Extending Gene Ontology in the Context of Extracellular RNA and Vesicle Communication

Total Page:16

File Type:pdf, Size:1020Kb

Extending Gene Ontology in the Context of Extracellular RNA and Vesicle Communication UC San Diego UC San Diego Previously Published Works Title Extending gene ontology in the context of extracellular RNA and vesicle communication. Permalink https://escholarship.org/uc/item/7wt8r2d9 Journal Journal of biomedical semantics, 7(1) ISSN 2041-1480 Authors Cheung, Kei-Hoi Keerthikumar, Shivakumar Roncaglia, Paola et al. Publication Date 2016 DOI 10.1186/s13326-016-0061-5 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Cheung et al. Journal of Biomedical Semantics (2016) 7:19 DOI 10.1186/s13326-016-0061-5 RESEARCH Open Access Extending gene ontology in the context of extracellular RNA and vesicle communication Kei-Hoi Cheung1,2,21*, Shivakumar Keerthikumar3,21, Paola Roncaglia4,22, Sai Lakshmi Subramanian5,21, Matthew E. Roth5,21, Monisha Samuel3, Sushma Anand3, Lahiru Gangoda3, Stephen Gould6,21,23, Roger Alexander7,21, David Galas7,21, Mark B. Gerstein8,9,10,21, Andrew F. Hill3,24, Robert R. Kitchen8,21, Jan Lötvall11,24, Tushar Patel12,21, Dena C. Procaccini13,21, Peter Quesenberry14,21,24, Joel Rozowsky8,10,21, Robert L. Raffai15,21, Aleksandra Shypitsyna4,22, Andrew I. Su16,21, Clotilde Théry17,24, Kasey Vickers18,21, Marca H.M. Wauben19,24, Suresh Mathivanan3,21,24, Aleksandar Milosavljevic5,21 and Louise C. Laurent20,21* Abstract Background: To address the lack of standard terminology to describe extracellular RNA (exRNA) data/metadata, we have launched an inter-community effort to extend the Gene Ontology (GO) with subcellular structure concepts relevant to the exRNA domain. By extending GO in this manner, the exRNA data/metadata will be more easily annotated and queried because it will be based on a shared set of terms and relationships relevant to extracellular research. Methods: By following a consensus-building process, we have worked with several academic societies/consortia, including ERCC, ISEV, and ASEMV, to identify and approve a set of exRNA and extracellular vesicle-related terms and relationships that have been incorporated into GO. In addition, we have initiated an ongoing process of extractions of gene product annotations associated with these terms from Vesiclepedia and ExoCarta, conversion of the extracted annotations to Gene Association File (GAF) format for batch submission to GO, and curation of the submitted annotations by the GO Consortium. As a use case, we have incorporated some of the GO terms into annotations of samples from the exRNA Atlas and implemented a faceted search interface based on such annotations. Results: We have added 7 new terms and modified 9 existing terms (along with their synonyms and relationships) to GO. Additionally, 18,695 unique coding gene products (mRNAs and proteins) and 963 unique non-coding gene products (ncRNAs) which are associated with the terms: “extracellular vesicle”, “extracellular exosome”, “apoptotic body”,and “microvesicle” were extracted from ExoCarta and Vesiclepedia. These annotations are currently being processed for submission to GO. Conclusions: As an inter-community effort, we have made a substantial update to GO in the exRNA context. We have also demonstrated the utility of some of the new GO terms for sample annotation and metadata search. Keywords: Ontology, Extracellular RNA, Extracellular vesicle, Metadata, Faceted search, Atlas * Correspondence: [email protected]; `[email protected] 1Department of Emergency Medicine, Yale Center for Medical Informatics, Yale University School of Medicine, New Haven, CT, USA 20Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA Full list of author information is available at the end of the article © 2016 Cheung et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Cheung et al. Journal of Biomedical Semantics (2016) 7:19 Page 2 of 9 Background that uninfected chick and mammalian cells release RNA- Extracellular RNAs (exRNAs) are broadly defined as containing vesicles ([21]). However, these non-viral EVs RNAs that are present in the acellular portions of bio- remained largely uninvestigated for decades. EVs re- fluids, such as body fluids (blood, cerebrospinal fluid, entered the literature in the late 1960’swithdescriptions bile, lymph, vitreous humour, amniotic fluid, ascites, of calcifying matrix vesicles released by chondrocytes pleural, pericardial and peritoneal fluids, etc.), secretions ([22]) and vesicular ‘dust’ released by platelets ([23]). (saliva, urine, sweat, tears, milk, seminal fluid, etc.), and These and other such vesicles are now commonly referred cell and tissue culture supernatants. RNA sequencing to as ‘exosomes,’ a term coined by Trams et al. in 1981 analyses of exRNAs demonstrate that they represent al- ([24]) to refer to secreted vesicles that “may serve a most the entire range of cellular RNA species, including physiologic function”, including both small vesicles of rRNAs, tRNAs, mRNAs, miRNAs, piRNAs, lncRNAs, ~100 nm in diameter, and larger vesicles of ~600 nm and circular RNAs ([1–5]). However, the profiles of cel- diameter or greater. lular and exRNAs are not identical, as some cellular This first definition of the term ‘exosome’ has been RNAs appear to be highly enriched in the exRNA frac- subsequently overlooked at least twice, first in 1987 by tion, while others appear to be significantly underrepre- investigators studying the vesicular secretion of the sented, and still others lie between these extremes of transferrin receptor, who adopted a more restrictive def- enrichment or exclusion. inition of the term, conflating it with a delayed mode of Among the many reasons cells might release exRNAs, vesicle secretion in which the vesicles bud at endosome perhaps the most intriguing possibility is that exRNAs membranes to create a multivesicular body (MVB), might contribute to intercellular communication. Export followed later by MVB fusion with the plasma mem- of exRNAs may also be used to eliminate undesired brane to release the vesicles into the extracellular space RNAs from the originating cell. Finally, some exRNAs ([25]). In 1997, investigators studying an RNA-degrading might be generated in a nonspecific manner, either by protein complex adopted the term ‘exosome’, this time living cells (e.g. by a ‘bulk flow’ process) or as a conse- for an entirely unrelated intracellular biochemical entity quence of cell death (reviewed in [6]). ([26]). Not surprisingly, other investigators have come to ExRNAs appear to be universally associated with carrier different conclusions about which definition holds scien- vehicles, likely due to the rapid degradation of unpro- tific precedent, resulting in variable use of the term ‘exo- tected RNAs in biofluids ([4, 7–10]). The biochemical some’ in different laboratories. EV-related nomenclatures properties of these carriers are likely to be the primary de- are further complicated by the common use of additional terminant of the types and specific identities of exRNAs terms for secreted vesicles that are variably associated with that are secreted from cells, as well as their stability in the different biophysical properties or biogenesis pathways, as extracellular milieu. The first exRNA carriers identified wells as terms based on the cell type or tissue of origin. were RNA viruses, which carry not only viral RNAs, but The former include ‘ectosomes’ (which refer to EVs that also varying levels of host-encoded RNAs. For example, are produced by budding from the plasma membrane retroviruses typically carry two host tRNAs and sub- ([27, 28]) and ‘microvesicles’ (which are frequently oper- stoichiometric levels of host mRNAs from the cell in ationally defined as EVs that pellet at moderate centrifuga- addition to two copies of the viral RNA genome and key tion speeds (~10,000–20,000 xg) [29]), while the latter viral proteins ([11–16]). In fact, retrovirally infected cells include ‘prostasomes’ ([30]), ‘epididymosomes’ ([31]), produce more “empty” virus-like particles (VLPs) than in- ‘immunosomes’ ([32, 33]), ‘oncosomes’ ([34]), and ‘platelet fectious virions. These VLPs have failed to encapsulate the dust’ ([23]). There are even some vesicle names that refer viral RNA genome, but can carry as much as 10 kb of to observed biological activities (e.g. ‘tolerosomes’ ([35]) host-encoded RNA ([17]). More recently, it has been dis- and ‘calcifying matrix vesicles’ ([22]). covered that virally uninfected cells also release RNAs into The International Society for Extracellular Vesicles the extracellular space, and that these exRNAs are associ- (ISEV) has previously attempted to clarify the nomencla- ated with extracellular vesicles (EVs), lipoproteins (LPPs, ture in this field. Its primary achievements have been to most commonly HDLs ([10, 18]), LDLs ([18, 19])), and (1) introduce the term ‘extracellular vesicle (EV)’ as a ribonucleoprotein particles (RNPs, most commonly general term intended to encompass all secreted vesicles, Ago2-containing RNPs ([9, 20]). While the biogenic and encourage its broad acceptance, and (2) encourage
Recommended publications
  • RNA Delivery by Extracellular Vesicles in Mammalian Cells and Its Applications
    REVIEWS RNA delivery by extracellular vesicles in mammalian cells and its applications Killian O’Brien 1, Koen Breyne1, Stefano Ughetto1,2, Louise C. Laurent 3,4 ✉ and Xandra O. Breakefield 1 ✉ Abstract | The term ‘extracellular vesicles’ refers to a heterogeneous population of vesicular bodies of cellular origin that derive either from the endosomal compartment (exosomes) or as a result of shedding from the plasma membrane (microvesicles, oncosomes and apoptotic bodies). Extracellular vesicles carry a variety of cargo, including RNAs, proteins, lipids and DNA , which can be taken up by other cells, both in the direct vicinity of the source cell and at distant sites in the body via biofluids, and elicit a variety of phenotypic responses. Owing to their unique biology and roles in cell–cell communication, extracellular vesicles have attracted strong interest, which is further enhanced by their potential clinical utility. Because extracellular vesicles derive their cargo from the contents of the cells that produce them, they are attractive sources of biomarkers for a variety of diseases. Furthermore, studies demonstrating phenotypic effects of specific extracellular vesicle- associated cargo on target cells have stoked interest in extracellular vesicles as therapeutic vehicles. There is particularly strong evidence that the RNA cargo of extracellular vesicles can alter recipient cell gene expression and function. During the past decade, extracellular vesicles and their RNA cargo have become better defined, but many aspects of extracellular vesicle biology remain to be elucidated. These include selective cargo loading resulting in substantial differences between the composition of extracellular vesicles and source cells; heterogeneity in extracellular vesicle size and composition; and undefined mechanisms for the uptake of extracellular vesicles into recipient cells and the fates of their cargo.
    [Show full text]
  • Results of a Worldwide Survey
    JOURNAL OF EXTRACELLULAR VESICLES 2018, VOL. 7, 1535745 https://doi.org/10.1080/20013078.2018.1535745 RESEARCH ARTICLE Towards mechanisms and standardization in extracellular vesicle and extracellular RNA studies: results of a worldwide survey Carolina Soekmadji a, Andrew F. Hill b, Marca H. Waubenc, Edit I. Buzásd,e, Dolores Di Viziof, Chris Gardinerg, Jan Lötvall h, Susmita Sahooi and Kenneth W. Witwer j aDepartment of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia; bDepartment of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia; cDepartment of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands; dDepartment of Genetics, Cell- and Immunobiology, Semmelweis University, Budapest, Hungary; eMTA-SE Immuno-Proteogenomics Research Groups, Budapest, Hungary; fDivision of Cancer Biology and Therapeutics, Departments of Surgery, Biomedical Sciences, and Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, USA; gResearch Department of Haematology, University College London, London, UK; hKrefting Research Centre, University of Gothenburg, Sweden; iDepartment of Medicine, Cardiology, Icahn School of Medicine at Mount Sinai, New York, USA; jDepartments of Molecular and Comparative Pathobiology and Neurology, The John Hopkins University School of Medicine, Baltimore, USA ABSTRACT KEYWORDS The discovery that extracellular vesicles (EVs) can transfer functional extracellular RNAs (exRNAs) Extracellular Vesicles; between cells opened new avenues into the study of EVs in health and disease. Growing interest in extracellular RNA; Exosomes; microvesicles; ectosomes; EV RNAs and other forms of exRNA has given rise to research programmes including but not limited to oncosomes; extracellular the Extracellular RNA Communication Consortium (ERCC) of the US National Institutes of Health.
    [Show full text]
  • Characterization of Nucleic Acids from Extracellular Vesicle-Enriched
    Bart et al. BMC Genomics (2021) 22:425 https://doi.org/10.1186/s12864-021-07733-9 RESEARCH Open Access Characterization of nucleic acids from extracellular vesicle-enriched human sweat Geneviève Bart1, Daniel Fischer2, Anatoliy Samoylenko1, Artem Zhyvolozhnyi1, Pavlo Stehantsev1, Ilkka Miinalainen1, Mika Kaakinen1, Tuomas Nurmi1, Prateek Singh1,3, Susanna Kosamo1, Lauri Rannaste4, Sirja Viitala2, Jussi Hiltunen4 and Seppo J Vainio1* Abstract Background: The human sweat is a mixture of secretions from three types of glands: eccrine, apocrine, and sebaceous. Eccrine glands open directly on the skin surface and produce high amounts of water-based fluid in response to heat, emotion, and physical activity, whereas the other glands produce oily fluids and waxy sebum. While most body fluids have been shown to contain nucleic acids, both as ribonucleoprotein complexes and associated with extracellular vesicles (EVs), these have not been investigated in sweat. In this study we aimed to explore and characterize the nucleic acids associated with sweat particles. Results: We used next generation sequencing (NGS) to characterize DNA and RNA in pooled and individual samples of EV-enriched sweat collected from volunteers performing rigorous exercise. In all sequenced samples, we identified DNA originating from all human chromosomes, but only the mitochondrial chromosome was highly represented with 100% coverage. Most of the DNA mapped to unannotated regions of the human genome with some regions highly represented in all samples. Approximately 5 % of the reads were found to map to other genomes: including bacteria (83%), archaea (3%), and virus (13%), identified bacteria species were consistent with those commonly colonizing the human upper body and arm skin.
    [Show full text]
  • Heterogeneity and Interplay of the Extracellular Vesicle Small RNA
    www.nature.com/scientificreports OPEN Heterogeneity and interplay of the extracellular vesicle small RNA transcriptome and proteome Received: 29 December 2017 Helena Sork 1, Giulia Corso1, Kaarel Krjutskov2,3,4, Henrik J. Johansson 5, Joel Z. Nordin1,6, Accepted: 15 June 2018 Oscar P. B. Wiklander1,6, Yi Xin Fiona Lee 7,10, Jakub Orzechowski Westholm 8, Janne Lehtiö 5, Published: xx xx xxxx Matthew J. A. Wood6,7, Imre Mäger7,9 & Samir EL Andaloussi1,6,7 Extracellular vesicles (EVs) mediate cell-to-cell communication by delivering or displaying macromolecules to their recipient cells. While certain broad-spectrum EV efects refect their protein cargo composition, others have been attributed to individual EV-loaded molecules such as specifc miRNAs. In this work, we have investigated the contents of vesicular cargo using small RNA sequencing of cells and EVs from HEK293T, RD4, C2C12, Neuro2a and C17.2. The majority of RNA content in EVs (49–96%) corresponded to rRNA-, coding- and tRNA fragments, corroborating with our proteomic analysis of HEK293T and C2C12 EVs which showed an enrichment of ribosome and translation-related proteins. On the other hand, the overall proportion of vesicular small RNA was relatively low and variable (2-39%) and mostly comprised of miRNAs and sequences mapping to piRNA loci. Importantly, this is one of the few studies, which systematically links vesicular RNA and protein cargo of vesicles. Our data is particularly useful for future work in unravelling the biological mechanisms underlying vesicular RNA and protein sorting and serves as an important guide in developing EVs as carriers for RNA therapeutics.
    [Show full text]
  • Charting Extracellular Transcriptomes in the Human Biofluid RNA Atlas
    bioRxiv preprint doi: https://doi.org/10.1101/823369; this version posted May 4, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Charting extracellular transcriptomes in The Human Biofluid RNA Atlas 2 3 Eva Hulstaert (1,2,3), Annelien Morlion (1,2), Francisco Avila Cobos (1,2), Kimberly Verniers 4 (1,2), Justine Nuytens (1,2), Eveline Vanden Eynde (1,2), Nurten Yigit (1,2), Jasper Anckaert 5 (1,2), Anja Geerts (4), Pieter Hindryckx (4), Peggy Jacques (5,6), Guy Brusselle (7), Ken R. Bracke 6 (7), Tania Maes (7), Thomas Malfait (7), Thierry Derveaux (8), Virginie Ninclaus (8), Caroline 7 Van Cauwenbergh (8), Kristien Roelens (9), Ellen Roets (9), Dimitri Hemelsoet (10), Kelly 8 Tilleman (11), Lieve Brochez (2,3), Scott Kuersten (12), Lukas Simon (13), Sebastian Karg (14), 9 Alexandra Kautzky-Willers (15), Michael Leutner (15), Christa Nöhammer (16), Ondrej Slaby 10 (17,18,19), Roméo Willinge Prins (20), Jan Koster (20), Steve Lefever (1,2), Gary P. Schroth 11 (12), Jo Vandesompele (1,2)*, Pieter Mestdagh (1,2)* 12 13 1 Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, C. Heymanslaan 10, 14 9000, Ghent, Belgium 15 2 Cancer Research Institute Ghent (CRIG), Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium 16 3 Department of Dermatology, Ghent University Hospital, C. Heymanslaan 10, 9000, Ghent, Belgium 17 4 Department of Gastroenterology, Ghent University Hospital, C.
    [Show full text]
  • Exogenous RNA As a Regulatory Signal During a Plant's Interaction
    plants Commentary Exogenous RNA as a Regulatory Signal during a Plant’s Interaction with the Biotic Environment: An Evolutionary Perspective and Future Applications in Agriculture Sergey Ivashuta *, Alberto Iandolino and Greg Watson Bayer AG, Chesterfield, MO 63017, USA; [email protected] (A.I.); [email protected] (G.W.) * Correspondence: [email protected] Abstract: Environmental RNAi (eRNAi) is a sequence-specific regulation of endogenous gene ex- pression in a responsive organism by exogenous RNA. While exogenous RNA transfer between organisms of different kingdoms of life have been unambiguously identified in nature, our under- standing of the biological significance of this phenomenon remains obscure, particularly within an evolutionary context. During the last decade multiple reports utilizing various mechanisms of natural eRNAi phenomena have been attempted to develop new agricultural traits and products including weed, disease and insect control. Although these attempts yielded mixed results, this concept remains extremely attractive for many agricultural applications. To better utilize eRNAi for practical applications, we would like to emphasize the necessity of understanding the biological significance of this phenomenon within an evolutionary context and learn from nature by developing advanced tools to identify and study new cases of exogeneous RNA transfer and eRNAi. In this Citation: Ivashuta, S.; Iandolino, A.; opinion article we would like to look at the exogeneous RNA transfer from an evolutionary perspec- Watson, G. Exogenous RNA as a tive, propose that new cases of exogeneous RNA transfer still remain to be identified in nature, and Regulatory Signal during a Plant’s address a knowledge gap in understanding the biological function and significance of RNA transfer.
    [Show full text]
  • Comprehensive Profiling of Extracellular RNA in HPV‑Induced Cancers Using an Improved Pipeline for Small RNA‑Seq Analysis
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2020 Comprehensive profiling of extracellular RNA in HPV‑induced cancers using an improved pipeline for small RNA‑seq analysis Fangjia Tong Arlise Andress Gongyu Tang Ping Liu Xiaowei Wang Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs www.nature.com/scientificreports OPEN Comprehensive profling of extracellular RNA in HPV‑induced cancers using an improved pipeline for small RNA‑seq analysis Fangjia Tong1, Arlise Andress1, Gongyu Tang1, Ping Liu1 & Xiaowei Wang1,2,3* Extracellular RNAs (exRNAs) have attracted great attention due to their essential role in cell‑to‑cell communication as well as their potential as non‑invasive disease biomarkers. However, at present, there is no consensus on the best method to profle exRNA expression, which leads to signifcant variability across studies. To address this issue, we established an experimental pipeline for comprehensive profling of small exRNAs isolated from cell culture. By evaluating six RNA extraction protocols, we developed an improved method for robust recovery of vesicle‑bound exRNAs. With this method, we performed small RNA sequencing of exosomes (EXOs), microvesicles (MVs) and source cells from 14 cancer cell lines. Compared to cells, EXOs and MVs were similarly enriched in tRNAs and rRNAs, but depleted in snoRNAs. By miRNA profling analysis, we identifed a subset of miRNAs, most noticeably miR‑122‑5p, that were signifcantly over‑represented in EXOs and MVs across all 14 cell lines. In addition, we also identifed a subset of EXO miRNAs associated with cancer type or human papillomavirus (HPV) status, suggesting their potential roles in HPV‑induced cancers.
    [Show full text]
  • Extracellular RNA in Systemic Lupus Erythematosus Shanshan Liu1†, Dandan Wang1† and Yuan Liu2*
    Liu et al. ExRNA (2019) 1:33 https://doi.org/10.1186/s41544-019-0032-y ExRNA REVIEW Open Access Extracellular RNA in systemic lupus erythematosus Shanshan Liu1†, Dandan Wang1† and Yuan Liu2* Abstract Since the discovery of extracellular RNA (exRNA), it has been shown that exRNAs play a significant role as a transducer in intercellular communication and biomarkers in various diseases. Systemic lupus erythematosus (SLE) is a kind of autoimmune disease that has protean manifestations. The survival and long-term prognosis of patients with SLE has improved in these 5–10 years, while disease pathogenesis is still not clear. Many researchers found the changes in exRNA profile, and exRNAs are likely participating in the process of SLE. In this review, we summarize the current profile and function of exRNA in SLE. Circulating miRNAs, in particular, have been identified as biomarkers for SLE diagnosis. We also explore the function of lncRNA in SLE and the potential correlation with disease progression and activity. These studies show that exRNAs may take parts in the process of SLE and some of them can be used as diagnostic tool for SLE. Keywords: exRNAs, miRNAs, lncRNAs, Systemic lupus erythematosus Background RNAs [1–13]. Among the various types of RNA, many The role of extracellular RNA in the pathogenesis and exRNAs sequencing are focused on small RNA species therapy in systemic lupus erythematosus has been exten- (< 200 nt), especially miRNA [14, 15]. The range of con- sively addressed. This review will summarize the most centration of miRNA in sequencing of exRNA varied recent contents in this field.
    [Show full text]
  • Performance Assessment of Total RNA Sequencing of Human Biofluids And
    www.nature.com/scientificreports OPEN Performance assessment of total RNA sequencing of human biofuids and extracellular vesicles Celine Everaert1,2,7, Hetty Helsmoortel1,2,7, Anneleen Decock1,2, Eva Hulstaert1,2,3, Ruben Van Paemel 1,2, Kimberly Verniers1,2, Justine Nuytens1,2, Jasper Anckaert1,2, Nele Nijs4, Joeri Tulkens2,5, Bert Dhondt2,5,6, An Hendrix 2,5, Pieter Mestdagh1,2 & Jo Vandesompele 1,2,4* RNA profling has emerged as a powerful tool to investigate the biomarker potential of human biofuids. However, despite enormous interest in extracellular nucleic acids, RNA sequencing methods to quantify the total RNA content outside cells are rare. Here, we evaluate the performance of the SMARTer Stranded Total RNA-Seq method in human platelet-rich plasma, platelet-free plasma, urine, conditioned medium, and extracellular vesicles (EVs) from these biofuids. We found the method to be accurate, precise, compatible with low-input volumes and able to quantify a few thousand genes. We picked up distinct classes of RNA molecules, including mRNA, lncRNA, circRNA, miscRNA and pseudogenes. Notably, the read distribution and gene content drastically difer among biofuids. In conclusion, we are the frst to show that the SMARTer method can be used for unbiased unraveling of the complete transcriptome of a wide range of biofuids and their extracellular vesicles. All human biofuids contain a multitude of extracellular nucleic acids, harboring a wealth of information about health and disease status. In addition to established non-invasive prenatal testing of fetal nucleic acids in mater- nal plasma1, liquid biopsies have emerged as a novel powerful tool in the battle against cancer2.
    [Show full text]
  • Obstacles and Opportunities in the Functional Analysis of Extracellular Vesicle RNA – an ISEV Position Paper Bogdan Mateescua*, Emma J
    JOURNAL OF EXTRACELLULAR VESICLES, 2017 VOL. 6, 1286095 http://dx.doi.org/10.1080/20013078.2017.1286095 ORIGINAL RESEARCH ARTICLE Obstacles and opportunities in the functional analysis of extracellular vesicle RNA – an ISEV position paper Bogdan Mateescua*, Emma J. K. Kowal b*, Bas W. M. van Balkomc, Sabine Barteld, Suvendra N. Bhattacharyyae, Edit I. Buzásf, Amy H. Buckg, Paola de Candiah, Franklin W. N. Chowg, Saumya Dasi, Tom A. P. Driedonksj, Lola Fernández-Messinak, Franziska Haderkl,m, Andrew F. Hill n, Jennifer C. Jones o, Kendall R. Van Keuren- Jensenp, Charles P. Laiq, Cecilia Lässerr,s, Italia di Liegrot, Taral R. Lunavatr,s, Magdalena J. Lorenowiczu, Sybren L. N. Maasv,ImreMägerw,x, Maria Mittelbrunny,StefanMommaz, Kamalika Mukherjeee, Muhammed Nawazaa, D. Michiel Pegtelab, Michael W. Pfafflac, Raymond M. Schiffelersad, Hidetoshi Taharaae, Clotilde Théryaf, Juan Pablo Tosarag, Marca H. M. Waubenj, Kenneth W. Witwer ah and Esther N. M. Nolte-‘tHoenj aDepartment of Biology, Swiss Federal Institute of Technology Zurich (ETH Zürich), Zurich, Switzerland; bDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA; cDepartment of Nephrology and Hypertension, UMC Utrecht, Utrecht, the Netherlands; dExperimental Asthma Research, Priority Area Asthma & Allergy, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany; eDepartment of Science and Technology, CSIR-Indian Institute of Chemical Biology,
    [Show full text]
  • Profiling of Extracellular Small Rnas Highlights a Strong Bias Towards Non-Vesicular Secretion
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.01.406207; this version posted December 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Profiling of extracellular small RNAs highlights a strong bias towards non-vesicular secretion Helena Sork1,2,*, Mariana Conceicao3, Giulia Corso1, Joel Nordin1,4, Yi Xin Fiona Lee3,§, Kaarel Krjutskov5,6,7, Jakub Orzechowski Westholm8, Pieter Vader9,10, Marie Pauwels11, Roosmarijn Vandenbroucke11, Matthew JA Wood3,12, Samir EL Andaloussi1,4,#, Imre Mäger2,3,#,* 1 Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden 2 Institute of Technology, University of Tartu, Tartu, Estonia 3 Department of Paediatrics, University of Oxford, Oxford, UK 4 Evox Therapeutics, King Charles House, Oxford, United Kingdom 5 University of Helsinki and Folkhälsan Institute of Genetics, Helsinki, Finland 6 Competence Centre on Health Technologies, Tartu, Estonia 7 Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden 8 Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden 9 Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, The Netherlands 10 Department of Experimental Cardiology, University Medical Center Utrecht, The Netherlands 11 VIB-UGent Center for Inflammation Research, UGent-VIB Research Building FSVM, Gent, Belgium
    [Show full text]
  • Total Extracellular Small RNA Profiles from Plasma, Saliva, and Urine Of
    www.nature.com/scientificreports OPEN Total Extracellular Small RNA Profiles from Plasma, Saliva, and Urine of Healthy Subjects Received: 18 October 2016 Ashish Yeri1, Amanda Courtright1, Rebecca Reiman1, Elizabeth Carlson1, Taylor Beecroft1, Accepted: 01 February 2017 Alex Janss1, Ashley Siniard1, Ryan Richholt1, Chris Balak1, Joel Rozowsky2, Robert Kitchen2, Published: 17 March 2017 Elizabeth Hutchins1, Joseph Winarta1, Roger McCoy3, Matthew Anastasi3, Seungchan Kim4, Matthew Huentelman1 & Kendall Van Keuren-Jensen1 Interest in circulating RNAs for monitoring and diagnosing human health has grown significantly. There are few datasets describing baseline expression levels for total cell-free circulating RNA from healthy control subjects. In this study, total extracellular RNA (exRNA) was isolated and sequenced from 183 plasma samples, 204 urine samples and 46 saliva samples from 55 male college athletes ages 18–25 years. Many participants provided more than one sample, allowing us to investigate variability in an individual’s exRNA expression levels over time. Here we provide a systematic analysis of small exRNAs present in each biofluid, as well as an analysis of exogenous RNAs. The small RNA profile of each biofluid is distinct. We find that a large number of RNA fragments in plasma (63%) and urine (54%) have sequences that are assigned to YRNA and tRNA fragments respectively. Surprisingly, while many miRNAs can be detected, there are few miRNAs that are consistently detected in all samples from a single biofluid, and profiles of miRNA are different for each biofluid. Not unexpectedly, saliva samples have high levels of exogenous sequence that can be traced to bacteria. These data significantly contribute to the current number of sequenced exRNA samples from normal healthy individuals.
    [Show full text]