The Geochemical Evolution of Alkaline Magmas from the Crary Mountains, Marie Byrd Land, Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

The Geochemical Evolution of Alkaline Magmas from the Crary Mountains, Marie Byrd Land, Antarctica THE GEOCHEMICAL EVOLUTION OF ALKALINE MAGMAS FROM THE CRARY MOUNTAINS, MARIE BYRD LAND, ANTARCTICA SUVANKAR CHAKRABORTY A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2007 Committee: Kurt Panter, Advisor John Farver Thomas Wilch © 2007 Suvankar Chakraborty All Rights Reserved iii ABSTRACT Kurt Panter, Advisor Late Cenozoic alkaline volcanism in the Crary Mountains, Marie Byrd Land, Antarctica is associated with the West Antarctic rift system. More than 400 km 3 (LeMasurier et al., 1990) of alkaline magmas were erupted from four major volcanic centers. Based on previous field and dating studies the volcanism occurred between ~9 and <1 Ma and the activity migrated to the south at a rate of ~0.7 cm/yr. The Crary Mountains represent one of four ranges of volcanoes in Marie Byrd Land that show this type of age progression; younging away from the center of the province (LeMasurier and Rex, 1989; Panter et al., 2000). The volcanic deposits at the Crary Mountains consist of lavas and interbedded agglutinated scoria deposits as well as thick hydrovolcanic sequences (hyaloclastites, pillow breccia, tuff) all of which range in composition from basanite to intermediate types to phonolite, trachyte, and rhyolite. This study focuses exclusively on lava samples that are fresh and unaltered. Basaltic rocks are consisting of olivine, clinopyroxene, plagioclase and titanomagnetite phenocrysts. Phenocrysts found in intermediate to felsic compositions include of olivine, clinopyroxene, alkali amphibole, alkali and plagioclase feldspars, nepheline, apatite, titanomagnetite, and aenigmatite. Most of the phenocrysts of different rock types are either unzoned or normally zoned and disequilibrium textures are rare. Stratigraphic sections of Mount Steer and Rees show a complex petrographic history; however, the overall compositions of the Crary Mountains show a change to mafic composition with progression in age. The evolution trends and magma differentiation processes were determined based on geochemistry and geochemical relationships for these alkaline volcanic rocks. Overall, the iv alkaline lavas from the Crary Mountains show trends of increasing SiO 2, Na 2O, K 2O with decreasing MgO and CaO. On other hand highly incompatible trace elements (e.g., Th, La, Zr) show an increase in concentration with magmatic differentiation. On the basis of geochemical studies trachytes and phonolites are divided into two groups each; nepheline-normative trachytes ( Ne-trachyte) and quartz-normative trachytes ( Qtz -trachyte); low- alkali (Na 2O + K 2O <13.46 wt% ) high silica (> 60 wt%) phonolites and high-alkali (Na 2O + K 2O > 15.47 wt%) low silica (<56 wt%) phonolites. Using least-squares mass balance and Rayleigh fractionation models, the Ne-trachytes can best be explained by a single differentiation trend generated by fractional crystallization of a basanite magma. An explanation for the generation of quartz-normative trachytes ( Qtz -trachyte) and rhyolite can be generated by the assimilation of granitoid country rocks by mugearite magma coupled with fractional crystallization (AFC processes). Two different fractionation schemes are responsible for the production of phonolitic rocks; one that can explain the evolution of intermediate mugearite magmas to low-alkali phonolites and another from basanite to high-alkali phonolites. The modeling results indicate that the evolution of alkaline magmas erupted in the Crary Mountains is complex and these alkaline magmas were produced by a combination of magmatic differentiation processes. v It is theory that decides what can be observed Albert Einstein vi ACKNOWLEDGMENTS The author is deeply indebted to Dr. Kurt S Panter, Associate Professor, Department of Geology, Bowling Green State University for his supervision and guidance throughout this thesis. Secondly, the author would like to thank the Geology Department at Bowling Green State University for their challenging program from which he has learned so much. The author is grateful to Dr. Nelia Dunbar at New Mexico Institute of Mining and Technology for conducting microprobe analysis of the thin sections. Dr. Thomas I Wilch Associate Professor of the Department of Geology, Albion College provided geochemical data, maps and valuable basic geological information of the Crary Mountains. The author expresses heartiest thanks to Dr. John Farver, Department of Geology, Bowling Green State University for supporting him during the completion of the thesis work. The author gives his heartiest thanks to Mr. Bill Butcher and Mr. Jagannath Paul for their moral support during the completion of the dissertation work. The author remembers, with particular pleasure, the help, co-operation and comments offered by dearest friend Jaydeep Ghosh. Least but not the least the author wishes to recall the inspiration and blessing of his parents and his wife during the whole session of M.S. vii TABLE OF CONTENTS Page INTRODUCTION ................................................................................................................. 1 GEOLOGICAL SETTING .................................................................................................... 7 Regional Geology ...................................................................................................... 7 Volcanic Geology…………………………………………………………... 8 PETROLOGICAL DATA ..................................................................................................... 14 Petrographic types...................................................................................................... 14 Mineralogical Features............................................................................................... 16 Mineral Compositions……………………………………………………… 16 Analytical Methods………………………………………………… 16 Olivine................................................................................................ 16 Clinopyroxene.................................................................................... 21 Feldspar and feldspathoids.………………………………………. 25 Fe-Ti oxides………………………………………………………. 30 Amphibole………………………………………………………… 30 Aenigmatite, apatite and quartz…………………………………… 36 WHOLE-ROCK GEOCHEMISTRY .................................................................................... 41 Major Elements.......................................................................................................... 41 Trace Elements........................................................................................................... 50 DISCUSSION ………........................................................................................................... 55 Magmatic Evolution by Fractional Crystallization………………………………… 55 Ne-Trachyte Series………………………………………………………….. 59 viii Phonolite Series……………………………………………………………. 65 Qtz-Trachyte Series…………………………………………………………. 69 Magmatic Evolution by Assimilation of Crust……………………………………… 73 CONCLUSIONS…………………………………………………………………………… 79 REFERENCES ...................................................................................................................... 82 APPENDIX 1. PETROGRAPHY ........................................................................................ 96 APPENDIX 2.1. OVLIVINE CHEMISTRY......................................................................... 109 APPENDIX 2.2. CLINOPYROXENE CHEMISTRY…………………………………….. 112 APPENDIX 2.3 FELDSPAR CHEMISTRY……………………………………………... 120 APPENDIX 2.4. Fe-Ti OXIDE CHEMISTRY…………………………………………… 125 APPENDIX 2.5. AMPHIBOLE CHEMISTRY…………………………………………... 127 APPENDIX 2.6. APATITE CHEMISTRY……………………………………………….. 130 APPENDIX 2.7. AENIGMATITE CHEMISTRY………………………………………… 132 APPENDIX 3. MAJOR AND TRACE ELEMENT CHEMISTRY………………………. 134 ix LIST OF FIGURES Figure Page 1a Regional location map of the Marie Byrd Land volcanic province of West Antarctica (after Panter et al., 2000)............................................................................................ 4 1b An outcrop map of the Crary Mountains, Marie Byrd Land. .................................... 5 2a Cartoons simplified stratigraphic cross-sections showing major compositional rock types at Mounts Steere and Rees. …………………………………………………. 11 2b Detailed stratigraphic section of the Lie Cliff (Mount Steere) .................................. 12 2c Variation in compositions of different rock types of the Crary Mountains with age (Ma)……………………………………………………………………………. 13 3 Total alkali (wt%) versus SiO 2 (wt%) diagram (after Le Bas et al., 1986) ............... 15 4 Photomicrograph of olivine phenocrysts within felsic groundmass.......................... 19 5 Clinopyroxene quadrilateral showing compositions of olivine and clinopyroxene... 20 6 Photomicrograph of clinopyroxene phenocryst in phonolite………………………. 23 7a Back scatter image (BSE) of Ti-rich clinopyroxenes in hawaiite………………….. 24 7b Photomicrograph of Ti-rich clinopyroxene in hawaiite……………………………. 24 8 Classification of cores and rims of feldspar………………………………………… 28 9a BSE of rimmed plagioclase feldspar in benmorite…………………………………. 29 9b Photomicrograph of plagioclase feldspar in Benmorite……………………………. 29 10 Variation in magnetite phenocrysts composition…………………………………... 32 11 BSE of titanomagnetites phenocrysts in phonolite………………………………… 32 12 Photomicrograph of interstitial amphibole grain in phonolite…………………….. 35 13 BSE of fayalite (Fa 98 ) inclusion within amphibole………………………………… 35 x 14 Variations in amphibole composition……………………………………………..
Recommended publications
  • UC Berkeley Archaeological X-Ray Fluorescence Reports
    UC Berkeley Archaeological X-ray Fluorescence Reports Title X-Ray Fluorescence (XRF) Analysis Major Oxide and Trace Element Concentrations of Mainly Volcanic Rock Artifacts from a Number of Sites in Central Arizona Permalink https://escholarship.org/uc/item/7pt4r7vt Author Shackley, M. Steven Publication Date 2013-07-10 Supplemental Material https://escholarship.org/uc/item/7pt4r7vt#supplemental License https://creativecommons.org/licenses/by-nc/4.0/ 4.0 eScholarship.org Powered by the California Digital Library University of California www.escholarship.org/uc/item/7pt4r7vt GEOARCHAEOLOGICAL X-RAY FLUORESCENCE SPECTROMETRY LABORATORY 8100 WYOMING BLVD., SUITE M4-158 ALBUQUERQUE, NM 87113 USA X-RAY FLUORESCENCE (XRF) ANALYSIS MAJOR OXIDE AND TRACE ELEMENT CONCENTRATIONS OF MAINLY VOLCANIC ROCK ARTIFACTS FROM A NUMBER OF SITES IN CENTRAL ARIZONA Probable Cienega Large and San Pedro points from the collection by M. Steven Shackley Ph.D., Director Geoarchaeological XRF Laboratory Albuquerque, New Mexico Report Prepared for Dr. Anna Neuzil EcoPlan Associates, Inc. Tucson, Arizona 10 July 2013 www.escholarship.org/uc/item/7pt4r7vt INTRODUCTION The analysis here of artifacts mainly produced from high silica rhyolite is an attempt to provide a beginning data base for further artifact provenance studies in central Arizona. An intensive oxide and trace element analysis of the artifacts indicates a strong preference for high silica volcanics for the production of stone tools including dart points such as the ones figured on the cover page. None of the artifacts can be assigned to source at this time. The assemblage appears to be a Late Archaic/Cienega Phase assemblage rather typical of the region (Sliva 2...).
    [Show full text]
  • Integrated Tephrochonology Copyedited
    U.S. Geological Survey and The National Academies; USGS OFR-2007-xxxx, Extended Abstract.yyy, 1- Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core N.W. Dunbar,1 W.C. McIntosh,1 A.V. Kurbatov,2 and T.I Wilch 3 1NMGB/EES Department, New Mexico Tech, Socorro NM, 87801, USA ( [email protected] , [email protected] ) 2Climate Change Institute 303 Bryand Global Sciences Center, Orono, ME, 04469, USA ([email protected]) 3Department of Geological Sciences, Albion College, Albion MI, 49224, USA ( [email protected] ) Summary Mount Berlin and Mt. Takahe, two West Antarctica volcanic centers have produced a number of explosive, ashfall generating eruptions over the past 500,000 yrs. These eruptions dispersed volcanic ash over large areas of the West Antarctic ice sheet. Evidence of these eruptions is observed at two blue ice sites (Mt. Waesche and Mt. Moulton) as well as in the Siple Dome and Byrd (Palais et al., 1988) ice cores. Geochemical correlations between tephra sampled at the source volcanoes, at blue ice sites, and in the Siple Dome ice core suggest that at least some of the eruptions covered large areas of the ice sheet with a volcanic ash, and 40 Ar/ 39 Ar dating of volcanic material provides precise timing when these events occurred. Volcanic ash from some of these events expected to be found in the WAIS Divide ice core, providing chronology and inter-site correlation. Citation: Dunbar, N.W., McIntosh, W.C., Kurbatov, A., and T.I Wilch (2007), Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10 th ISAES X, edited by A.
    [Show full text]
  • Flood Basalts and Glacier Floods—Roadside Geology
    u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1.
    [Show full text]
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • Geochemistry of Sideromelane and Felsic Glass Shards in Pleistocene Ash Layers at Sites 953, 954, and 9561
    Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duffield, W. (Eds.), 1998 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 157 25. GEOCHEMISTRY OF SIDEROMELANE AND FELSIC GLASS SHARDS IN PLEISTOCENE ASH LAYERS AT SITES 953, 954, AND 9561 Andrey A. Gurenko2 and Hans-Ulrich Schmincke2 ABSTRACT Sideromelane and felsic glass shards from unconsolidated Pleistocene volcaniclastic sediments drilled at Sites 953, 954, and 956 are thought to have derived from submarine and subaerial volcanic eruptions on Gran Canaria (Sites 953 and 954) and Tenerife (Sites 954 and 956). We analyzed these glasses by electron microprobe for major elements and sulfur, chlorine, and fluorine. Sideromelane glasses represent a spectrum from alkali basalt through basanite, hawaiite, mugearite, and tephrite to nephelinite. Felsic glasses have compositions similar to benmoreite, trachyte, and phonolite. Vesiculated mafic and felsic glass shards, which are characterized by low S and Cl concentrations (0.01−0.06 wt% S and 0.01–0.04 wt% Cl), are interpreted to have formed by pyroclastic activity on land or in shallow water and appeared to have been strongly degassed. Vesicle-free blocky glass shards having 0.05−0.13 wt% S are likely to have resulted from submarine eruptions at moderate water depths and represent undegassed or slightly degassed magmas. Cl concentrations range from 0.01 to 0.33 wt% and increase with increasing MgO, suggesting that Cl behaves as an incompatible element during magma crystallization. Concentrations of fluorine (0.04− 0.34 wt% F) are likely to represent undegassed values, and the variations in F/K ratios between 0.02 and 0.24 are believed to reflect those of parental magmas and of the mantle source.
    [Show full text]
  • Igneous Rocks of Peter I Island Hemisphere Tectonic Reconstructions
    LeMasurier, W. E., and F. A. Wade. In press. Volcanic history in Marie Byrd Land: implications with regard to southern Igneous rocks of Peter I Island hemisphere tectonic reconstructions. In: Proceedings of the International Symposium on Andean and Antarctic Vol- canology Problems, Santiago, Chile (0. Gonzalez-Ferran, edi- tor). Rome, International Association of Volcanology and Chemistry of Earths Interior. THOMAS W. BASTIEN Price, R. C., and S. R. Taylor. 1973. The geochemistry of Dune- Ernest E. Lehmann Associates din Volcano, East Otago, New Zealand: rare earth elements. Minneapolis, Minnesota 55403 Contributions to Mineralogy and Petrology, 40: 195-205. Sun, S. S., and G. N. Hanson. 1975. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle CAMPBELL CRADDOCK sources of alkali basalts and nephelinites. Contributions to Department of Geology and Geophysics Mineralogy and Petrology, 52: 77-106. The University of Wisconsin, Madison Sun, S. S., and G. N. Hanson. 1976. Rare earth element evi- Madison, Wisconsin 53706 dence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contributions to Mineralogy and Petrology, 54: 139-155. Peter I Island lies in the southeastern Pacific Ocean at 68°50S. 90°40W. about 240 nautical miles off the Eights Coast of West Antarctica. Ris- ing from the continental rise, it is one of the few truly oceanic islands in the region. Few people have been on the island, and little is known of its geology. Thaddeus von Bellingshausen discovered and named the island in 1821, and it was not seen again until sighted by Pierre Charcot in 1910. A Nor- wegian ship dredged some rocks off the west coast in 1927, and persons from the Norvegia achieved the first landing in 1929.
    [Show full text]
  • 31 a Preliminary Study Of
    31 A PRELIMINARY STUDY OF THE: TERTIARY VOLCANIC AND SEDIMENTARY ROCKS, GÜMELE, ESKİŞEHİR Eskişehir, Gümele Çevresindeki Tersiyer Volkanik ve Sedimanter Kayaçlarda Bir Ön Çalışma Taylan Lünel Middle East Technical University, Department of Geological Engineering Ankara ÖZ. — Seyitgazi-Eskişehir antiklinoriumu'nun çok fazla deforme olmuş ve metamorfizmaya uğramış kayaçlarının kuzey-kuzeybatısında bulunan sedimanter ve volkanik kayaçlar incelenmiştir. Karasal ve gölsel fasiyesde meydana gelen Tersi- yer sedimanter kayaçlar Güney Eskişehir küvetinde olunmuşlardır. Karasal fasiye- si meydana getiren kayaç birimlerini kaba kumtaşları, kumtaşları, bitki kalıntıları ihtiva eden kil ve marnlar ve serpantinit blokları taşıyan bazal konglomerası teşkil etmektedir. Gölsel fasiyes ise genellikle killi ve tüflü kalkerler, kalkerler, marnlar, kon- glomeralar ve tüflerden meydana gelmiştir. Küvetteki en eski sedimanlar ve piroklas- tikler Alt Miosen'de oluşmuşlardır. Yataya yakın konumlanmış bazik-intermediyar lav akıntıları Pliosen yaşlı olup Altüst Neojen sedimantasyon kesikliğinde meyda- na gelmiştir. Üst Neojen sedimanter kayaçları intermediyar-basaltik volkaniklerin üzerinde ince bandlar şeklinde bulunurlar. Bu birim marn ve kalkerlerden meyda- na gelmiştir. Alt Miosen’de asid volkanik faaliyetler neticesinde meydana gelen sil- lar (unweldd tuffs) oligomikt konglomeralardan evvel teşekkül etmiştir. Bu volkanik aktitivite muhtemelen kesikli ve kısıtlı olarak devam etmiş ve tüflü kalkerleri mey- dana getirmiştir. Pliosen yaşlı bazik-intermediyar
    [Show full text]
  • The Hyaloclastite Ridge Formed in the Subglacial 1996 Eruption in Gjfilp, Vatnaj6kull, Iceland: Present Day Shape and Future Preservation
    The hyaloclastite ridge formed in the subglacial 1996 eruption in Gjfilp, Vatnaj6kull, Iceland: present day shape and future preservation M. T. GUDMUNDSSON, F. PALSSON, H. BJORNSSON & ~. HOGNADOTTIR Science Institute, University of Iceland, Hofsvallag6tu 53, 107 Reykjavik, Iceland (e-mail: [email protected]) Abstract: In the Gjfilp eruption in 1996, a subglacial hyaloclastite ridge was formed over a volcanic fissure beneath the Vatnaj6kull ice cap in Iceland. The initial ice thickness along the 6 km-long fissure varied from 550 m to 750 m greatest in the northern part but least in the central part where a subaerial crater was active during the eruption. The shape of the subglacial ridge has been mapped, using direct observations of the top of the edifice in 1997, radio echo soundings and gravity surveying. The subglacial edifice is remarkably varied in shape and height. The southern part is low and narrow whereas the central part is the highest, rising 450 m above the pre-eruption bedrock. In the northern part the ridge is only 150-200m high but up to 2kin wide, suggesting that lateral spreading of the erupted material occurred during the latter stages of the eruption. The total volume of erupted material in Gj~tlp was about 0.8 km 3, mainly volcanic glass. The edifice has a volume of about 0.7 km 3 and a volume of 0.07 km 3 was transported with the meltwater from Gj~lp and accumulated in the Grimsv6tn caldera, where the subglacial lake acted as a trap for the sediments. This meltwater-transported material was removed from the southern part of the edifice during the eruption.
    [Show full text]
  • Complex Basalt-Mugearite Sill in Piton Des Neiges Volcano, Reunion
    THE AMERICAN MINERALOGIST. VOL. 52, SEPTEMBER-OCTOBER, 1967 COMPLEX BASALT-MUGEARITE SILL IN PITON DES NEIGES VOLCANO, REUNION B. G. J. UetoN, Grant Institute oJ Geology,Uniaersi,ty oJ Ed.inburgh, Edinbwrgh, Scotland, AND W. J. WaoswoRru, Deportmentof Geology,The Un'it;ersity, Manchester,England.. ABsrRAcr An extensive suite of minor intrusions, contempcraneous with the late-stage differenti- ated lavas of Piton des Neiges volcano, occurs within an old agglomeratic complex. An 8-m sill within this suite is strongly difierentiated with a basaltic centre (Thorton Tuttle Index 27.6), residual veins of benmoreite (T. T. Index 75.2), and still more extreme veinlets of quartz trachyte. Although gravitative settling of olivine, augite and ore irz silzr is believed to be responsible for some of the observed variation, the over-all composition of the sill is con- siderably more basic than the mugearite which forms the chilled contacts. It is therefore concluded that considerable magmatic difierentiation must have preceded the emplacement of the sill. This probably took place in a dykeJike magma body with a compositional gra- dient from mugearite at the top to olivine basalt in the lower parts. INrnonucrroN The island of Reunion, in the western Indian Ocean, has the form of a volcanic doublet overlying a great volcanic complex rising from the deep ocean floor. The southeastern component of this doublet is still highly active and erupts relatively undifierentiated, olivine-rich basalts of mildly alkaline or transitional type (Coombs, 1963; Upton and Wads- worth, 1966). The northwestern volcano however has been inactive a sufficient time for erosionalprocesses to have hollowed out amphitheatre- headed valleys up to 2500 meters deep in the volcanic pile.
    [Show full text]
  • Derivation of Intermediate to Silicic Magma from the Basalt Analyzed at the Vega 2 Landing Site, Venus
    RESEARCH ARTICLE Derivation of intermediate to silicic magma from the basalt analyzed at the Vega 2 landing site, Venus J. Gregory Shellnutt* National Taiwan Normal University, Department of Earth Sciences, Taipei, Taiwan * [email protected] Abstract a1111111111 a1111111111 Geochemical modeling using the basalt composition analyzed at the Vega 2 landing site a1111111111 indicates that intermediate to silicic liquids can be generated by fractional crystallization and a1111111111 equilibrium partial melting. Fractional crystallization modeling using variable pressures (0.01 a1111111111 GPa to 0.5 GPa) and relative oxidation states (FMQ 0 and FMQ -1) of either a wet (H2O = 0.5 wt%) or dry (H2O = 0 wt%) parental magma can yield silicic (SiO2 > 60 wt%) composi- tions that are similar to terrestrial ferroan rhyolite. Hydrous (H2O = 0.5 wt%) partial melting can yield intermediate (trachyandesite to andesite) to silicic (trachydacite) compositions at OPEN ACCESS all pressures but requires relatively high temperatures ( 950ÊC) to generate the initial melt Citation: Shellnutt JG (2018) Derivation of at intermediate to low pressure whereas at high pressure (0.5 GPa) the first melts will be intermediate to silicic magma from the basalt generated at much lower temperatures (< 800ÊC). Anhydrous partial melt modeling yielded analyzed at the Vega 2 landing site, Venus. PLoS mafic (basaltic andesite) and alkaline compositions (trachybasalt) but the temperature ONE 13(3): e0194155. https://doi.org/10.1371/ journal.pone.0194155 required to produce the first liquid is very high ( 1130ÊC). Consequently, anhydrous partial melting is an unlikely process to generate derivative liquids. The modeling results indicate Editor: Axel K Schmitt, Heidelberg University, GERMANY that, under certain conditions, the Vega 2 composition can generate silicic liquids that pro- duce granitic and rhyolitic rocks.
    [Show full text]
  • Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara
    PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 12-14, 2018 SGP-TR-213 Geological Mapping, Structural Setting and Petrographic Description of the Archean Volcanic Rocks of Mnanka Area, North Mara Ezra Kavana Acacia Mining PLc, North Mara Gold Mine, Department of Geology, P. O. Box 75864, Dar es Salaam, Tanzania Email: [email protected] Keywords: Musoma Mara Greenstone Belt, Mnanka volcanics, Archaean rocks and lithology ABSTRACT The Mnanka area is situated within the Musoma Mara Greenstone Belt, the area is near to Nyabigena, Gokona and Nyabirama gold mines. Mnanka area comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments. Gold mineralizations in Mnanka area is structure controlled and occur mainly as hydrothermal disseminated intrusion related deposits. Hence the predominant observed structures are joints and flow banding. Measurements from flow banding plotted on stereonets using win-TENSOR software has provided an estimate for the general strike of the area lying 070° to 100° dipping at an average range angle of 70° to 85° while data from joints plotted on stereonets suggest multiple deformation events one of which conforms to the East Africa Rift System (striking WSW-ENE, NNE-SSW and N-S). 1. INTRODUCTION This paper focuses on performing a systematic geological mapping and description of structures and rocks of the Mnanka area. The Mnanka area is located in the Mara region, Tarime district within the Musoma Mara Greenstone Belt. The gold at Mnanka is host ed by volcanic rocks that belong to the Musoma Mara Greenstone Belt (Figure 1). The Mnanka volcanics are found within the Kemambo group that comprises of the sequence of predominant rhyolitic volcanic rocks, chert and metasediments south of the Nyarwana fault.
    [Show full text]
  • Relationships Between Pre-Eruptive Conditions and Eruptive Styles of Phonolite-Trachyte Magmas Joan Andújar, Bruno Scaillet
    Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas Joan Andújar, Bruno Scaillet To cite this version: Joan Andújar, Bruno Scaillet. Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas. Lithos, Elsevier, 2012, 152 (1), pp.122-131. 10.1016/j.lithos.2012.05.009. insu-00705854 HAL Id: insu-00705854 https://hal-insu.archives-ouvertes.fr/insu-00705854 Submitted on 10 Jul 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Relationships between pre-eruptive conditions and eruptive styles of phonolite-trachyte magmas JOAN ANDÚJAR*,a AND BRUNO SCAILLETa a. CNRS/INSU-UNIVERSITÉ D’ORLÉANS-BRGM ; INSTITUT DES SCIENCES DE LA TERRE D’ORLEANS, UMR 6113 - 1A, RUE DE LA FÉRROLLERIE-45071 ORLEANS CEDEX 2 (FRANCE) * Corresponding author : Joan Andújar phone number : (+33) 2 38 25 53 87 Fax: (+33) 02 38 63 64 88 e-mail address: [email protected] Bruno Scaillet e-mail address: [email protected] KEY WORDS: Phase equilibria, phonolite, trachyte, experimental petrology, eruptive dynamic, explosive, effusive, andesite, rhyolite, melt viscosity, magma viscosity. 2 Abstract Phonolitic eruptions can erupt either effusively or explosively, and in some cases develop highly energetic events such as caldera-forming eruptions.
    [Show full text]