Celiac Disease-Specific Prolamin Peptide Content of Wheat Relatives and Wild Species Determined by ELISA Assays and Bioinformatics Analyses
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Protein Fractions of Oats and Possibilities of Oat Utilisation for Patients with Coeliac Disease
Czech J. Food Sci. Vol. 22, No. 4: 151–162 Protein Fractions of Oats and Possibilities of Oat Utilisation for Patients with Coeliac Disease I���� CAPOUCHOVÁ1, J��� PETR1, H����� TLASKALOVÁ-HOGENOVÁ2, I��� MICHALÍK3, O������ FAMĚRA1, D��� URMINSKÁ3, L������ TUČKOVÁ2, H������� KNOBLOCHOVÁ3 and D��� BOROVSKÁ2 1Czech University of Agriculture in Prague, Prague, Czech Republic; 2Microbiological Institute of the Academy of Sciences of the Czech Republic, Prague, Czech Republic; 3Slovak University of Agriculture, Nitra, Slovak Republic Abstract C��������� I., P��� J., T���������-H������� H., M������� I., F����� O., U������� D., T������ L., K���������� H., B������� D. (2004): Protein fractions of oats and possibilities of oat utilisation for patients with coeliac disease. Czech J. Food Sci., 22: 151–162. The applicability was evaluated of 16 different oats species and varieties of different provenance in the coeliac diet in view of the composition of the protein complex and immunological testing during two-year experiments (2001 and 2002). Determination was carried out of total nitrogen content (average of evaluated oats collection in 2001 was 2.21%, in 2002 2.78%), protein nitrogen content (average 2001 1.94%, 2002 2.28%), and crude protein (N × 6.25) content (average 2001 13.80%, 2002 17.37%). The proportions of different protein fractions play a decisive role for the aims of this study because, based on the existing knowledge, coeliacally active protein components are present particularly in the prolamin fraction. The percentage of prolamins (determined by discontinual fractionation after Osborne) in the author’s evaluated collection of oats species and varieties under the conditions of Central Bohemia reached on average 17.68% of the total protein in 2001, and 15.36% in 2002. -
Prolamin Degradation in Sourdoughs
Prolamin degradation in sourdoughs Jussi Loponen University of Helsinki EKT-sarja 1372 EKT series 1372 Helsinki 2006 Helsingin yliopisto Elintarviketeknologian laitos University of Helsinki Department of Food Technology EKT-SARJA 1372 EKT SERIES 1372 PROLAMIN DEGRADATION IN SOURDOUGHS JUSSI LOPONEN ACADEMIC DISSERTATION To be presented with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public criticism in the Walter-hall, Viikki on December 20th, 2006 at 12 o’clock noon. HELSINKI 2006 Custos Professor Hannu Salovaara Department of Food Technology University of Helsinki Helsinki, Finland Supervisors Professor Hannu Salovaara Department of Food Technology University of Helsinki Helsinki, Finland University Lecturer Tuula Sontag-Strohm Department of Food Technology University of Helsinki Helsinki, Finland Reviewers Dr. Berne Jones, Supervisory Research Chemist (retired) USDA, ARS, Cereal Crops Research Unit Madison, WI, USA Dr. Michael Gänzle, Assistant Professor Department of Agricultural, Food and Nutritional Science University of Alberta Edmonton, Canada Opponent Dr. Peter Weegels, Lead Technologist Unilever Research & Development Vlaardingen, the Netherlands ISBN 952-10-3581-1 (paperback) ISBN 952-10-3582-X (PDF) ISSN 0355-1180 Yliopistopaino Helsinki 2006 2 CONTENTS ABSTRACT 4 PREFACE 5 LIST OF ORIGINAL PUBLICATIONS AND AUTHORSHIPS 6 ABBREVIATIONS 7 1 INTRODUCTION 8 2 LITERATURE REVIEW 10 2.1 The Proteolytic systems of cereal grains 10 2.1.1 The Prolamins of the Triticeae cereals (wheat, -
Seed Storage Proteins
SEED STORAGE PROTEINS PRESENTED BY: DIVYA KAUSHIK M.Sc BIOTECHNOLOGY 2nd SEMESTER INTRODUCTION The plant seed is not only an organ of propagation and dispersal but also the major plant tissue harvested by humankind. The amount of protein present in seeds varies from 10% (in cereals) to 40% (in certain legumes and oilseeds) of the dry weight, forming a major source of dietary protein. Although the vast majority of the individual proteins present in mature seeds have either metabolic or structural roles, all seeds also contain one or more groups of proteins that are present in high amounts and that serve to provide a store of amino acids for use during germination and seedling growth. These storage proteins are of particular importance because they determine not only the total protein content of the seed but also its quality for various end uses. CHARACTERISTICS OF SEED STORAGE PROTEINS Seed storage proteins (SSPs) are specifically synthesized during seed maturation and accumulate in the endosperm of monocots or in the cotyledons and embryos of dicots. Their presence in mature seeds in discrete deposit are called protein bodies. One of the earliest and first isolated proteins is wheat gluten and Brazil nut globulin. They are synthesized at high levels in specific tissues and at certain stages of development. their synthesis is regulated by nutrition, and they act as a sink for surplus nitrogen. CLASSIFICATION Classification of proteins in to their groups is based on their solubility. Three protein groups have been categorized during -
Barley C-Hordein As the Calibrant for Wheat Gluten Quantification
foods Article Barley C-Hordein as the Calibrant for Wheat Gluten Quantification Xin Huang * , Kaiyue Ma, Sara Leinonen and Tuula Sontag-Strohm Department of Food and Nutrition, Faculty of Agriculture and Forestry, University of Helsinki, Agnes Sjöberginkatu 2, PL66, FI-00014 Helsinki, Finland; kaiyue.ma@helsinki.fi (K.M.); [email protected] (S.L.); tuula.sontag-strohm@helsinki.fi (T.S.-S.) * Correspondence: xin.huang@helsinki.fi Received: 8 October 2020; Accepted: 5 November 2020; Published: 10 November 2020 Abstract: The lack of certified reference materials has been one major challenge for gluten quantification in gluten-free products. In this study, the feasibility of using barley C-hordein as the calibrant for wheat gluten in R5 sandwich enzyme-linked immunosorbent assay (ELISA) was investigated. The gluten composition and total gluten R5 reactivity ranged largely depending on the genotypes and the growing environment. The conversion factor of gliadin to gluten averaged 1.31 for common wheat, which is smaller than the theoretical factor of 2. Each gluten group had varying reactivity against the R5 antibody, where !1.2-, γ- and α-gliadins were the main reactive groups from wheat gluten. A mixture of wheat cultivars or one single cultivar as the reference material can be difficult to keep current. Based on the average R5 reactivity of total gluten from the 27 common wheat cultivars, here we proposed 10% C-hordein mixed with an inert protein as the calibrant for wheat gluten quantification. In spiking tests of gluten-free oat flour and biscuits, calibration using 10% C-hordein achieved the same recovery as the gliadin standard with its cultivar-specific conversion factor. -
A Short Review of Iron Metabolism and Pathophysiology of Iron Disorders
medicines Review A Short Review of Iron Metabolism and Pathophysiology of Iron Disorders Andronicos Yiannikourides 1 and Gladys O. Latunde-Dada 2,* 1 Faculty of Life Sciences and Medicine, Henriette Raphael House Guy’s Campus King’s College London, London SE1 1UL, UK 2 Department of Nutritional Sciences, School of Life Course Sciences, King’s College London, Franklin-Wilkins-Building, 150 Stamford Street, London SE1 9NH, UK * Correspondence: [email protected] Received: 30 June 2019; Accepted: 2 August 2019; Published: 5 August 2019 Abstract: Iron is a vital trace element for humans, as it plays a crucial role in oxygen transport, oxidative metabolism, cellular proliferation, and many catalytic reactions. To be beneficial, the amount of iron in the human body needs to be maintained within the ideal range. Iron metabolism is one of the most complex processes involving many organs and tissues, the interaction of which is critical for iron homeostasis. No active mechanism for iron excretion exists. Therefore, the amount of iron absorbed by the intestine is tightly controlled to balance the daily losses. The bone marrow is the prime iron consumer in the body, being the site for erythropoiesis, while the reticuloendothelial system is responsible for iron recycling through erythrocyte phagocytosis. The liver has important synthetic, storing, and regulatory functions in iron homeostasis. Among the numerous proteins involved in iron metabolism, hepcidin is a liver-derived peptide hormone, which is the master regulator of iron metabolism. This hormone acts in many target tissues and regulates systemic iron levels through a negative feedback mechanism. Hepcidin synthesis is controlled by several factors such as iron levels, anaemia, infection, inflammation, and erythropoietic activity. -
Recent Progress and Recommendations on Celiac Disease from the Working Group on Prolamin Analysis and Toxicity
REVIEW published: 17 March 2020 doi: 10.3389/fnut.2020.00029 Recent Progress and Recommendations on Celiac Disease From the Working Group on Prolamin Analysis and Toxicity Katharina A. Scherf 1, Carlo Catassi 2, Fernando Chirdo 3, Paul J. Ciclitira 4, Conleth Feighery 5, Carmen Gianfrani 6, Frits Koning 7, Knut E. A. Lundin 8, Detlef Schuppan 9, Marinus J. M. Smulders 10, Olivier Tranquet 11, Riccardo Troncone 12 and Peter Koehler 13* Edited by: 1 Department of Bioactive and Functional Food Chemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology Jun Lu, (KIT), Karlsruhe, Germany, 2 Department of Pediatrics, Polytechnic University of Marche, Ancona, Italy, 3 Instituto de Estudios Auckland University of Technology, Inmunologicos y Fisiopatologicos- IIFP (UNLP-CONICET), Universidad Nacional de La Plata, La Plata, Argentina, 4 Norwich New Zealand Medical School, University of East Anglia, Norwich, United Kingdom, 5 St. James’s Hospital, University of Dublin, Dublin, 6 7 Reviewed by: Ireland, Institute of Biochemistry and Cell Biology, Italian National Council of Research, Naples, Italy, Leiden University 8 Sachin Rustgi, Medical Centre, Leiden, Netherlands, Department of Gastroenterology, Oslo University Hospital Rikshospitalet and Stiftelsen 9 Clemson University, United States KG Jebsen Coeliac Disease Research Centre, University of Oslo, Oslo, Norway, Institute for Translational Medicine, 10 Govind K. Makharia, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, Plant Breeding, Wageningen 11 12 All India Institute of Medical University & Research, Wageningen, Netherlands, INRAE, UR BIA, Nantes, France, European Laboratory for the Sciences, India Investigation of Food Induced Diseases (ELFID), Department of Medical Translational Sciences, University Federico II, Naples, 13 Emanuele Zannini, Italy, biotask AG, Esslingen, Germany University College Cork, Ireland Luis Rodrigo, Celiac disease (CD) affects a growing number of individuals worldwide. -
Methods for the Modification and Evaluation of Cereal Proteins for the Substitution of Wheat Gluten in Dough Systems
foods Review Methods for the Modification and Evaluation of Cereal Proteins for the Substitution of Wheat Gluten in Dough Systems Javier Espinoza-Herrera, Luz María Martínez , Sergio O. Serna-Saldívar and Cristina Chuck-Hernández * Tecnologico de Monterrey, School of Engineering and Sciences, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; [email protected] (J.E.-H.); [email protected] (L.M.M.); [email protected] (S.O.S.-S.) * Correspondence: [email protected]; Tel.: +52-81-83581400 (ext. 4895) Abstract: The substitution of wheat gluten in the food industry is a relevant research area because the only known treatment for celiac disease is abstinence from this protein complex. The use of gluten-free cereals in dough systems has demonstrated that the viscoelastic properties of gluten cannot be achieved without the modification of the protein fraction. The quality of the final product is determined by the ability of the modification to form a matrix similar to that of gluten and to reach this, different methods have been proposed and tested. These procedures can be classified into four main types: chemical, enzymatic, physical, and genetic. This article provides a comprehensive review of the most recent research done in protein modification of cereal and pseudocereals for gluten substitution. The reported effects and methodologies for studying the changes made with each type of modification are described; also, some opportunity areas for future works regarding the study of the effect of protein modifications on gluten-free products are presented. Keywords: gluten; prolamin; sorghum; maize; rice; protein modification Citation: Espinoza-Herrera, J.; 1. Introduction Martínez, L.M.; Serna-Saldívar, S.O.; Chuck-Hernández, C. -
Composition, Physicochemical Properties of Pea Protein and Its Application in Functional Foods
Critical Reviews in Food Science and Nutrition ISSN: 1040-8398 (Print) 1549-7852 (Online) Journal homepage: https://www.tandfonline.com/loi/bfsn20 Composition, physicochemical properties of pea protein and its application in functional foods Z. X. Lu, J. F. He, Y. C. Zhang & D. J. Bing To cite this article: Z. X. Lu, J. F. He, Y. C. Zhang & D. J. Bing (2019): Composition, physicochemical properties of pea protein and its application in functional foods, Critical Reviews in Food Science and Nutrition, DOI: 10.1080/10408398.2019.1651248 To link to this article: https://doi.org/10.1080/10408398.2019.1651248 Published online: 20 Aug 2019. Submit your article to this journal Article views: 286 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=bfsn20 CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION https://doi.org/10.1080/10408398.2019.1651248 REVIEW Composition, physicochemical properties of pea protein and its application in functional foods Z. X. Lua,J.F.Heb, Y. C. Zhanga, and D. J. Bingc aLethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta, Canada; bInner Mongolia Academy of Agriculture and Animal Husbandry Sciences, Hohhot, Inner Mongolia, P.R. China; cLacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, Alberta, Canada ABSTRACT KEYWORDS Field pea is one of the most important leguminous crops over the world. Pea protein is a rela- Pea; protein; composition; tively new type of plant proteins and has been used as a functional ingredient in global food physicochemical property; industry. -
Myoglobin/Hemoglobin O2 Binding and Allosteric Properties
Myoglobin/Hemoglobin O2 Binding and Allosteric Properties of Hemoglobin •Hemoglobin binds and transports H+, O2 and CO2 in an allosteric manner •Allosteric interaction - a regulatory mechanism where a small molecule (effector) binds and alters an enzymes activity ‘globin Function O does not easily diffuse in muscle and O is toxic to biological 2 2 systems, so living systems have developed a way around this. Physiological roles of: – Myoglobin • Transports O2 in rapidly respiring muscle • Monomer - single unit • Store of O2 in muscle high affinity for O2 • Diving animals have large concentration of myoglobin to keep O2 supplied to muscles – Hemoglobin • Found in red blood cells • Carries O2 from lungs to tissues and removes CO2 and H+ from blood to lungs • Lower affinity for O2 than myoglobin • Tetrameter - two sets of similar units (α2β2) Myo/Hemo-globin • Hemoglobin and myoglobin are oxygen- transport and oxygen-storage proteins, respectively • Myoglobin is monomeric; hemoglobin is tetrameric – Mb: 153 aa, 17,200 MW – Hb: two α chains of 141 residues, 2 β chains of 146 residues X-ray crystallography of myoglobin – mostly α helix (proline near end of each helix WHY?) – very small due to the folding – hydrophobic residues oriented towards the interior of the protein – only polar aas inside are 2 histidines Structure of heme prosthetic group Protoporphyrin ring w/ iron = heme Oxygenation changes state of Fe – Purple to red color of blood, Fe+3 - brown Oxidation of Fe+2 destroys biological activity of myoglobin Physical barrier of protein -
Divergent Properties of Prolamins in Wheat and Maize Wei Zhang Rutgers University - New Brunswick/Piscataway
Agronomy Publications Agronomy 6-2013 Divergent properties of prolamins in wheat and maize Wei Zhang Rutgers University - New Brunswick/Piscataway Vavaporn Sangtong United States Department of Agriculture Joan Peterson United States Department of Agriculture M. Paul Scott Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/agron_pubs Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, and the Plant Breeding and Genetics Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ agron_pubs/173. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Agronomy at Iowa State University Digital Repository. It has been accepted for inclusion in Agronomy Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Planta (2013) 237:1465–1473 DOI 10.1007/s00425-013-1857-5 ORIGINAL ARTICLE Divergent properties of prolamins in wheat and maize Wei Zhang • Vavaporn Sangtong • Joan Peterson • M. Paul Scott • Joachim Messing Received: 14 December 2012 / Accepted: 8 February 2013 / Published online: 23 February 2013 Ó Springer-Verlag Berlin Heidelberg 2013 Abstract Cereal grains are an important nutritional Abbreviations source of amino acids for humans and livestock worldwide. RNAi RNA interference Wheat, barley, and oats belong to a different subfamily of DAP Days after pollination the grasses than rice and in addition to maize, millets, HMW High-molecular weight sugarcane, and sorghum. All their seeds, however, are largely devoid of free amino acids because they are stored during dormancy in specialized storage proteins. -
Redox Reactivity of Bacterial and Mammalian Ferritin: Is Reductant Entry Into the Ferritin Interior a Necessary Step for Iron Release? G
Proc. Nati. Acad. Sci. USA Vol. 85, pp. 7457-7461, October 1988 Biochemistry Redox reactivity of bacterial and mammalian ferritin: Is reductant entry into the ferritin interior a necessary step for iron release? G. D. WATT*, D. JACOBSt, AND R. B. FRANKELt Laboratory, Yellow *Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215; tBattelle-C. F. Kettering Research Springs, OH 45387; and *Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 Communicated by Julian M. Sturtevant, June 17, 1988 (receivedfor review November 23, 1987) ABSTRACT Both mammalian and bacterial ferritin un- processes of iron deposition and release (7-14). Iron trans- dergo rapid reaction with small-molecule reductants, in the port to and from the ferritin interior is a well-established absence of Fe2 chelators, to form ferritins with reduced feature offerritin, but the facile movement ofother molecules (Fe+) mineral cores. Large, low-potential reductants (flavo- into and out of the ferritin interior is less well documented. proteins and ferredoxins) similarly react anaerobically with In fact, studies of direct transfer of small molecules into the both ferritin types to quantitatively produce Fe2+ in the ferritin ferritin interior suggest that moderate diffusional impedi- cores. The oxidation of Fe2+ ferritin by large protein oxidants ments exist with neutral molecules such as sucrose (15, 16) [cytochrome c and Cu(ll) proteins] also occurs readily, yielding and that serious transfer limitations occur with small anions reduced heme and Cu(I) proteins and ferritins with Fe3+ in such as acetate (17, 18), indicating that both charge and size their cores. -
All About Gluten & Celiac Disease
College of Agricultural, Consumer and Environmental Sciences All About Discovery! ™ New Mexico State University aces.nmsu.edu All about Gluten? Celiac disease, gluten sensitivity, wheat sensitivity, and other Dr. Raquel Garzon, RDN NMSU Cooperative Extension Services considerations Nutrition and Wellness State Specialist About the College: The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and extension programs. All About Discovery! ™ New Mexico State University aces.nmsu.edu All About Discovery! ™ New Mexico State University aces.nmsu.edu Definitions Gluten: A heterogenous mix of water-insoluble storage proteins in cereal grains, wheat, rye, and barley, that gives dough its elastic properties; it consists of two fractions: prolamins and glutelins; the fractions of wheat are gliadins and glutenins Prolamins: Difficult to digest; the high content of proline and glutamine content in gluten that prevents complete breakdown by digestive enzymes; this is the component that causes issues in celiac disease Gliadin: The prolamin in wheat Secalin: The prolamin in rye Hordein: The prolamin in barley Avenin: The prolamin in oats FODMAPs: Fermentable Oligo-, Di-, and Mono-saccharides And Polyols; short chain carbohydrates poorly absorbed in the small intestine; osmotically active and highly fermentable by gut bacteria 2016 REVITALIZE PROJECT, INC. All About Discovery! ™ New Mexico State University aces.nmsu.edu