Normal Modes

Total Page:16

File Type:pdf, Size:1020Kb

Normal Modes Chapter 3 Normal Modes Systems with several degrees of freedom appear to be much more complicated than the simple harmonic oscillator. What we will see in this chapter is that this is an illusion. When we look at it in the right way, we can see the simple oscillators inside the more complicated system. Preview In this chapter, we discuss harmonic oscillation in systems with more than one degree of freedom. 1. We will write down the equations of motion for a system of particles moving under general linear restoring forces without damping. 2. Next, we introduce matrices and matrix multiplication and show how they can be used to simplify the description of the equations of motion derived in the previous section. 3. We will then use time translation invariance and find the irreducible solutions to the equations of motion in matrix form. This will lead to the idea of “normal modes.” We then show how to put the normal modes together to construct the general solution to the equations of motion. 4. * We will introduce the idea of “normal coordinates” and show how they can be used to automate the solution to the initial value problem. 5. * We will discuss damped forced oscillation in systems with many degrees of freedom. 53 54 CHAPTER 3. NORMAL MODES 3.1 More than One Degree of Freedom In general, the number of degrees of freedom of a system is the number of independent coordinates required to specify the system’s configuration. The more degrees of freedom the system has, the larger the number of independent ways that the system can move. The more possible motions, you might think, the more complicated the system will be to analyze. In fact, however, using the tools of linear algebra, we will see that we can deal with systems with many degrees of freedom in a straightforward way. 3.1.1 Two Coupled Oscillators ¡¡¡¡¡¡¡¡¡¡ ¡¡¡r ¡¡¡¡¡r ¡¡ ` ... ... .... ... .. .. ... ... ...... ... ... ...... ...... ....... ........ .... .... .. .. .. .. .. .. .. .. .. .. .. .. .. .. ........ ........ ....... ........ ...... ...... ...... ........ 1 .......................................................................................................................... 2 Figure 3.1: Two pendulums coupled by a spring. Consider the system of two pendulums shown in figure 3.1. The pendulums consist of rigid rods pivoted at the top so they oscillate without friction in the plane of the paper. The masses at the ends of the rods are coupled by a spring. We will consider the free motion of the system, with no external forces other than gravity. This is a classic example of two “coupled oscillators.” The spring that connects the two oscillators is the coupling. We will assume that the spring in figure 3.1 is unstretched when the two pendulums are hanging straight down, as shown. Then the equilibrium configuration is that shown in figure 3.1. This is an example of a system with two degrees of freedom, because two quantities, the displacements of each of the two blocks from equilibrium, are required to specify the configuration of the system. For example, if the oscillations are small, we can specify the configuration by giving the horizontal displacement of each of the two blocks from the equilibrium position. Suppose that block 1 has mass m1, block 2 has mass m2, both pendulums have length ` and the spring constant is · (Greek letter kappa). Label the (small) horizontal displacements of the blocks to the right, x1 and x2, as shown in figure 3.2. We could have called these 3.1. MORE THAN ONE DEGREE OF FREEDOM 55 ¡¡¡¡¡¡¡¡¡¡ . ¡¡¡¡¡¡¡¡¡¡.. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. ... .. .. ... ..... .... ..... .... ..... .... ... .. ... ... ... .... .... ..... .... .... ... ... ..... ...... ........ ......... ........... ............................ ..... 1 ........................................ .............. ............ ........... ....... 2 j j j j x1 x2 Figure 3.2: Two pendulums coupled by a spring displaced from their equilibrium positions. masses and displacements anything, but it is very convenient to use the same symbol, x, with different subscripts. We can then write Newton’s law, F = ma, in a compact and useful form. d2 m x = F ; (3.1) j dt2 j j for j = 1 to 2, where F1 is the horizontal force on block 1 and F2 is the horizontal force on block 2. Because there are two values of j, (3.1) is two equations; one for j = 1 and another for j = 2. These are the two equations of motion for the system with two degrees of freedom. We will often refer to all the masses, displacements or forces at once as mj , xj or Fj, respectively. For example, we will say that Fj is the horizontal force on the jth block. This is an example of the use of “indices” (j is an index) to simplify the description of a system with more than one degree of freedom. When the blocks move horizontally, they will move vertically as well, because the length of the pendulums remains fixed. Because the vertical displacement is second order in the xj s, x2 y ¼ j ; (3.2) j 2 we can ignore it in thinking about the spring. The spring stays approximately horizontal for small oscillations. To find the equation of motion for this system, we must find the forces, Fj , in terms of the displacements, xj . It is the approximate linearity of the system that allows us to do this in a useful way. The forces produced by the Hooke’s law spring, and the horizontal forces on the pendulums due to the tension in the string (which in turn is due to gravity) are both approximately linear functions of the displacements for small displacements. Furthermore, the forces vanish when both the displacements vanish, because the system is in equilibrium. 56 CHAPTER 3. NORMAL MODES Thus each of the forces is some constant (different for each block) times x1 plus some other constant times x2. It is convenient to write this as follows: F1 = ¡K11x1 ¡ K12x2 ;F2 = ¡K21x1 ¡ K22x2 ; (3.3) or more compactly, X2 Fj = ¡ Kjkxk (3.4) k=1 for j = 1 to 2. We have written the four constants as K11, K12, K21 and K22 in order to write the force in this compact way. Later, we will call these constants the matrix elements of the K matrix. In this notation, the equations of motion are d2 X2 m x = ¡ K x (3.5) j dt2 j jk k k=1 for j = 1 to 2. ¡¡¡¡¡¡¡¡¡¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ ¡ C C C C C C C .. ... .... .... C ..... ..... .... ..... .... .. .. ... .... .... .... ..... ..... .... .... ... ..... ...... ........ ......... ........... ............. ........... .. 1 ......................... ............... .............. ............ ........... ........ ..... .... 2 j j x2 Figure 3.3: Two pendulums coupled by a spring with block 2 displaced from an equilibrium position. Because of the linearity of the system, we can find the constants, Kjk, by considering the displacements of the blocks one at a time. Then we find the total force using (3.4). For example, suppose we displace block 2 with block 1 held fixed in its equilibrium position and look at the forces on both blocks. This will allow us to compute K12 and K22. The system with block two displaced is shown in figure 3.3. The forces on the blocks are shown in figure 3.4, where Tj is the tension in the jth pendulum string. F12 is the force on block 1 due to the displacement of block 2. F22 is the force on block 2 due to the displacement of block 2. For small displacements, the restoring force from the spring is nearly horizontal and equal to 3.1. MORE THAN ONE DEGREE OF FREEDOM 57 ·x2 on block 1 and ¡·x2 on block 2. Likewise, in the limit of small displacement, the vertical component of the force from the tension T2 nearly cancels the gravitational force on block 2, m2g, so that the horizontal component of the tension gives a restoring force ¡x2m2g=` on block 2. For block 1, the force from the tension T1 just cancels the gravitational force m1g. Thus m gx F ¼ ·x ;F ¼ ¡ 2 2 ¡ ·x ; (3.6) 12 2 22 ` 2 and m g K ¼ ¡·; K ¼ 2 + ·: (3.7) 12 22 ` An analogous argument shows that m g K ¼ ¡·; K ¼ 1 + ·: (3.8) 21 11 ` Notice that K12 = K21 : (3.9) We will see below that this is an example of a very general relation. ..... .... ..... ..... .... .. .. .. .. .. .. .. .. .. .. .. T . .. 2 . T1 .. .. .. .. .. .. .. .. F22 .. F12 . ... ............................................. 1 ............................................. .. 2 . ·x ¡·x2 . 2 . m g . m g . 2 . 1 . ... ..... ..... ...... ...... Figure 3.4: The forces on the two blocks in figure 3.3. 3.1.2 Linearity and Normal Modes ............................ .. ........................ .. .. ................................................... .. ......................................... ... .. .............................................. 3-1 We will see in this chapter that the most general possible motion of this system, and of any such system of oscillators, can be decomposed into particularly simple solutions, in which all the degrees of freedom oscillate with the same frequency. These simple solutions are called “normal modes.” The displacements for the most general motion can be written as sums of the simple solutions. We will study how this works in detail later, but it may be useful to see it 58 CHAPTER 3. NORMAL MODES first. A possible motion of the system of two coupled oscillators is animated in program 3-1. Below the actual motion, we show the two simple motions into which the more complicated motion can be decomposed. For this system, the normal mode with the lower frequency is one in which the displacements of the two blocks are the same: x1(t) = x2(t) = b1 cos(!1t ¡ θ1) : (3.10) The other normal mode is one in which the displacements of the two blocks are opposite x1(t) = ¡x2(t) = b2 cos(!2t ¡ θ2) : (3.11) The sum of these two simple motions gives the much more complicated motion shown in program 3-1. 3.1.3 n Coupled Oscillators Before we try to solve the equations of motion, (3.5), let us generalize the discussion to systems with more degrees of freedom. Consider the oscillation of a system of n particles connected by various springs with no damping.
Recommended publications
  • Statics FE Review 032712.Pptx
    FE Stacs Review h0p://www.coe.utah.edu/current-undergrad/fee.php Scroll down to: Stacs Review - Slides Torch Ellio [email protected] (801) 587-9016 MCE room 2016 (through 2000B door) Posi'on and Unit Vectors Y If you wanted to express a 100 lb force that was in the direction from A to B in (-2,6,3). A vector form, then you would find eAB and multiply it by 100 lb. rAB O x rAB = 7i - 7j – k (units of length) B .(5,-1,2) e = (7i-7j–k)/sqrt[99] (unitless) AB z Then: F = F eAB F = 100 lb {(7i-7j–k)/sqrt[99]} Another Way to Define a Unit Vectors Y Direction Cosines The θ values are the angles from the F coordinate axes to the vector F. The θY cosines of these θ values are the O θx x θz coefficients of the unit vector in the direction of F. z If cos(θx) = 0.500, cos(θy) = 0.643, and cos(θz) = - 0.580, then: F = F (0.500i + 0.643j – 0.580k) TrigonometrY hYpotenuse opposite right triangle θ adjacent • Sin θ = opposite/hYpotenuse • Cos θ = adjacent/hYpotenuse • Tan θ = opposite/adjacent TrigonometrY Con'nued A c B anY triangle b C a Σangles = a + b + c = 180o Law of sines: (sin a)/A = (sin b)/B = (sin c)/C Law of cosines: C2 = A2 + B2 – 2AB(cos c) Products of Vectors – Dot Product U . V = UVcos(θ) for 0 <= θ <= 180ο ( This is a scalar.) U In Cartesian coordinates: θ .
    [Show full text]
  • Resonance Beyond Frequency-Matching
    Resonance Beyond Frequency-Matching Zhenyu Wang (王振宇)1, Mingzhe Li (李明哲)1,2, & Ruifang Wang (王瑞方)1,2* 1 Department of Physics, Xiamen University, Xiamen 361005, China. 2 Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen 361005, China. *Corresponding author. [email protected] Resonance, defined as the oscillation of a system when the temporal frequency of an external stimulus matches a natural frequency of the system, is important in both fundamental physics and applied disciplines. However, the spatial character of oscillation is not considered in the definition of resonance. In this work, we reveal the creation of spatial resonance when the stimulus matches the space pattern of a normal mode in an oscillating system. The complete resonance, which we call multidimensional resonance, is a combination of both the spatial and the conventionally defined (temporal) resonance and can be several orders of magnitude stronger than the temporal resonance alone. We further elucidate that the spin wave produced by multidimensional resonance drives considerably faster reversal of the vortex core in a magnetic nanodisk. Our findings provide insight into the nature of wave dynamics and open the door to novel applications. I. INTRODUCTION Resonance is a universal property of oscillation in both classical and quantum physics[1,2]. Resonance occurs at a wide range of scales, from subatomic particles[2,3] to astronomical objects[4]. A thorough understanding of resonance is therefore crucial for both fundamental research[4-8] and numerous related applications[9-12]. The simplest resonance system is composed of one oscillating element, for instance, a pendulum. Such a simple system features a single inherent resonance frequency.
    [Show full text]
  • Normal Modes of the Earth
    Proceedings of the Second HELAS International Conference IOP Publishing Journal of Physics: Conference Series 118 (2008) 012004 doi:10.1088/1742-6596/118/1/012004 Normal modes of the Earth Jean-Paul Montagner and Genevi`eve Roult Institut de Physique du Globe, UMR/CNRS 7154, 4 Place Jussieu, 75252 Paris, France E-mail: [email protected] Abstract. The free oscillations of the Earth were observed for the first time in the 1960s. They can be divided into spheroidal modes and toroidal modes, which are characterized by three quantum numbers n, l, and m. In a spherically symmetric Earth, the modes are degenerate in m, but the influence of rotation and lateral heterogeneities within the Earth splits the modes and lifts this degeneracy. The occurrence of the Great Sumatra-Andaman earthquake on 24 December 2004 provided unprecedented high-quality seismic data recorded by the broadband stations of the FDSN (Federation of Digital Seismograph Networks). For the first time, it has been possible to observe a very large collection of split modes, not only spheroidal modes but also toroidal modes. 1. Introduction Seismic waves can be generated by different kinds of sources (tectonic, volcanic, oceanic, atmospheric, cryospheric, or human activity). They are recorded by seismometers in a very broad frequency band. Modern broadband seismometers which equip global seismic networks (such as GEOSCOPE or IRIS/GSN) record seismic waves between 0.1 mHz and 10 Hz. Most seismologists use seismic records at frequencies larger than 10 mHz (e.g. [1]). However, the very low frequency range (below 10 mHz) has also been used extensively over the last 40 years and provides unvaluable information on the whole Earth.
    [Show full text]
  • 22.51 Course Notes, Chapter 9: Harmonic Oscillator
    9. Harmonic Oscillator 9.1 Harmonic Oscillator 9.1.1 Classical harmonic oscillator and h.o. model 9.1.2 Oscillator Hamiltonian: Position and momentum operators 9.1.3 Position representation 9.1.4 Heisenberg picture 9.1.5 Schr¨odinger picture 9.2 Uncertainty relationships 9.3 Coherent States 9.3.1 Expansion in terms of number states 9.3.2 Non-Orthogonality 9.3.3 Uncertainty relationships 9.3.4 X-representation 9.4 Phonons 9.4.1 Harmonic oscillator model for a crystal 9.4.2 Phonons as normal modes of the lattice vibration 9.4.3 Thermal energy density and Specific Heat 9.1 Harmonic Oscillator We have considered up to this moment only systems with a finite number of energy levels; we are now going to consider a system with an infinite number of energy levels: the quantum harmonic oscillator (h.o.). The quantum h.o. is a model that describes systems with a characteristic energy spectrum, given by a ladder of evenly spaced energy levels. The energy difference between two consecutive levels is ∆E. The number of levels is infinite, but there must exist a minimum energy, since the energy must always be positive. Given this spectrum, we expect the Hamiltonian will have the form 1 n = n + ~ω n , H | i 2 | i where each level in the ladder is identified by a number n. The name of the model is due to the analogy with characteristics of classical h.o., which we will review first. 9.1.1 Classical harmonic oscillator and h.o.
    [Show full text]
  • Normal Modes (Free Oscillations)
    Introduction to Seismology: Lecture Notes 22 April 2005 SEISMOLOGY: NORMAL MODES (FREE OSCILLATIONS) DECOMPOSING SEISMOLOGY INTO SUBDISCIPLINES Seismology can be decomposed into three representative subdisciplines: body waves, surface waves, and normal modes of free oscillation. Technically, these domains form a continuum, each pertaining to particular frequency bands, spatial scales, etc. In all cases, these representations satisfy the wave equation, but each is subject to different boundary conditions and simplifying assumptions. Each is therefore relevant to particular types of subsurface investigation. Below is a table summarizing the salient characteristics of the three. Boundary Seismic Domains Type Application Data Conditions Body Waves P-SV SH High frequency travel times; waveforms unbounded dispersion; group c(w) & Surface Waves Rayleigh Love Lithosphere phase u(w) velocities interfaces spherical Normal Modes Spheroidal Modes Toroidal Modes Global power spectra earth As the table suggests, the normal modes provide a framework for representing global seismic waves. Typically, these modes of free oscillation are of extremely low frequency and are therefore difficult to observe in seismograms. Only the most energetic earthquakes are capable of generating free oscillations that are readily apparent on most seismograms, and then only if the seismograms extend over several days. NORMAL MODES To understand normal modes, which describe the modes of free oscillation of a sphere, it’s instructive to consider the 1D analog of a vibrating string fixed at both ends as shown in panel Figure 1b. This is useful because the 3D case (Figure 1c), similar to the 1D case, requires that Figure 1 Figure by MIT OCW. 1 Introduction to Seismology: Lecture Notes 22 April 2005 standing waves ‘wrap around’ and meet at a null point.
    [Show full text]
  • Normal Mode Analysis ©David Ronis Mcgill University
    Chemistry 365: Normal Mode Analysis ©David Ronis McGill University 1. Quantum Mechanical Treatment Our starting point is the Schrodinger wav e equation: N −2 ∂2 − h + → → Ψ → → = Ψ → → Σ → U(r1,...,r N ) (r1,...,r N ) E (r1,...,r N ), (1.1) = ∂ 2 i 1 2mi ri where N is the number of atoms in the molecule, mi is the mass of the i’th atom, and → → U(r1,...,r N )isthe effective potential for the nuclear motion, e.g., as is obtained in the Born- Oppenheimer approximation. If the amplitude of the vibrational motion is small, then the vibrational part of the Hamil- tonian associated with Eq. (1.1) can be written as: N −2 ∂2 N ↔ → → ≈− h + + 1 ∆ ∆ Hvib Σ →2 U0 Σ Ki, j: i j,(1.2) i=1 2mi ∂∆ 2 i, j=1 i → ∆ ≡ → − → → where U0 is the minimum value of the potential energy, i ri Ri, Ri is the equilibrium posi- tion of the i’th atom, and 2 ↔ ∂ ≡ U Ki, j → → (1.3) ∂ ∂ → ri r j → r k = Rk is the matrix of (harmonic) force constants. Henceforth, we will shift the zero of energy so as to = make U0 0. Note that in obtaining Eq. (1.2), we have neglected anharmonic (i.e., cubic and higher order) corrections to the vibrational motion. The next and most confusing step is to change to matrix notation. We introduce a column vector containing the displacements as: ∆≡ ∆x ∆y ∆z ∆x ∆y ∆z T [ 1 , 1, 1,..., N , N , N ] ,(1.4) where "T"denotes a matrix transpose.
    [Show full text]
  • Twisting Couple on a Cylinder Or Wire
    Course: US01CPHY01 UNIT – 2 ELASTICITY – II Introduction: We discussed fundamental concept of properties of matter in first unit. This concept will be more use full for calculating various properties of mechanics of solid material. In this unit, we shall study the detail theory and its related experimental methods for determination of elastic constants and other related properties. Twisting couple on a cylinder or wire: Consider a cylindrical rod of length l radius r and coefficient of rigidity . Its upper end is fixed and a couple is applied in a plane perpendicular to its length at lower end as shown in fig.(a) Consider a cylinder is consisting a large number of co-axial hollow cylinder. Now, consider a one hollow cylinder of radius x and radial thickness dx as shown in fig.(b). Let is the twisting angle. The displacement is greatest at the rim and decreases as the center is approached where it becomes zero. As shown in fig.(a), Let AB be the line parallel to the axis OO’ before twist produced and on twisted B shifts to B’, then line AB become AB’. Before twisting if hollow cylinder cut along AB and flatted out, it will form the rectangular ABCD as shown in fig.(c). But if it will be cut after twisting it takes the shape of a parallelogram AB’C’D. The angle of shear From fig.(c) ∠ ̼̻̼′ = ∅ From fig.(b) ɑ ̼̼ = ͠∅ ɑ BB = xθ ∴ ͠∅ = ͬ Page 1 of 20 ͬ ∴ ∅ = … … … … … … (1) The modules of͠ rigidity is ͍ℎ͙͕ͦ͛͢͝ ͙ͧͤͦͧͧ ̀ = = ͕͙͛͢͠ ͚ͣ ͧℎ͙͕ͦ & ͬ ∴ ̀ = ∙ ∅ = The surface area of this hollow cylinder͠ = 2ͬͬ͘ Total shearing force on this area ∴ ͬ = 2ͬͬ͘ ∙ ͠ ͦ The moment of this force= 2 ͬ ͬ͘ ͠ ͦ = 2 ͬ ͬ͘ ∙ ͬ ͠ 2 ͧ Now, integrating between= theͬ limits∙ ͬ͘ x = 0 and x = r, We have, total twisting couple͠ on the cylinder - 2 ͧ = ǹ ͬ ͬ͘ * ͠ - 2 ͧ = ǹ ͬ ͬ͘ ͠ * ͨ - 2 ͬ = ʨ ʩ Total twisting couple ͠ 4 * ∴ ͨ ͦ = … … … … … … (3) Then, the twisting couple2͠ per unit twist ( ) is = 1 ͨ ͦ ̽ = … … … … … … (4) This twisting couple per unit twist 2͠is also called the torsional rigidity of the cylinder or wire.
    [Show full text]
  • Total Angular Momentum
    Total Angular momentum Dipanjan Mazumdar Sept 2019 1 Motivation So far, somewhat deliberately, in our prior examples we have worked exclusively with the spin angular momentum and ignored the orbital component. This is acceptable for L = 0 systems such as filled shell atoms, but properties of partially filled atoms will depend both on the orbital and the spin part of the angular momentum. Also, when we include relativistic corrections to atomic Hamiltonian, both spin and orbital angular momentum enter directly through terms like L:~ S~ called the spin-orbit coupling. So instead of focusing only on the spin or orbital angular momentum, we have to develop an understanding as to how they couple together. One of the ways is through the total angular momentum defined as J~ = L~ + S~ (1) We will see that this will be very useful in many cases such as the real hydrogen atom where the eigenstates after including the fine structure effects such as spin-orbit interaction are eigenstates of the total angular momentum operator. 2 Vector model of angular momentum Let us first develop an intuitive understanding of the total angular momentum through the vector model which is a semi-classical approach to \add" angular momenta using vector algebra. We shall first ask, knowing L~ and S~, what are the maxmimum and minimum values of J^. This is simple to answer us- ing the vector model since vectors can be added or subtracted. Therefore, the extreme values are L~ + S~ and L~ − S~ as seen in figure 1.1 Therefore, the total angular momentum will take up values between l+s Figure 1: Maximum and minimum values of angular and jl − sj.
    [Show full text]
  • Fundamental Governing Equations of Motion in Consistent Continuum Mechanics
    Fundamental governing equations of motion in consistent continuum mechanics Ali R. Hadjesfandiari, Gary F. Dargush Department of Mechanical and Aerospace Engineering University at Buffalo, The State University of New York, Buffalo, NY 14260 USA [email protected], [email protected] October 1, 2018 Abstract We investigate the consistency of the fundamental governing equations of motion in continuum mechanics. In the first step, we examine the governing equations for a system of particles, which can be considered as the discrete analog of the continuum. Based on Newton’s third law of action and reaction, there are two vectorial governing equations of motion for a system of particles, the force and moment equations. As is well known, these equations provide the governing equations of motion for infinitesimal elements of matter at each point, consisting of three force equations for translation, and three moment equations for rotation. We also examine the character of other first and second moment equations, which result in non-physical governing equations violating Newton’s third law of action and reaction. Finally, we derive the consistent governing equations of motion in continuum mechanics within the framework of couple stress theory. For completeness, the original couple stress theory and its evolution toward consistent couple stress theory are presented in true tensorial forms. Keywords: Governing equations of motion, Higher moment equations, Couple stress theory, Third order tensors, Newton’s third law of action and reaction 1 1. Introduction The governing equations of motion in continuum mechanics are based on the governing equations for systems of particles, in which the effect of internal forces are cancelled based on Newton’s third law of action and reaction.
    [Show full text]
  • Learning the Virtual Work Method in Statics: What Is a Compatible Virtual Displacement?
    2006-823: LEARNING THE VIRTUAL WORK METHOD IN STATICS: WHAT IS A COMPATIBLE VIRTUAL DISPLACEMENT? Ing-Chang Jong, University of Arkansas Ing-Chang Jong serves as Professor of Mechanical Engineering at the University of Arkansas. He received a BSCE in 1961 from the National Taiwan University, an MSCE in 1963 from South Dakota School of Mines and Technology, and a Ph.D. in Theoretical and Applied Mechanics in 1965 from Northwestern University. He was Chair of the Mechanics Division, ASEE, in 1996-97. His research interests are in mechanics and engineering education. Page 11.878.1 Page © American Society for Engineering Education, 2006 Learning the Virtual Work Method in Statics: What Is a Compatible Virtual Displacement? Abstract Statics is a course aimed at developing in students the concepts and skills related to the analysis and prediction of conditions of bodies under the action of balanced force systems. At a number of institutions, learning the traditional approach using force and moment equilibrium equations is followed by learning the energy approach using the virtual work method to enrich the learning of students. The transition from the traditional approach to the energy approach requires learning several related key concepts and strategy. Among others, compatible virtual displacement is a key concept, which is compatible with what is required in the virtual work method but is not commonly recognized and emphasized. The virtual work method is initially not easy to learn for many people. It is surmountable when one understands the following: (a) the proper steps and strategy in the method, (b) the displacement center, (c) some basic geometry, and (d ) the radian measure formula to compute virtual displacements.
    [Show full text]
  • Chapter 13: the Conditions of Rotary Motion
    Chapter 13 Conditions of Rotary Motion KINESIOLOGY Scientific Basis of Human Motion, 11 th edition Hamilton, Weimar & Luttgens Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University Revised by Hamilton & Weimar REVISED FOR FYS by J. Wunderlich, Ph.D. Agenda 1. Eccentric Force àTorque (“Moment”) 2. Lever 3. Force Couple 4. Conservation of Angular Momentum 5. Centripetal and Centrifugal Forces ROTARY FORCE (“Eccentric Force”) § Force not in line with object’s center of gravity § Rotary and translatory motion can occur Fig 13.2 Torque (“Moment”) T = F x d F Moment T = F x d Arm F d = 0.3 cos (90-45) Fig 13.3 T = F x d Moment Arm Torque changed by changing length of moment d arm W T = F x d d W Fig 13.4 Sum of Torques (“Moments”) T = F x d Fig 13.8 Sum of Torques (“Moments”) T = F x d § Sum of torques = 0 • A balanced seesaw • Linear motion if equal parallel forces overcome resistance • Rowers Force Couple T = F x d § Effect of equal parallel forces acting in opposite direction Fig 13.6 & 13.7 LEVER § “A rigid bar that can rotate about a fixed point when a force is applied to overcome a resistance” § Used to: – Balance forces – Favor force production – Favor speed and range of motion – Change direction of applied force External Levers § Small force to overcome large resistance § Crowbar § Large Range Of Motion to overcome small resistance § Hitting golf ball § Balance force (load) § Seesaw Anatomical Levers § Nearly every bone is a lever § The joint is fulcrum § Contracting muscles are force § Don’t necessarily resemble
    [Show full text]
  • Waves & Normal Modes
    Waves & Normal Modes Matt Jarvis February 2, 2016 Contents 1 Oscillations 2 1.0.1 Simple Harmonic Motion - revision . 2 2 Normal Modes 5 2.1 Thecoupledpendulum.............................. 6 2.1.1 TheDecouplingMethod......................... 7 2.1.2 The Matrix Method . 10 2.1.3 Initial conditions and examples . 13 2.1.4 Energy of a coupled pendulum . 15 2.2 Unequal Coupled Pendula . 18 2.3 The Horizontal Spring-Mass system . 22 2.3.1 Decouplingmethod............................ 22 2.3.2 The Matrix Method . 23 2.3.3 Energy of the horizontal spring-mass system . 25 2.3.4 Initial Condition . 26 2.4 Vertical spring-mass system . 26 2.4.1 The matrix method . 27 2.5 Interlude: Solving inhomogeneous 2nd order di↵erential equations . 28 2.6 Horizontal spring-mass system with a driving term . 31 2.7 The Forced Coupled Pendulum with a Damping Factor . 33 3 Normal modes II - towards the continuous limit 39 3.1 N-coupled oscillators . 39 3.1.1 Special cases . 40 3.1.2 General case . 42 3.1.3 N verylarge ............................... 44 3.1.4 Longitudinal Oscillations . 47 4WavesI 48 4.1 Thewaveequation ................................ 48 4.1.1 TheStretchedString........................... 48 4.2 d’Alambert’s solution to the wave equation . 50 4.2.1 Interpretation of d’Alambert’s solution . 51 4.2.2 d’Alambert’s solution with boundary conditions . 52 4.3 Solving the wave equation by separation of variables . 54 4.3.1 Negative C . 55 i 1 4.3.2 Positive C . 56 4.3.3 C=0.................................... 56 4.4 Sinusoidalwaves ................................
    [Show full text]