Pentane, Hexane, and Heptane - in a Supersonic Nozzle

Total Page:16

File Type:pdf, Size:1020Kb

Pentane, Hexane, and Heptane - in a Supersonic Nozzle Investigating the Phase Transitions of lower n-alkanes – pentane, hexane, and heptane - in a supersonic nozzle DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kehinde Emeka Ogunronbi, M.S. Graduate Program in Chemical Engineering The Ohio State University 2019 Dissertation Committee: Barbara E. Wyslouzil, Advisor Isamu Kusaka Nicholas Brunelli Copyright by Kehinde Emeka Ogunronbi 2019 Abstract n-Alkanes play important roles in our everyday lives, and they are basic constituents of many complex lipid molecules. A knowledge of the phase behavior of these aliphatic hydrocarbons provides insight into the behavior of any given lipid class, as there are interesting similarities between chain packing in normal alkanes and other aliphatic lipids. The importance of saturated aliphatic hydrocarbons is not limited to terrestrial applications, as interplanetary studies have shown that they are both major and minor components of the giant planet atmospheres and Saturn’s moon -Titan. Thus, in these situations, short chain alkanes can play a role similar to that of water on earth. Nucleation is a phenomenon that initiates many phase transitions, and supersonic nozzles are characterized by a large temperature gradient that results in high supersaturations and nucleation rates. Therefore, the goal of this work is to study the phase transitions of lower n-alkanes in a supersonic nozzle. First, we investigate and expand the vapor to liquid nucleation and condensation database for lower n-alkanes – pentane, hexane, and heptane - over a broad range of temperatures and partial pressures. Secondly, we apply the first and second nucleation theorems to determine the properties of the critical clusters of these chain molecules and advance our understanding of the nucleation physics. Thirdly, we study the freezing behavior of n-pentane, n-hexane, and n-heptane droplets and advance our understanding of the surface-templating effect in these short chain n-alkanes. The experimental vapor to liquid nucleation rates, at temperatures between 109 K and 168 K, for n-pentane, n-hexane and n-heptane were obtained by combining data from pressure trace measurements and small angle x-ray scattering experiments. For all n- ii alkanes, the nucleation rates increase with increase in supersaturation and decrease in temperature. Using two nozzles, the critical cluster sizes of n-heptane ranged from ~ 8 to ~12 and increased with temperature. Overall, the molecular contents of the critical clusters determined from experiments are higher than predictions from classical nucleation theory. Motivated by the success of the first nucleation rates experiments, we determined the properties of the critical clusters of short chain n-alkanes. Additional nucleation measurements (pressure trace measurements and small angle x-ray scattering) were made in another nozzle with higher expansion rates. Again, for all n-alkanes, the molecular content of the critical clusters was found to be from ~ 2 to ~ 9. Remarkable consistency was found between the critical cluster sizes determined using two and three supersonic nozzles. Furthermore, we delved into answering the question of when the surface-templating effect in the crystallization of a homologous series of n-alkanes slows down or vanishes. The freezing behavior of n-hexane and n-heptane are consistent with those of n-octane through n-decane. However, complementary results from pressure trace measurements, small angle x-ray scattering experiments, and Fourier transform infrared ray experiments suggested that freezing did not occur in n-pentane nanodroplets despite being supercooled by ~ 60 K. We resorted to molecular dynamics to rationalize these results. Thus, molecular dynamics simulations, using a slab geometry, supported our hypothesis that if the rearrangement of molecules at the surface becomes less pronounced as chain length decreases then freezing of the whole droplet may not occur on the timescale of our experiment. iii To my father, late mother, hungry kids on the planet, homeless humans, and the universe. iv Acknowledgments My first utmost sincere and unparalleled appreciation goes to my academic advisor, Dr. Barbara Ellen Wyslouzil, who has been very supportive and kind. Working with her for the past five years has shaped my approach to scientific inquiries and honed my skills in the field of chemical engineering. I have been imparted with the virtue of doggedness via working with her as she always offered help in making sure I achieved my goals. I would also like to thank my committee members - Dr. Isamu Kusaka and Dr. Nicholas Brunelli - for their constructive criticism of my research. Words cannot express how much I am happy to have them on my committee. I am also forever grateful for the inestimable assistance I received on molecular dynamics simulations from Dr. Sherwin Singer. He was always patient to explain to me the nitty-gritty of molecular dynamics simulations. The completeness of my work has been possible with the help of Dr. Soenke Seifert and Randall Winans at the Argonne National Laboratory in Illinois. Contributions of Dr. Judith Wolk in running small angle x-ray scattering (SAXS) experiments are also appreciated. My gratitude also goes to my former colleagues, Dr. Viraj Modak and Dr. Andrew Amaya, for getting me started with pressure trace measurements and Fourier transform infrared ray experiments in the aerosols research laboratory. They were always there to answer all my questions, both the smart and dumb ones. I would also like to appreciate my v former colleague (Dr. Yensil Park) and current colleagues – Kayane Dingilian, Sun Tong, and Jiaqi Luo – for making the office environment a non-toxic and conducive one for me. My appreciation also goes to my Nigerian friends at the Ohio state university – Dr. Olumuyiwa Adesoye, Ayo Olugbuyiro, Kayode Odumboni, and Sylvester Odonnell. It was fun spending some Christmas and new year holidays together with them. Finally, I want to deeply appreciate my father, my late mother of blessed memory, my siblings, my aunt, uncle, and first cousins (The Oyebodes) for their support throughout my academic journey in three continents on this planet. Knowing that I have family members who would have sleepless nights over me makes me think life might have a meaning and the universe might have a purpose. vi Vita May 2003 - Nov 2008 ………………… Bachelor of Chemical Engineering, Obafemi Awolowo University, Ile-ife, Nigeria. September 2011 – June 2013 …………… Master of Science in Chemical Engineering King Fahd University of Petroleum and Minerals, Dhahran, Kingdom of Saudi Arabia. August 2013 – June 2014 ………………. Graduate Research Associate University of South Carolina August 2014 – May 2017 ………………… Master of Science in Chemical Engineering The Ohio State University August 2014 – present ……………………. Graduate Research Associate The Ohio State University vii Publications K.E. Ogunronbi, A. Sepehri, B. Chen, and B.E. Wyslouzil “Vapor phase nucleation of the short- chain n-alkanes (n-pentane, n-hexane and n-heptane): Experiments and Monte Carlo simulations”. Journal of Chemical Physics, Volume 148, pp. 144312 (2018). Fields of Study Major Field: Chemical Engineering viii Table of Contents Abstract ............................................................................................................................ii Dedication ........................................................................................................................iv Acknowledgement ...........................................................................................................v Vita ...................................................................................................................................vii List of Tables ...................................................................................................................xiii List of Figures ..................................................................................................................xvi Chapter 1: Introduction ....................................................................................................1 1.1 Overview and Motivation ........................................................................................1 1.2 Research Objectives .................................................................................................7 1.3 Thesis Outline ..........................................................................................................8 Chapter 2: Nucleation Theory ..........................................................................................14 2.1 Vapor-Liquid Nucleation Theory ............................................................................14 2.2 Liquid-Solid Nucleation Theory ..............................................................................20 Chapter 3: Nucleation of highly Supersaturated Vapors of lower n-alkanes ...................25 3.1 Introduction ..............................................................................................................26 3.2 Experiments and Data Analysis ...............................................................................29 3.2.1 Chemicals and Physical Properties .....................................................................29 ix 3.2.2 Flow Apparatus and Supersonic nozzle ..............................................................30 3.2.3 Pressure Trace Measurements
Recommended publications
  • Use of Solvents for Pahs Extraction and Enhancement of the Pahs Bioremediation in Coal- Tar-Contaminated Soils Pak-Hing Lee Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2000 Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal- tar-contaminated soils Pak-Hing Lee Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Environmental Engineering Commons Recommended Citation Lee, Pak-Hing, "Use of solvents for PAHs extraction and enhancement of the PAHs bioremediation in coal-tar-contaminated soils " (2000). Retrospective Theses and Dissertations. 13912. https://lib.dr.iastate.edu/rtd/13912 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter fece, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quaiity of the copy submitted. Broken or indistinct print colored or poor quality illustrations and photographs, print bleedthrough, substeindard margins, and improper alignment can adversely affect reproduction. In the unlilcely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Determination of Parent and Alkylated Polycyclic Aromatic Hydrocarbons (Pahs) in Biota and Sediment
    ICES TECHNIQUES IN MARINE ENVIRONMENTAL SCIENCES NO. 45 NOVEMBER 2009 Determination of parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in biota and sediment L. WEBSTER • J. TRONCZYNSKI P. KORYTAR • K. BOOIJ • R. LAW International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44 – 46 DK‐1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Our cover photo was taken by N. Penny Holliday aboard the RRS “Discovery” in rough seas in the Rockall Trough. Recommended format for purposes of citation: Webster, L., Tronczynski, J., Korytar, P., Booij, K., and Law, R. 2010. Determination of parent and alkylated polycyclic aromatic hydrocarbons (PAHs) in biota and sediment. ICES Techniques in Marine Environmental Sciences. No. 45. 26 pp. Series Editor: Paul D. Keizer For permission to reproduce material from this publication, please apply directly to the General Secretary. Correspondence concerning the details of any method or procedure should be directed to the author(s). This series presents detailed descriptions of methods and procedures relating to chemical and biological measurements in the marine environment. Most techniques described have been selected for documentation based on performance in ICES or other intercalibration or intercomparison exercises: they have been carefully evaluated and shown to yield good results when correctly applied. They have also been subject to review by relevant ICES working groups, but this is not to be construed as constituting official recommendation by the Council. ISBN 978-87-7482-074-1 978-87-7482-297-4 https://doi.org/10.17895/ices.pub.5070 ISSN 0903 – 2606 2707-6997 © 2010 International Council for the Exploration of the Sea ICES Techniques in Marine Environmental Sciences No.
    [Show full text]
  • 1 Refinery and Petrochemical Processes
    3 1 Refinery and Petrochemical Processes 1.1 Introduction The combination of high demand for electric cars and higher automobile engine effi- ciency in the future will mean less conversion of petroleum into fuels. However, the demand for petrochemicals is forecast to rise due to the increase in world popula- tion. With this, it is expected that modern and more innovative technologies will be developed to serve the growth of the petrochemical market. In a refinery process, petroleum is converted into petroleum intermediate prod- ucts, including gases, light/heavy naphtha, kerosene, diesel, light gas oil, heavy gas oil, and residue. From these intermediate refinery product streams, several fuels such as fuel gas, liquefied petroleum gas, gasoline, jet fuel, kerosene, auto diesel, and other heavy products such as lubricants, bunker oil, asphalt, and coke are obtained. In addition, these petroleum intermediates can be further processed and separated into products for petrochemical applications. In this chapter, petroleum will be introduced first. Petrochemicals will be intro- duced in the second part of the chapter. Petrochemicals – the main subject of this book – will address three major areas, (i) the production of the seven cornerstone petrochemicals: methane and synthesis gas, ethylene, propylene, butene, benzene, toluene, and xylenes; (ii) the uses of the seven cornerstone petrochemicals, and (iii) the technology to separate petrochemicals into individual components. 1.2 Petroleum Petroleum is derived from the Latin words “petra” and “oleum,” which means “rock” and “oil,” respectively. Petroleum also is known as crude oil or fossil fuel. It is a thick, flammable, yellow-to-black mixture of gaseous, liquid, and solid hydrocarbons formed from the remains of plants and animals.
    [Show full text]
  • Dehydrogenation by Heterogeneous Catalysts
    Dehydrogenation by Heterogeneous Catalysts Daniel E. Resasco School of Chemical Engineering and Materials Science University of Oklahoma Encyclopedia of Catalysis January, 2000 1. INTRODUCTION Catalytic dehydrogenation of alkanes is an endothermic reaction, which occurs with an increase in the number of moles and can be represented by the expression Alkane ! Olefin + Hydrogen This reaction cannot be carried out thermally because it is highly unfavorable compared to the cracking of the hydrocarbon, since the C-C bond strength (about 246 kJ/mol) is much lower than that of the C-H bond (about 363 kJ/mol). However, in the presence of a suitable catalyst, dehydrogenation can be carried out with minimal C-C bond rupture. The strong C-H bond is a closed-shell σ orbital that can be activated by oxide or metal catalysts. Oxides can activate the C-H bond via hydrogen abstraction because they can form O-H bonds, which can have strengths comparable to that of the C- H bond. By contrast, metals cannot accomplish the hydrogen abstraction because the M- H bonds are much weaker than the C-H bond. However, the sum of the M-H and M-C bond strengths can exceed the C-H bond strength, making the process thermodynamically possible. In this case, the reaction is thought to proceed via a three centered transition state, which can be described as a metal atom inserting into the C-H bond. The C-H bond bridges across the metal atom until it breaks, followed by the formation of the corresponding M-H and M-C bonds.1 Therefore, dehydrogenation of alkanes can be carried out on oxides as well as on metal catalysts.
    [Show full text]
  • Process Synthesis
    PROCESS SYNTHESIS DALE F. RUDD University of Wisconsin Madison, Wisconsin 53706 INTRODUCTION In the words of Webster, synthesis is "the proper way to approach process development. In combining of often diverse conceptions into a co­ these theories of process development, each syn­ herent whole" and analysis is "an examination thesis step defines an analysis problem the solu­ of a complex, its elements and their relations." tion of which provides data required for further Synthesis refers to the more inventive aspects of synthesis steps. Further, it became apparent that engineering and analysis to the more scientific. this organization of alternating synthesis and Both are required in the development of industrial analysis steps begs the development of educational processes. material for the early stages of engineering edu­ Since World War II engineering education has cation. moved strongly towards analysis, with the intro­ In this report we examine the development of duction of courses which analyse individual pro­ a first course in engineering in which synthesis cess operations and phenome,na. rransport phe­ and analysis are taught simultaneously. Elemen­ nomena, unit operations, process control, thermo­ tary new principles of process synthesis are com­ dynamics and other engineering science courses bined with the classic analysis techniques of greatly strengthened engineering education by material and energy balancing. Emphasis is on showing how things are and how they work. the development of process technology rather than Unfortunately, there was not a parallel de­ on the analysis of existing processes. velopment in the teaching of synthesis. The teach­ ing of how things ought to be rather than how RESEARCH IN PROCESS SYNTHESIS they are.
    [Show full text]
  • Supporting Information of Polycyclic Aromatic Hydrocarbons (Pahs) In
    Supporting Information of Polycyclic aromatic hydrocarbons (PAHs) in aerosols over the central Himalayas along two south-north transects Peng Fei Chen1,5, Chao Liu Li1, Shi Chang Kang2,3*, Maheswar Rupakheti4, Arnico K Panday6, Fang Ping Yan2,5, Quan Lian Li2, Qiang Gong Zhang1,3, Jun Ming Guo1,5, Dipesh Rupakheti1,5, Wei Luo7 1Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China 2State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research Institute, Lanzhou 730000, China 3Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100085, China; 4Institute for Advanced Sustainability Studies, Potsdam 14467, Germany 5University of Chinese Academy of Sciences, Beijing 100039, China 6International Centre for Integrated Mountain Development, Kathmandu, Nepal 7State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China Correspondence to: S. Kang ([email protected]) Text SI-1 Sample extraction and analysis Text SI-2 Quality control Table SI-1 Percentage contribution (%) of each species to total PAHs in the atmosphere over the Himalayas. Text SI-1 Sample extraction and analysis A quarter of each filter was cut into pieces, placed into a glass tube, and immersed in 20 mL of dichloromethane (DCM) and n-hexane (1:1). The extraction was performed by sonication twice for 30 min at 27 °C. Every single sample was spiked with deuterated PAHs (naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12) as recovery surrogates.
    [Show full text]
  • Synchronous Fluorescence Spectroscopic Study Of
    Spectrochimica Acta Part A 79 (2011) 1034–1041 Contents lists available at ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy jou rnal homepage: www.elsevier.com/locate/saa Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye ∗ Digambara Patra , Christelle Barakat Department of Chemistry, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Riad El Solh, Beirut 1107-2020, Lebanon a r t i c l e i n f o a b s t r a c t Article history: Curcumin, the main yellow bioactive component of turmeric, has recently acquired attention by chemists Received 1 July 2010 due its wide range of potential biological applications as an antioxidant, an anti-inflammatory, and an Accepted 13 April 2011 anti-carcinogenic agent. This molecule fluoresces weakly and poorly soluble in water. In this detailed study of curcumin in thirteen different solvents, both the absorption and fluorescence spectra of curcumin Keywords: was found to be broad, however, a narrower and simple synchronous fluorescence spectrum of curcumin Curcumin was obtained at = 10–20 nm. Lippert–Mataga plot of curcumin in different solvents illustrated two Solvent polarity E sets of linearity which is consistent with the plot of Stokes’ shift vs. the 30. When Stokes’s shift in SFS T wavenumber scale was replaced by synchronous fluorescence maximum in nanometer scale, the solvent max E polarity dependency measured by SFS vs. Lippert–Mataga plot or T30 values offered similar trends as max measured via Stokes’ shift for protic and aprotic solvents for curcumin. Better linear correlation of SFS vs.
    [Show full text]
  • Synthetic Turf Scientific Advisory Panel Meeting Materials
    California Environmental Protection Agency Office of Environmental Health Hazard Assessment Synthetic Turf Study Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019 MEETING MATERIALS THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency Agenda Synthetic Turf Scientific Advisory Panel Meeting May 31, 2019, 9:30 a.m. – 4:00 p.m. 1001 I Street, CalEPA Headquarters Building, Sacramento Byron Sher Auditorium The agenda for this meeting is given below. The order of items on the agenda is provided for general reference only. The order in which items are taken up by the Panel is subject to change. 1. Welcome and Opening Remarks 2. Synthetic Turf and Playground Studies Overview 4. Synthetic Turf Field Exposure Model Exposure Equations Exposure Parameters 3. Non-Targeted Chemical Analysis Volatile Organics on Synthetic Turf Fields Non-Polar Organics Constituents in Crumb Rubber Polar Organic Constituents in Crumb Rubber 5. Public Comments: For members of the public attending in-person: Comments will be limited to three minutes per commenter. For members of the public attending via the internet: Comments may be sent via email to [email protected]. Email comments will be read aloud, up to three minutes each, by staff of OEHHA during the public comment period, as time allows. 6. Further Panel Discussion and Closing Remarks 7. Wrap Up and Adjournment Agenda Synthetic Turf Advisory Panel Meeting May 31, 2019 THIS PAGE LEFT BLANK INTENTIONALLY Office of Environmental Health Hazard Assessment California Environmental Protection Agency DRAFT for Discussion at May 2019 SAP Meeting. Table of Contents Synthetic Turf and Playground Studies Overview May 2019 Update .....
    [Show full text]
  • Chemistry Grade Span 9/10
    Chemistry Grade Span 9/10 Carbon and Carbon Compounds Subject Matter and Methodological Competencies • name the allotropes of carbon and use them to explain the relationship between its structure and properties • state the characteristics of the oxides of carbon • conduct experiments to o detect evidence of carbon dioxide o detect evidence of carbonates (using carbon dioxide detection) o describe the natural formation and decay processes of carbonates and hydrogen carbonates and use this to explain a simple model of the carbon cycle Natural Gas and Crude Oil Subject Matter and Methodological Competencies • identify natural gas, crude oil and coal as fossil fuels • explain the causes and consequences of increasing carbon dioxide concentrations in the atmosphere • discuss the economic and ecological consequences of the production and transport of natural gas and crude oil • apply knowledge of substance mixtures and substance separation using the example of fractional distillation of petroleum • describe the molecular structure of the gaseous alkanes using chemical formulas, structural formulas and simplified structural formulas • conduct experiments to o examine the flammability and solubility of selected alkanes o determine that water and carbon dioxide are the products of combustion o explain the relationship between the construction, properties and uses of important alkanes (e.g. methane - natural gas, propane and butane - liquid gas, octane - gasoline, decane - diesel, octadecane - paraffin candle wax) o explain the cohesion of alkane
    [Show full text]
  • Effect of Epoxide Content on the Vulcanizate Structure of Silica-Filled Epoxidized Natural Rubber (ENR) Compounds
    polymers Article Effect of Epoxide Content on the Vulcanizate Structure of Silica-Filled Epoxidized Natural Rubber (ENR) Compounds Gyeongchan Ryu 1, Donghyuk Kim 1, Sanghoon Song 1, Kiwon Hwang 1, Byungkyu Ahn 2 and Wonho Kim 1,* 1 School of Chemical Engineering, Pusan National University, Busan 46241, Korea; [email protected] (G.R.); [email protected] (D.K.); [email protected] (S.S.); [email protected] (K.H.) 2 Hankook Tire & Technology Co., Ltd., R&D Center, 50 Yuseong-daero 935 beon-gil, Yuseong-gu, Daejeon 34127, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-51-510-3190 Abstract: The demand for truck–bus radial (TBR) tires with enhanced fuel efficiency has grown in recent years. Many studies have investigated silica-filled natural rubber (NR) compounds to address these needs. However, silica-filled compounds offer inferior abrasion resistance compared to carbon black-filled compounds. Further, the use of NR as a base rubber can hinder silanization and coupling reactions due to interference by proteins and lipids. Improved silica dispersion be achieved without the use of a silane coupling agent by introducing epoxide groups to NR, which serve as silica-affinitive functional groups. Furthermore, the coupling reaction can be promoted by facilitating chemical interaction between the hydroxyl group of silica and the added epoxide groups. Thus, this study evaluated the properties of commercialized NR, ENR-25, and ENR-50 compounds with or without an added silane coupling agent, and the filler–rubber interaction was quantitatively calculated using vulcanizate structure analysis. The increased epoxide content, when the silane coupling agent was not used, improved silica dispersion, abrasion resistance, fuel efficiency, and wet Citation: Ryu, G.; Kim, D.; Song, S.; grip.
    [Show full text]
  • Thermal Conductivity Correlations for Minor Constituent Fluids in Natural
    Fluid Phase Equilibria 227 (2005) 47–55 Thermal conductivity correlations for minor constituent fluids in natural gas: n-octane, n-nonane and n-decaneଝ M.L. Huber∗, R.A. Perkins Physical and Chemical Properties Division, National Institute of Standards and Technology, Boulder, CO 80305, USA Received 21 July 2004; received in revised form 29 October 2004; accepted 29 October 2004 Abstract Natural gas, although predominantly comprised of methane, often contains small amounts of heavier hydrocarbons that contribute to its thermodynamic and transport properties. In this manuscript, we review the current literature and present new correlations for the thermal conductivity of the pure fluids n-octane, n-nonane, and n-decane that are valid over a wide range of fluid states, from the dilute-gas to the dense liquid, and include an enhancement in the critical region. The new correlations represent the thermal conductivity to within the uncertainty of the best experimental data and will be useful for researchers working on thermal conductivity models for natural gas and other hydrocarbon mixtures. © 2004 Elsevier B.V. All rights reserved. Keywords: Alkanes; Decane; Natural gas constituents; Nonane; Octane; Thermal conductivity 1. Introduction 2. Thermal conductivity correlation Natural gas is a mixture of many components. Wide- We represent the thermal conductivity λ of a pure fluid as ranging correlations for the thermal conductivity of the lower a sum of three contributions: alkanes, such as methane, ethane, propane, butane and isobu- λ ρ, T = λ T + λ ρ, T + λ ρ, T tane, have already been developed and are available in the lit- ( ) 0( ) r( ) c( ) (1) erature [1–6].
    [Show full text]
  • Ignition Characteristics of Heptane-Hydrogen and Heptane
    international journal of hydrogen energy 36 (2011) 15392e15402 Available online at www.sciencedirect.com journal homepage: www.elsevier.com/locate/he Ignition characteristics of heptaneehydrogen and heptaneemethane fuel blends at elevated pressures S.K. Aggarwal*, O. Awomolo, K. Akber Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W, Taylor St, Chicago, IL 60607, USA article info abstract Article history: There is significant interest in using hydrogen and natural gas for enhancing the perfor- Received 20 May 2011 mance of diesel engines. We report herein a numerical investigation on the ignition of Received in revised form n-C7H16/H2 and n-C7H16/CH4 fuel blends. The CHEMKIN 4.1 software is used to model 17 August 2011 ignition in a closed homogenous reactor under conditions relevant to diesel/HCCI engines. Accepted 19 August 2011 Three reaction mechanisms used are (i) NIST mechanism involving 203 species and 1463 Available online 14 September 2011 reactions, (ii) Dryer mechanism with 116 species and 754 reactions, and (iii) a reduced mechanism (Chalmers) with 42 species and 168 reactions. The parameters include pres- Keywords: sures of 30 atm and 55 atm, equivalence ratios of ɸ ¼ 0.5, 1.0 and 2.0, temperature range of e Hydrogeneheptane blends 800 1400 K, and mole fractions of H2 or CH4 in the blend between 0 and 100%. For Methaneeheptane blends n-C7H16/air mixtures, the Chalmers mechanism not only provides closer agreement with Ignition measurements compared to the other two mechanisms, but also reproduces the negative Engine conditions temperature coefficient regime. Consequently, this mechanism is used to characterize the effects of H2 or CH4 on the ignition of n-C7H16.
    [Show full text]