroke-prone spontaneously hypertensive rats Stroke 1988; 19: 1145-1150 Stier,C.T., I.F.Benter and H.D.Itskovitz Enalapril protects against stroke and kidney dysfunction in stroke-prone spontaneously hypertensive rats Hypertension 1989? 13: 115-121 Ward,P.E, I.F.Benter and S.Wilk Metabolism of vasoactive peptides by plasma and purified renal aminopeptidase M Biochemical Pharmacology, 1990; 40: 1725-1732 B e n te r,I.F ., E.M.Hirsh, A.Tuchman and P.E.Ward N-Terminal degradation of lew molecular weight opioid peptides in human cerebrospinal fluid Biochemical Pharmacology, 1990; 40: 465-472 i v FIELDS OF STOEY Major Field: Riarmaoology Fhamaoology Departnent of Pharmacology faculty Biochemistry Dr. Ifetrick E. Hard Radioisotopes Drs. Feller, Malspeis and Brueggemeier v TABLE OF CONTENTS Page D edication .......................................................................................................... i i jmMEDGENENTS.............................................................................................i i i VITA..................................................................................................................... iv LEST OF TABLES.................................................................................................... X UST OF FIGURES................................................................................................ x i LEST OF ABBREVIATIONS................................................................................... xiv I . INTRODUCTION..................................................................................................1 A. CIRCULATING PEPTIDES............................................................................ 1 1. Renin-Angiotensin System ........................................................... 2 2. Kallitaein-Kinin System ............................................................. 7 3. Opioid System ...................... 9 B. METABOLISM OF CIRCULATING PEPTIDES................................................ 11 C. PEPTIDASES.............................................................................................12 D. AMINOEEPFIDASES....................................................................................18 1. AmincpFptidase-Medlated Angiotensin Metabolism ................ 20 2. Amincpeptidase-Mediated Kinin Metabolisn ........................... 21 3. Aminrpppt-.idase-MBdiated Cpioid Metabolism ......................... 22 4. Aminopeptida.se M ........... .......................................................... 24 E. HYPOTHESIS............................................................................................. 25 I I . MATERIALS AND METHODS...................... 26 A. MATERIALS............................................................................................... 26 B. ENZYME ASSAYS........................................................................................27 1. Synthetic Substrate Hydrolysis.. ............ ...........2 7 C. PEPTIDE METABOLISM (TLC and HPLC) .................................................. 29 1. Qualitative Analysis (TLC) .................... 29 2. Quantitative Analysis (HFLC) .................................................. 29 D. IMMUNOELECTROPHORESIS.........................................................................32 I I I . RESULTS.......................................................................................................34 A. HUMAN CSF AMINOPEPTIDASE M OPIOID PEPTIEE METABOLISM............. 34 1. CSF-Characterization of synthetic Substrate Hydrolysis.34 2. CSF-Imnunological Identification of AnM ............................. 36 3. CSF-AnM Mediated Opioid Peptide Metabolism ........................41 4. CSF-Suranary .................................................................................. 45 v i i B. HJQRE AnM FEFITEE METABOLISM............................................................. 47 1. Pure AnH-Qizyme U n i t y ... ....................................................... 47 2. Rrre Anti-Synthetic Substrate Hydrolysis ............................. 48 3. Pure AnM-Feptide Metabolism ....................................................54 3.1. Qialitative Analysis ....................................................54 3.2. Quantitative Analysis ..................................................54 3.2.1. Inhibition Profile and pH Optimum .............. 54 3.2.2. Relative Rates of N-terminal Metabolism. .54 3.2.3. Kinetics of Peptide Metabolism ....................58 4. Pure AnM-Sunmary ........................................................................ 62 C. HUMAN PLASMA Anti FEPTIEE METABOLISM.............................................. 62 1. Human Plasma-Synthetic Substrate Hydrolysis ...............63 2. Human Plasma-Inramoelectrcphoresis ................................63 3. Human Plasma-Peptide Metabolism ..................................... 68 3.1. Quantitative Analysis .................................................. 68 3.1.1. Inhibition Profile and pH Optimum .............. 68 3.1.2. Relative Rates of Peptide Hydrolysis 68 3 .1 .3 . C ontribution o f Anti to Plasma Enkephalin Metabolism .....................................72 3 .1 .4 . C ontribution o f Anti to Plasma Angiotensin Metabolism ...................................78 4. Human Plasma-Summary ..................................... 86 v i i i IV. ELSC05SICN............................................... 90 A. METABOLISM OF TOSCACUVE FEFT1UES BY AnM.................................... 90 B. AnM-MEDIAHD FEFTOE DEGRADATION IN HUMAN CSF ........................... 91 C. HJRIFTED AnM-MEDIAHD DEGRADATION OF VASOACTIVE PEPTIDES.. .95 D. METABOLISM OF ENKEFHALENS AND ANGIOHNSINS IN HUMAN PLASMA. .99 1. Opioid Peptide Metabolism ..................................................... 101 2. Angiotensin Metabolism ........................................................... 102 3. Kinin, Neurokinin and Somatostatin Metabolism ................ 104 E. FUNCTIONAL SFECTFTCnY OF AnM ....................................................... 107 LIST OF REFERENCES. ......... 110 i x LEST o f t a b u s Table Page 1. Synthetic substrate hydrolysis by human CSF .......................35 2. Metabolism of opioid peptides by human CSF ........................ 46 3. Synthetic substrate hydrolysis by pure AnM and plasma ............................................................................
Recommended publications
  • Analytical Performance of an Immunoassay to Measure Proenkephalin ⁎ Leslie J
    Clinical Biochemistry xxx (xxxx) xxx–xxx Contents lists available at ScienceDirect Clinical Biochemistry journal homepage: www.elsevier.com/locate/clinbiochem Analytical performance of an immunoassay to measure proenkephalin ⁎ Leslie J. Donatoa, ,Jeffrey W. Meeusena, John C. Lieskea, Deborah Bergmannc, Andrea Sparwaßerc, Allan S. Jaffea,b a Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, United States b Division of Cardiology, Mayo Clinic, Rochester, MN 55905, United States c Sphingotec GmbH, Hennigsdorf, Germany ARTICLE INFO ABSTRACT Keywords: Background: Endogenous opioids, enkephalins, are known to increase with acute kidney injury. Since the mature Biomarkers pentapeptides are unstable, we evaluated the performance of an assay that measures proenkephalin 119–159 Proenkephalin (PENK), a stable peptide formed concomitantly with mature enkephalins. Enkephalin Methods: PENK assay performance was evaluated on two microtiterplate/chemiluminescence sandwich im- Pro-enkephalin munoassay formats that required 18 or 1 h incubation times. PENK concentration was measured in plasma from penKid healthy individuals to establish a reference interval and in patients with varied levels of kidney function and Assay validation comorbidities to assess the association with measured glomerular filtration rate (mGFR) using iothalamate clearance. Results: Assay performance characteristics in plasma were similar between the assay formats. Limit of quanti- tation was 26.0 pmol/L (CV = 20%) for the 1 h assay and 17.3 pmol/L (CV = 3%) for the 18 h assay. Measurable ranges were 26–1540 pmol/L (1 h assay) and 18–2300 pmol/L (18 h assay). PENK concentrations are stable in plasma stored ambient to 10 days, refrigerated to at least 15 days, and frozen to at least 90 days.
    [Show full text]
  • Identification of Β-Endorphins in the Pituitary Gland and Blood Plasma Of
    271 Identification of -endorphins in the pituitary gland and blood plasma of the common carp (Cyprinus carpio) E H van den Burg, J R Metz, R J Arends, B Devreese1, I Vandenberghe1, J Van Beeumen1, S E Wendelaar Bonga and G Flik Department of Animal Physiology, Faculty of Science, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 1Laboratory of Protein Biochemistry and Protein Engineering, University of Gent, KL Ledeganckstraat 35, B9000 Gent, Belgium (Requests for offprints should be addressed to G Flik; Email: gertfl[email protected]) Abstract Carp -endorphin is posttranslationally modified by N-acetyl -endorphin(1–29) and these forms together N-terminal acetylation and C-terminal cleavage. These amounted to over 50% of total immunoreactivity. These processes determine the biological activity of the products were partially processed to N-acetyl - -endorphins. Forms of -endorphin were identified in endorphin(1–15) (30·8% of total immunoreactivity) and the pars intermedia and the pars distalis of the pituitary N-acetyl -endorphin(1–10) (3·1%) via two different gland of the common carp (Cyprinus carpio), as well as the cleavage pathways. The acetylated carp homologues of forms released in vitro and into the blood. After separation mammalian - and -endorphin were also found. and quantitation by high performance liquid chroma- N-acetyl -endorphin(1–15) and (1–29) and/or (1–33) tography (HPLC) coupled with radioimmunoassay, the were the major products to be released in vitro, and were -endorphin immunoreactive products were identified by the only acetylated -endorphins found in blood plasma, electrospray ionisation mass spectrometry and peptide although never together.
    [Show full text]
  • Antitumor Activity of Actinonin in Vitro and in Vivo
    Vol. 4, 171-176, January 1998 Clinical Cancer Research 171 Antitumor Activity of Actinonin in Vitro and in Vivo Yang Xu, Lawrence T. Lai, Janice L. Gabrilove, 8), mye!oid and monocytic cells, and most myeloblastic leuke- and David A. Scheinberg’ mias as well as on cells and tissues outside the hematopoietic system including fibroblasts, intestinal epithelium, renal tubular Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021 epithelium, and synaptic membranes of the central nervous system (I ). APN occurs as a homodimer, and the molecule is a 150-kDa, transmembrane glycoprotein with an intracellular ABSTRACT amino terminus (1). F23, an antihuman CD13/APN mAb, is able Actinonin, an antibiotic and CD13/aminopeptidase N to completely block the active site of the enzyme (9). (APN) inhibitor, has been shown to be cytotoxic to tumor Bestatin, a CD 1 3/APN inhibitor, was examined in preclin- cell lines in vitro. We investigated the antiproliferative ef- ical and clinical studies; bestatin could inhibit lymph node fects of actinonin on human and murine leukemia and lym- metastasis of P388 leukemia in mice (10) and was used in phoma cells. Actinonin inhibited growth of NB4 and HL6O clinical trials in malignant skin tumors (1 1), in head and neck human cell lines and AKR mouse leukemia cells in vitro with cancer (12), in esophageal cancer (13), and in gynecologic an IC50 of about 2-S g/ml. The inhibitory effect on CD13- tumors (14). High doses of bestatin resulted in the significant positive cells was not blocked by pretreatment with the inhibition of preexisting experimental and spontaneous metas- anti-CD13/APN monoclonal antibody F23, which binds with tasis in mice (15).
    [Show full text]
  • Biased Signaling by Endogenous Opioid Peptides
    Biased signaling by endogenous opioid peptides Ivone Gomesa, Salvador Sierrab,1, Lindsay Lueptowc,1, Achla Guptaa,1, Shawn Goutyd, Elyssa B. Margolise, Brian M. Coxd, and Lakshmi A. Devia,2 aDepartment of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029; bDepartment of Physiology & Biophysics, Virginia Commonwealth University, Richmond, VA 23298; cSemel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA 90095; dDepartment of Pharmacology & Molecular Therapeutics, Uniformed Services University, Bethesda MD 20814; and eDepartment of Neurology, UCSF Weill Institute for Neurosciences, University of California, San Francisco, CA 94143 Edited by Susan G. Amara, National Institutes of Health, Bethesda, MD, and approved April 14, 2020 (received for review January 20, 2020) Opioids, such as morphine and fentanyl, are widely used for the possibility that endogenous opioid peptides could vary in this treatment of severe pain; however, prolonged treatment with manner as well (13). these drugs leads to the development of tolerance and can lead to For opioid receptors, studies showed that mice lacking opioid use disorder. The “Opioid Epidemic” has generated a drive β-arrestin2 exhibited enhanced and prolonged morphine-mediated for a deeper understanding of the fundamental signaling mecha- antinociception, and a reduction in side-effects, such as devel- nisms of opioid receptors. It is generally thought that the three opment of tolerance and acute constipation (15, 16). This led to types of opioid receptors (μ, δ, κ) are activated by endogenous studies examining whether μOR agonists exhibit biased signaling peptides derived from three different precursors: Proopiomelano- (17–20), and to the identification of agonists that preferentially cortin, proenkephalin, and prodynorphin.
    [Show full text]
  • Screening of 109 Neuropeptides on Asics Reveals No Direct Agonists
    www.nature.com/scientificreports OPEN Screening of 109 neuropeptides on ASICs reveals no direct agonists and dynorphin A, YFMRFamide and Received: 7 August 2018 Accepted: 14 November 2018 endomorphin-1 as modulators Published: xx xx xxxx Anna Vyvers, Axel Schmidt, Dominik Wiemuth & Stefan Gründer Acid-sensing ion channels (ASICs) belong to the DEG/ENaC gene family. While ASIC1a, ASIC1b and ASIC3 are activated by extracellular protons, ASIC4 and the closely related bile acid-sensitive ion channel (BASIC or ASIC5) are orphan receptors. Neuropeptides are important modulators of ASICs. Moreover, related DEG/ENaCs are directly activated by neuropeptides, rendering neuropeptides interesting ligands of ASICs. Here, we performed an unbiased screen of 109 short neuropeptides (<20 amino acids) on fve homomeric ASICs: ASIC1a, ASIC1b, ASIC3, ASIC4 and BASIC. This screen revealed no direct agonist of any ASIC but three modulators. First, dynorphin A as a modulator of ASIC1a, which increased currents of partially desensitized channels; second, YFMRFamide as a modulator of ASIC1b and ASIC3, which decreased currents of ASIC1b and slowed desensitization of ASIC1b and ASIC3; and, third, endomorphin-1 as a modulator of ASIC3, which also slowed desensitization. With the exception of YFMRFamide, which, however, is not a mammalian neuropeptide, we identifed no new modulator of ASICs. In summary, our screen confrmed some known peptide modulators of ASICs but identifed no new peptide ligands of ASICs, suggesting that most short peptides acting as ligands of ASICs are already known. Acid-sensing ion channels form a small family of proton-gated ion channels that belongs to the degenerin/epi- thelial Na+ channel (DEG/ENaC) gene family1.
    [Show full text]
  • Regulatory Strategies for Promoting the Safe Use of Prescription Opioids and the Potential Impact of Overregulation
    REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Wissenschaftliche Prüfungsarbeit zur Erlangung des Titels „Master of Drug Regulatory Affairs“ der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Dr. Katja Bendrin aus Torgau Bonn 2020 Betreuer und Erster Referent: Dr. Birka Lehmann Zweiter Referent: Dr. Jan Heun REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Acknowledgment │ page II of VII Acknowledgment I want to thank Dr. Birka Lehmann for her willingness to supervise this work and for her support. I further thank Dr. Jan Heun for assuming the role of the second reviewer. A big thank you to the DGRA Team for the organization of the master's course and especially to Dr. Jasmin Fahnenstich for her support to find the thesis topic and supervisors. Furthermore, thank you Harald for your patient support. REGULATORY STRATEGIES FOR PROMOTING THE SAFE USE OF PRESCRIPTION OPIOIDS AND THE POTENTIAL IMPACT OF OVERREGULATION Table of Contents │ page III of VII Table of Contents 1. Scope.................................................................................................................................... 1 2. Introduction ......................................................................................................................... 2 2.1 Classification of Opioid Medicines .................................................................................................
    [Show full text]
  • Narcotic Analgesics I Blanton SLIDE 1: We Will Be Spending the Next 90 Minutes Discussing Narcotic Analgesics- That Is Morphine, Oxycodone, Heroin, Etc
    Narcotic Analgesics I Blanton SLIDE 1: We will be spending the next 90 minutes discussing narcotic analgesics- that is morphine, oxycodone, heroin, etc. These drugs act primarily thru the opiate receptor system. I always like to begin by presenting two factoids that I believe illustrate the power of this system: (1) Ok imagine you are in pain! Now I tell you that I am going to give you an injection of morphine or heroin. Even if I instead give you an injection of just saline- 50% of you will report that your pain is significantly reduced- that is quite a placebo effect. However, if instead of saline I give you an injection of Naloxone, an opiate receptor antagonist- the placebo effect is eliminated. In other words you are activating your opiate receptor system to induce analgesia. (2) acupuncture can be used to reduce pain. However, Naloxone will block this effect- in otherwords the acupuncture is activating your opiate receptor system. SLIDE 1A: The use of narcotic analgesics for effective pain management has certainly had its flip side……. With prescription narcotic analgesics helping to fuel the current heroin epidemic…. Back to SLIDE 1: So narcotic analgesics. The name narcotic is somewhat misleading, because it implies narcosis or somnolence. The name opiate or opioid is more precise because it connotes analgesia, without causing sleep or loss of consciousness. SLIDE 2: The terms opiate or opioid, as you are probably aware, refers to opium, the crude extract of the Poppy plant, Papaver somniferum. Opium comes from the seed pod of the plant after the petals have dropped.
    [Show full text]
  • The Role of Protein Convertases in Bigdynorphin and Dynorphin a Metabolic Pathway
    Université de Montréal The Role of Protein Convertases in Bigdynorphin and Dynorphin A Metabolic Pathway par ALBERTO RUIZ ORDUNA Département de biomédecine vétérinaire Faculté de médecine vétérinaire Mémoire présenté à la Faculté de médecine vétérinaire en vue de l’obtention du grade de maître ès sciences (M.Sc.) en sciences vétérinaires option pharmacologie Décembre, 2015 © Alberto Ruiz Orduna, 2015 Résumé Les dynorphines sont des neuropeptides importants avec un rôle central dans la nociception et l’atténuation de la douleur. De nombreux mécanismes régulent les concentrations de dynorphine endogènes, y compris la protéolyse. Les Proprotéines convertases (PC) sont largement exprimées dans le système nerveux central et clivent spécifiquement le C-terminale de couple acides aminés basiques, ou un résidu basique unique. Le contrôle protéolytique des concentrations endogènes de Big Dynorphine (BDyn) et dynorphine A (Dyn A) a un effet important sur la perception de la douleur et le rôle de PC reste à être déterminée. L'objectif de cette étude était de décrypter le rôle de PC1 et PC2 dans le contrôle protéolytique de BDyn et Dyn A avec l'aide de fractions cellulaires de la moelle épinière de type sauvage (WT), PC1 -/+ et PC2 -/+ de souris et par la spectrométrie de masse. Nos résultats démontrent clairement que PC1 et PC2 sont impliquées dans la protéolyse de BDyn et Dyn A avec un rôle plus significatif pour PC1. Le traitement en C-terminal de BDyn génère des fragments peptidiques spécifiques incluant dynorphine 1-19, dynorphine 1-13, dynorphine 1-11 et dynorphine 1-7 et Dyn A génère les fragments dynorphine 1-13, dynorphine 1-11 et dynorphine 1-7.
    [Show full text]
  • Phenidone Blocks the Increases of Proenkephalin and Prodynorphin
    Brain Research 782Ž. 1998 337±342 Short communication Phenidone blocks the increases of proenkephalin and prodynorphin gene expression induced by kainic acid in rat hippocampus: involvement of Fos-related antigene protein Hyoung-Chun Kim a,), Jeong-Hye Suh a, Je-Seong Won b, Wang-Kee Jhoo a, Dong-Keun Song b, Yung-Hi Kim b, Myung-Bok Wie b, Hong-Won Suh b a College of Pharmacy, Kangwon National UniÕersity, Chunchon 200-701, Kangwon-Do, South Korea b Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym UniÕersity, Chunchon 200-701, Kangwon-Do, South Korea Accepted 11 November 1997 Abstract To determine the possible role of cyclooxygenaserlipoxygenase pathway in the regulation of proenkephalinŽ. proENK and prodynorphinŽ. proDYN gene expression induced by kainic acid Ž. KA in rat hippocampus, the effects of esculetin, aspirin, or phenidone on the seizure activity, proENK and proDYN mRNA levels, and the level of fos-related antigeneŽ. Fra protein induced by KA in rat hippocampus were studied. EsculetinŽ.Ž 5 mgrkg , aspirin 15 mgrkg . , or phenidone Ž 50 mgrkg . was administered orally five times every 12 h before the injection of KAŽ. 10 mgrkg, i.p. Seizure activity induced by KA was significantly attenuated by phenidone. However, neither esculetin nor aspirin affected KA-induced seizure activity. The proENK and proDYN mRNA levels were markedly increased 4 and 24 h after KA administration. The elevations of both proENK and proDYN mRNA levels induced by KA were inhibited by pre-administration with phenidone, but not with esculetin and aspirin. ProENK-like protein level increased by KA administration was also inhibited by pre-administration with phenidone, but not with esculetin and aspirin.
    [Show full text]
  • Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions
    Molecular Pharmacology Fast Forward. Published on June 2, 2020 as DOI: 10.1124/mol.120.119388 This article has not been copyedited and formatted. The final version may differ from this version. File name: Opioid peptides v45 Date: 5/28/20 Review for Mol Pharm Special Issue celebrating 50 years of INRC Five decades of research on opioid peptides: Current knowledge and unanswered questions Lloyd D. Fricker1, Elyssa B. Margolis2, Ivone Gomes3, Lakshmi A. Devi3 1Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; E-mail: [email protected] 2Department of Neurology, UCSF Weill Institute for Neurosciences, 675 Nelson Rising Lane, San Francisco, CA 94143, USA; E-mail: [email protected] 3Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, Annenberg Downloaded from Building, One Gustave L. Levy Place, New York, NY 10029, USA; E-mail: [email protected] Running Title: Opioid peptides molpharm.aspetjournals.org Contact info for corresponding author(s): Lloyd Fricker, Ph.D. Department of Molecular Pharmacology Albert Einstein College of Medicine 1300 Morris Park Ave Bronx, NY 10461 Office: 718-430-4225 FAX: 718-430-8922 at ASPET Journals on October 1, 2021 Email: [email protected] Footnotes: The writing of the manuscript was funded in part by NIH grants DA008863 and NS026880 (to LAD) and AA026609 (to EBM). List of nonstandard abbreviations: ACTH Adrenocorticotrophic hormone AgRP Agouti-related peptide (AgRP) α-MSH Alpha-melanocyte stimulating hormone CART Cocaine- and amphetamine-regulated transcript CLIP Corticotropin-like intermediate lobe peptide DAMGO D-Ala2, N-MePhe4, Gly-ol]-enkephalin DOR Delta opioid receptor DPDPE [D-Pen2,D- Pen5]-enkephalin KOR Kappa opioid receptor MOR Mu opioid receptor PDYN Prodynorphin PENK Proenkephalin PET Positron-emission tomography PNOC Pronociceptin POMC Proopiomelanocortin 1 Molecular Pharmacology Fast Forward.
    [Show full text]
  • Enkephalin After Peptidase Inhibition
    J Pharmacol Sci 106, 295 – 300 (2008)2 Journal of Pharmacological Sciences ©2008 The Japanese Pharmacological Society Full Paper Great Increase in Antinociceptive Potency of [Leu5]Enkephalin After Peptidase Inhibition Kazuhito Akahori1, Kenya Kosaka1, Xing Lu Jin1, Yoshiharu Arai1, Masanobu Yoshikawa1, Hiroyuki Kobayashi1, and Tetsuo Oka1,* 1Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1143, Japan Received August 9, 2007; Accepted December 19, 2007 Abstract. Previous in vitro studies have shown that the degradation of [Leu5]enkephalin during incubation with cerebral membrane preparations is almost completely prevented by a mixture of three peptidase inhibitors: amastatin, captopril, and phosphoramidon. The present in vivo study shows that the inhibitory effect of [Leu5]enkephalin administered intra-third-ventricularly on the tail-flick response was increased more than 500-fold by the intra-third-ventricular pretreatment with the three peptidase inhibitors. The antinociceptive effect produced by the [Leu5]enkephalin in rats pretreated with any combination of two peptidase inhibitors was significantly smaller than that in rats pretreated with the three peptidase inhibitors, indicating that any residual single peptidase could inactivate significant amounts of the [Leu5]enkephalin. The present data, together with those obtained from previous studies, clearly demonstrate that amastatin-, captopril-, and phosphoramidon-sensitive enzymes play important roles in the inactivation of short endogenous opioid
    [Show full text]
  • Distribution of Prodynorphin Mrna and Its Interaction with the NPY System in the Mouse Brain Neuropeptides 40 (2): 115-123, 2006
    Lin et al.: Distribution of prodynorphin mRNA and its interaction with the NPY system in the mouse brain Neuropeptides 40 (2): 115-123, 2006 Distribution of prodynorphin mRNA and its interaction with the NPY system in the mouse brain Shu Lina, Dana Boeya, Nicola Leea, Christoph Schwarzerb, Amanda Sainsburya, Herbert Herzoga, a Neurobiology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australiab Department of Pharmacology, Medical University of Innsbruck, Peter- Mayr-Strasse 1a, 6020 Innsbruck, Austria Abstract Using radioactive in situ hybridisation, the distribution of prodynorphin mRNA in the brains of C57Bl/6 mice was systemically investigated, and double-labelling in situ hybridisation was used to determine the extent to which neuropeptide Y (NPY) and prodynorphin mRNAs were co-expressed. Our results demonstrate that prodynorphin mRNA expression in the mouse brain is localised at specific subregions of the olfactory bulb, cortex, hippocampus, amygdala, basal ganglia, thalamus, hypothalamus, mesencephalon and myelencephalon. Among the regions displaying the most intense labelling were the olfactory tubercle, lateral septum (LS), caudate putamen (Cpu), central amygdaloid nucleus (Ce), paraventricular hypothalamic nucleus (PVN), supraoptic nucleus (SO), lateral hypothalamic area (LHA), ventromedial hypothalamic nucleus (VMH), lateral reticular nucleus (LRt) and solitary tract nucleus (NTS). In the arcuate nucleus of the hypothalamus (Arc), double- labelling in situ hybridisation revealed that prodynorphin expressing neurons also contained NPY mRNA, with a co-localisation rate of approximately 88% in the lateral part of the Arc, and 79% in the dorsal part of the Arc, respectively, suggesting potential overlapping functions of these two neurotransmitters in feeding type behaviour.
    [Show full text]