Beryllium Technology Research in the United States

Total Page:16

File Type:pdf, Size:1020Kb

Beryllium Technology Research in the United States INL/CON-05-00920 PREPRINT Beryllium Technology Research in the United States 7th IEA International Workshop on Beryllium Technology Glen R. Longhurst Robert A. Anderl M. Kay Adler-Flitton Gretchen E. Matthern Troy J. Tranter Kendall J. Hollis February 2005 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may not be made before publication, this preprint should not be cited or reproduced without permission of the author. This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the United States Government or the sponsoring agency. BERYLLIUM TECHNOLOGY RESEARCH IN THE UNITED STATES GLEN R. LONGHURST*, ROBERT. A. ANDERL, M. KAY ADLER-FLITTON, GRETCHEN E. MATTHERN, TROY J. TRANTER, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, Idaho, 83415 USA KENDALL J. HOLLIS Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545 USA ABSTRACT It was discovered in 1999 that irradiated beryllium While most active research involving beryllium in the disposed of at the RWMC was corroding with attendant 14 2 United States remains tied strongly to biological effects, release of tritium and C. In 2001, it was found that there are several areas of technology development in the beryllium irradiated in the Advanced Test Reactor (ATR), last two years that should be mentioned. (1) Beryllium and by inference in most fission reactors, required disposed of in soil vaults at the Idaho National Laboratory classification as Transuranic Waste. Under U.S. (INL) Radioactive Waste Management Complex (RWMC) environmental law, such material could not be disposed of has been encapsulated in-situ by high-temperature and in existing repositories for radioactive waste, and an pressure injection of a proprietary wax based material to exploration of processing techniques has been initiated. inhibit corrosion. (2) A research program to develop a Fusion reactors are planned that make use of process for removing heavy metals and cobalt from beryllium in two ways. One use is as a low-atomic-number irradiated beryllium using solvent extraction techniques has plasma-facing material with excellent oxygen gettering been initiated to remove components that prevent the capabilities. The other potential use is as Flibe coolant and beryllium from being disposed of as ordinary radioactive tritium source in breeding blanket designs. Production of waste. (3) The JUPITER-II program at the INL Safety and such beryllium plasma-facing components and control of Tritium Applied Research (STAR) facility has addressed the tritium in the Flibe are motivations for some of the work REDOX reaction of beryllium in molten Flibe (a mixture of reported here. LiF and BeF2) to control tritium, particularly in the form of HF, bred in the Flibe by reactions involving both beryllium II. ENCAPSULATION OF BURIED Be WASTE and lithium. (4) Work has been performed at Los Alamos National Laboratory to produce beryllium high heat flux Beryllium waste in the RWMC Subsurface Disposal components by plasma spray deposition on macro- Area contains tritium from neutron activation of beryllium. roughened substrates. Finally, (5) corrosion studies on This waste is buried at depths of 6 m or less. As the buried beryllium samples at the RWMC have shown that the beryllium corrodes, tritium is released into the surrounding physical form of some of the corroded beryllium is very soil as gas or water vapor. A beryllium encapsulation filamentary and asbestos-like. project has been conducted at the INL to prevent further corrosion of the beryllium by keeping water away from it.3 KEYWORDS: beryllium, disposition, transmutations, Known and suspected beryllium disposal areas were transuranic, flibe, plasma spray, disease surveyed for tritium at soil depths of 15.2 cm and 61 cm below ground surface. Tritium anomalies were used to I. INTRODUCTION identify sites needing treatment. In situ high-pressure jet grouting was used to isolate By far, the greatest expenditures for research in the the beryllium blocks without removing them from their United States involving beryllium has been in the realm of burial location. In addition to preventing water from biological effects. Weitzman estimated in 2003 that reaching the blocks, this technique reduces migration of research opportunities for beryllium health and safety contaminants (primarily C-14) from the beryllium blocks research were approximately $14.6 million.1 In contrast, and reduces subsidence potential to prevent pooling of work performed in development of beryllium technology water. It will be repairable if isolation is breached, and it combined was much less. Most of the technology will allow future retrieval if required. development activity was connected with management of Several potential grouts were tested and compared irradiated beryllium wastes. based on the required criteria of effectiveness and ease of application. The conclusion was that the paraffin-based 4 *E-mail: [email protected] grout WAXFIX was superior to other grouts tested. WAXFIX is a proprietary grout available from Carter Technologies Co. in Houston, Texas. It has a melting point and 235 mCi/g of 3H from activation of the beryllium of about 51.7qC and a specific density of about 0.8. itself.6 A private company was awarded the contract to A small research program has been initiated to provide the required equipment and services. The major evaluate techniques for removing these contaminants from pieces of equipment used in jet grouting beryllium blocks irradiated beryllium such that the beryllium can be disposed included: of as ordinary radioactive waste. Recycling is not a current • Grout containment units (GCUs), which contained the objective. The separated radioactive metals may then be potentially contaminated returns from the jet grouting disposed of separately in a high-level waste repository or process burned away in a fission reactor. • Drill rig, which performed the drilling and jet grouting The research performed in the first year has shown operations that beryllium can be successfully dissolved in nitric acid • High-pressure pump, which supplied the grout to the and that isotopes of Cs, Sr, Pu, and Am can be successfully drill rig at high pressure removed using a combination of two solvent extraction • Grout truck, which transported hot WAXFIX from the approaches.7 The results indicate that greater than 99.9% storage site to the drilling site. removal can be achieved for each isotope with only three Holes were drilled through the GCUs to a depth below contact stages. Increasing the number of extraction stages the bottom of the beryllium in an array configured to get should provide even greater removal efficiencies. full penetration of the region containing the buried Work will continue in the next year to develop a beryllium. The pump supplied grout at 500 bar and more suitable technique for 60Co removal. Column supported than 90qC. Prior testing had shown the extent of penetration dimethyl glyoxime will be investigated for this purpose as of the hot grout in the soil. After injection for a well as several ion exchange approaches. Work will also predetermined time through the drill, the drill rig was raised continue with the target isotopes mentioned above to by a few cm, and the process was repeated until it got near investigate the possibility of using a combination of the surface. extraction chromatography and ion exchange to provide an Among the problems encountered was the quantity of alternative approach to solvent extraction for removing grout and soil returned to the surface during grouting these isotopes. operations. A number of solutions were considered, but the problem was dealt with by cleaning out the GCUs with a IV. TRITIUM IN FLIBE backhoe. Other problems, such as vibrating the nozzles out of the monitor while drilling and breaking of drill rods, also Much of the beryllium in some fusion reactor designs were encountered and solved. The project took 11 months will be in molten salt. Flibe, a mixture of LiF and BeF2, is to complete. In all, 512 holes were drilled and grouted. being considered as a coolant for breeding blankets with the added capability of breeding some tritium. The JUPITER-II III. REMOVAL OF HEAVY METALS AND COBALT program is supporting research on Flibe at the Safety and Tritium Applied Research (STAR) facility at the Idaho During routine activation calculations on beryllium National Laboratory. Safety and performance issues arising used as neutron reflectors in fission reactors, it was from the corrosive properties of TF, produced in the Flibe discovered that uranium impurity concentrations of only a by neutron transmutation and chemical composition, are few mg/kg could result in the waste being classified as being investigated. transuranic (TRU), having more than 100 nCi/g of A REDOX process has been developed for controlling radioactive elements with atomic numbers greater than 92 pH in the Flibe using sacrificial beryllium to react with the and half-lives greater than 20 years. Such waste presently TF. Recent experiments have examined the dissolution rate has no pathway for disposal in the U.S. Analyses and of beryllium in the molten Flibe as a function of various measurements on beryllium from the Advanced Test flow and chemical parameters. A further goal is to Reactor at the INL confirmed concentrations of heavy understand the mechanisms by which beryllium is metals that were about five times the threshold for TRU transported in the molten salt after dissolution and how and classification.5 Additionally, iron and cobalt impurities where it interacts with the TF.
Recommended publications
  • Molten-Salt Technology and Fission Product Handling
    Molten-Salt Technology and Fission Product Handling Kirk Sorensen Flibe Energy, Inc. ORNL MSR Workshop October 4, 2018 2018-10-16 Hello, my name is Kirk Sorensen and I’d like to talk with you today about fission products and their handling in molten-salt reactors. One of the things that initially attracted me to molten-salt reactor technology was the array of options that it gave for the intelligent handling of fission products. It represented such a contrast to solid-fueled systems, which mixed fission products in with unburned nuclear fuel in a form that was difficult to separate, one from another. While my focus will be on our work on molten-salt reactor fission product handling, many of the principles are general to molten-salt reactors as a whole. Fundamental Nuclear Reactor Concept In its simplest form, a nuclear reactor generates thermal energy that is carried away by a coolant. That coolant heats the working fluid of a power conversion system, which generates electricity from part of the thermal energy and rejects the remainder to the environment. coolant working fluid fresh fuel electricity Power Nuclear Heat Conversion Reactor Exchanger System spent fuel heated water or air coolant working fluid The primary coolant chosen for a nuclear reactor determines, in large part, its size and manufacturability. The temperature of the coolant determines the efficiency of electrical generation. Fundamental Nuclear Reactor Concept In its simplest form, a nuclear reactor generates thermal energy that is carried away by a coolant. That coolant heats the working fluid of a power conversion system, which generates electricity from part of the thermal energy and rejects the remainder to the environment.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • 0409-TOFE-Elguebaly
    BBenenefitsefits ooff RRadadialial BBuuildild MinMinimimizatioizationn anandd RReqequuirirememenentsts ImImposedposed onon AARRIEIESS CComompapacctt SStetellallararatotorr DDeesigsignn Laila El-Guebaly (UW), R. Raffray (UCSD), S. Malang (Germany), J. Lyon (ORNL), L.P. Ku (PPPL) and the ARIES Team 16th TOFE Meeting September 14 - 16, 2004 Madison, WI Objectives • Define radial builds for proposed blanket concepts. • Propose innovative shielding approach that minimizes radial standoff. • Assess implications of new approach on: – Radial build – Tritium breeding – Machine size – Complexity – Safety – Economics. 2 Background • Minimum radial standoff controls COE, unique feature for stellarators. • Compact radial build means smaller R and lower Bmax fi smaller machine and lower cost. • All components provide shielding function: – Blanket protects shield Magnet Shield FW / Blanket – Blanket & shield protect VV Vessel Vacuum – Blanket, shield & VV protect magnets Permanent Components • Blanket offers less shielding performance than shield. • Could design tolerate shield-only at Dmin (no blanket)? • What would be the impact on T breeding, overall size, and economics? 3 New Approach for Blanket & Shield Arrangement Magnet Shield/VV Shield/VV Blanket Plasma Blanket Plasma 3 FP Configuration WC-Shield Dmin Magnet Xn through nominal Xn at Dmin blanket & shield (magnet moves closer to plasma) 4 Shield-only Zone Covers ~8% of FW Area 3 FP Configuration Beginning of Field Period f = 0 f = 60 Middle of Field Period 5 Breeding Blanket Concepts Breeder Multiplier Structure FW/Blanket Shield VV Coolant Coolant Coolant ARIES-CS: Internal VV: Flibe Be FS Flibe Flibe H2O LiPb – SiC LiPb LiPb H2O * LiPb – FS He/LiPb He H2O Li4SiO4 Be FS He He H2O External VV: * LiPb – FS He/LiPb He or H2O He Li – FS He/Li He He SPPS: External VV: Li – V Li Li He _________________________ * With or without SiC inserts.
    [Show full text]
  • Medical Isotope Production in Liquid-Fluoride Reactors
    Medical Isotope Production in Liquid-Fluoride Reactors Kirk Sorensen Flibe Energy Huntsville, Alabama kirk.sorensen@flibe-energy.com 256 679 9985 Flibe Energy was formed in order to develop liquid-fluoride reactor technology and to supply the world with affordable and sustainable energy, water and fuel. Liquid-Fluoride Reactor Concept Reactor Containment Boundary Turbine Coolant LiF-BeF2-UF4 LiF-BeF2 outlet Primary HX Gas Heater Gas Cooler Generator Reactor core Compressor Coolant inlet Drain Freeze valve Tank Electrical Warm Recompressor Main Compressor Turbine Generator Saturated Air Cool Dry Air Gas Heater High-Temp Low-Temp Gas Cooler Recuperator Recuperator Cooling Water Accum Surge Short-Term Gas Holdup Cryogenic Long-Term Gas Holdup Storage Accum Surge ea Fluor Decay Scrub Decay Tank KOH Bi(Th) Bi(Pa,U) Isotopic Quench metallic Th feed H2 ulFluorinator Fuel 2Reduction H2 HF Electro Bi(Th,FP) Bi(Li) Cell metallic HDLi feed F2 Water Water Coolant Coolant Torus Torus Drain Tank Waste Tank 7 Fuel Salt ( LiF-BeF2-UF4) Fresh Offgas UF6-F2 200-bar CO2 7 Blanket Salt ( LiF-ThF4-BeF2) 1-day Offgas F2 77-bar CO2 7 Coolant salt ( LiF-BeF2) 3-day Offgas HF-H2 Water 7 Decay Salt ( LiF-BeF2-(Th,Pa)F4) 90-day Offgas H2 Waste Salt (LiF-CaF2-(FP)F3) Helium Bismuth The Molten-Salt Reactor Experiment was an experimental reactor system that demonstrated key technologies. Lanthanide Fission Products Alkali- and Alkaline-Earth Fission Product Fluorides c ORNL-TM-3884 THE MIGRATION OF A CLASS OF FISSION PRODUCTS (NOBLE METALS) IN THE MOLTEN-SALT REACTOR EXPERIMENT R.
    [Show full text]
  • Liquid Fluoride Salt Experiment Using a Small Natural Circulation Cell
    ORNL/TM-2014/56 Liquid Fluoride Salt Experiment Using a Small Natural Circulation Cell Graydon L. Yoder, Jr. Dennis Heatherly David Williams Oak Ridge National Laboratory Josip Caja Mario Caja Approved for public release; Electrochemical Systems, Inc., distribution is unlimited. Yousri Elkassabgi John Jordan Roberto Salinas Texas A&M University April 2014 DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via US Department of Energy (DOE) SciTech Connect. Website http://www.osti.gov/scitech/ Reports produced before January 1, 1996, may be purchased by members of the public from the following source: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail [email protected] Website http://www.ntis.gov/help/ordermethods.aspx Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange representatives, and International Nuclear Information System representatives from the following source: Office of Scientific and Technical Information PO Box 62 Oak Ridge, TN 37831 Telephone 865-576-8401 Fax 865-576-5728 E-mail [email protected] Website http://www.osti.gov/contact.html This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.
    [Show full text]
  • System Studies of Fission-Fusion Hybrid Molten Salt Reactors
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2013 SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS Robert D. Woolley University of Tennessee - Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Nuclear Engineering Commons Recommended Citation Woolley, Robert D., "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2628 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Robert D. Woolley entitled "SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Nuclear Engineering. Laurence F. Miller, Major Professor We have read this dissertation and recommend its acceptance: Ronald E. Pevey, Arthur E. Ruggles, Robert M. Counce Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) SYSTEM STUDIES OF FISSION-FUSION HYBRID MOLTEN SALT REACTORS A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Robert D.
    [Show full text]
  • Effect of Flibe Thermal Neutron Scattering on Reactivity of Molten Salt Re- Actor
    EPJ Web of Conferences 239, 14008 (2020) https://doi.org/10.1051/epjconf/202023914008 ND2019 Effect of FLiBe thermal neutron scattering on reactivity of molten salt re- actor 1 1, 1, 1 1 1,2 1 Yafen Liu , Wenjiang Li ∗, Rui Yan ∗∗, Yang Zou , Shihe Yu , Bo Zhou , and Xiangzhou Cai 1Shanghai Institute of Applied Physics, CAS, Shanghai, 201800, China 2University of Chinese Academy of Sciences, Beijing, 100049, China Abstract. Thermal neutron scattering data has an important influence on the calculation and design of reactor with a thermal spectrum. However, as the only liquid fuel in the Gen-IV reactor candidates, the research on the thermal neutron scattering effect of coolant and somewhat moderator FLiBe has not been carried out sufficiently either experimentally or theoretically. The effect of FLiBe thermal neutron scattering on reactivity of TMSR- LF (thorium molten salt reactor - liquid fuel), TMSR-SF (thorium molten salt reactor - solid fuel) and MSRE (molten salt reactor experiment) were investigated and compared. Results show that the effect of FLiBe thermal neutron scattering on reactivity depends to some extent on the fuel-graphite volume ratio of core. Calculations indicate that FLiBe thermal neutron scattering of MSRE (with the hardest spectrum) has the minimum effect of 41 pcm on reactivity, and FLiBe thermal neutron scattering of TMSR-SF (with the softest spectrum) has the maximum effect of -94 pcm on reactivity, and FLiBe thermal neutron scattering of TMSR-LF has an effect of -61 pcm on reactivity at 900 K. 1 Introduction tionally [5]. When neutrons are moderated to thermal, the binding of the scattering nucleus in a liquid moderator ma- In a thermal neutron reactor, when neutron energy exceeds terial affects the scattering cross section and the energy and 4 eV, the binding energy within the molecule is not impor- angular distribution of secondary neutrons.
    [Show full text]
  • “Advanced” Isn't Always Better
    SERIES TITLE OPTIONAL “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors “Advanced” Isn’t Always Better Assessing the Safety, Security, and Environmental Impacts of Non-Light-Water Nuclear Reactors Edwin Lyman March 2021 © 2021 Union of Concerned Scientists All Rights Reserved Edwin Lyman is the director of nuclear power safety in the UCS Climate and Energy Program. The Union of Concerned Scientists puts rigorous, independent science to work to solve our planet’s most pressing problems. Joining with people across the country, we combine technical analysis and effective advocacy to create innovative, practical solutions for a healthy, safe, and sustainable future. This report is available online (in PDF format) at www.ucsusa.org/resources/ advanced-isnt-always-better and https:// doi.org/10.47923/2021.14000 Designed by: David Gerratt, Acton, MA www.NonprofitDesign.com Cover photo: Argonne National Laboratory/Creative Commons (Flickr) Printed on recycled paper. ii union of concerned scientists [ contents ] vi Figures, Tables, and Boxes vii Acknowledgments executive summary 2 Key Questions for Assessing NLWR Technologies 2 Non-Light Water Reactor Technologies 4 Evaluation Criteria 5 Assessments of NLWR Types 8 Safely Commercializing NLWRs: Timelines and Costs 9 The Future of the LWR 9 Conclusions of the Assessment 11 Recommendations 12 Endnotes chapter 1 13 Nuclear Power: Present and Future 13 Slower Growth, Cost and Safety Concerns 14 Can Non-Light-Water Reactors
    [Show full text]
  • History, Background, and Current MSR Developments
    Module 1: History, Background, and Current MSR Developments Presentation on Molten Salt Reactor Technology by: David Holcomb, Ph.D. Advanced Reactor Systems and Safety Reactor and Nuclear Systems Division Presentation for: US Nuclear Regulatory Commission Staff Washington, DC Date: November 7–8, 2017 ORNL is managed by UT-Battelle for the US Department of Energy Summary of Modules • Module 1 – History, Background, and Current MSR Developments – Introduction to MSRs, early development, current developers • Module 2 – Overview of MSR Technology and Concepts – System overviews, technical maturity • Module 3 – Overview of Fuel and Coolant Salt Chemistry and Thermal Hydraulics – Salt properties and characteristics • Module 4 – MSR Neutronics – Comparison with LWRs, reactivity feedback, challenges 2 Module 1 History, Background, and Current MSR Developments Summary of Modules (cont.) • Module 5 – Materials – Requirements, options, challenges • Module 6 – Systems and Components – Nuclear heat supply, heat transport, support systems, balance of plant • Module 7 – Overview of MSR Instrumentation – Key process parameters, support for automation, tritium monitoring, fissile material tracking • Module 8 – Fuel Cycle and Safeguards – Reactor technology, neutron spectrum, fundamental concepts 3 Module 1 History, Background, and Current MSR Developments Summary of Modules (cont.) • Module 9 – Operating Experience – Corrosion studies, OpE issues, remote handling, long-term storage • Module 10 – Safety Analysis and Design Requirements – MSR events, accident
    [Show full text]
  • The High-Field Path to Practical Fusion Energy
    The High-Field Path to Practical Fusion Energy M. Greenwald, D. Whyte, P. Bonoli, Z. Hartwig, J. Irby, B. LaBombard, E. Marmar, J. Minervini, M. Takayasu, J. Terry, R. Vieira, A. White, S. Wukitch MIT – Plasma Science & Fusion Center D. Brunner, R. Mumgaard, B. Sorbom Commonwealth Fusion Systems This white paper outlines a vision and describes a coherent roadmap to achieve practical fusion energy in less time and at less expense than the current pathway. The key technologies that enable this path are high-field, high-temperature superconducting magnets, a molten salt liquid blanket, high-field-side lower hybrid current drive and a long-legged, advanced divertor. We argue that successful development and integration of these innovative and synergistic technologies would dramatically change the outlook for fusion, providing a real opportunity to positively impact global climate change and to reverse the loss of U.S. leadership in fusion research suffered in recent decades. An illustration of the SPARC tokamak – a compact, net-energy tokamak that would be a key step on the high field path to fusion. Credit: Ken Filar https://commons.wikimedia.org/wiki/File%3ASparc_february_2018.jpg The High-Field Path to Practical Fusion Energy Table of Contents 1. Executive summary .............................................................................................................. 2 2. High Temperature Superconductors ................................................................................... 5 3. SPARC – A Compact, Net-Energy Fusion Experiment
    [Show full text]
  • Preliminary Design Study of a Continuous Fluorination-Vacuum-Distillation System for Regenerating Fuel and Fertile Streams in a Molten-Salt Breeder Reactor
    Preliminary Design Study of a Continuous Fluorination-Vacuum-Distillation System for Regenerating Fuel and Fertile Streams in a Molten-Salt Breeder Reactor C.D. Scott, W.L. Carter January 1966 Abstract The purpose of this study was to make a preliminary design and an engineering evaluation of a conceptual plant for treating the fuel and fertile streams of a molten-salt breeder reactor. 233 The primary requirements of the process are to recover the unburned fuel ( UF4) and fuel- 233 stream carrier salts (LiF-BeF2) from the fuel stream, and the LiF-ThF4 plus the bred U from the fertile stream. Both streams must be sufficiently decontaminated for attractive breeding performance of the reactor. The plant was designed to operate continuously as an integral part of the reactor system, fitting into two relatively small cells adjacent to the reactor cell. In this study, the plant capacity is based upon treating 15 ft3/day of fuel salt and 105 ft3/day of fertile salt removed as side streams. These capacities are adequate for a 1000-MWe power reactor. As to the fuel stream, basically it is purified by fluorination and vacuum distillation. The first step removes uranium as volatile UF6; the second recovers the LiF-BeF2 by simultaneously volatilizing these two components from the less volatile fission products. Fortunately, the fission products so separated are primarily the rare earths, which are the most serious neutron poisons. The UF6 from the fluorinator is accompanied by some volatile fission product fluorides, primarily those of Mo, Te, Ru, Zr, and Nb, which are removed by sorption on granular NaF and MgF2.
    [Show full text]
  • Liquid-Fluoride Thorium Reactor Development Strategy
    Liquid-Fluoride Thorium Reactor Development Strategy Kirk Sorensen Flibe Energy Thorium Energy Conference 2013 October 28, 2013 Impending Coal-Fired Plant Retirements Large numbers of coal-fired power plants are also facing retirement, particularly in the Ohio River Valley and in the Carolinas. EPA regulations are helping drive coal retirement The implementation of these regulations makes smaller, older coal plants inefficient and uneconomical, resulting in the loss of over 27GW. The loss of power places an urgency on utilities to plan for new, clean power solutions ahead of 2017. The window to plan for new clean generation sources fi ts perfectly with SMR development and offers a market opportunity of over $30bn for coal replacement alone. “Renewable” options are limited in these regions New reactors are under construction in the US and across the world. The US Nuclear Retirement “Cliff” Beginning in 2028, nuclear power plant retirements will increase dramatically. DOE sees Industry Leading Future Nuclear “In the United States, it is the responsibility of industry to design, construct, and operate commercial nuclear power plants.” (pg 22) “It is ultimately industry’s decision which commercial technologies will be deployed. The federal role falls more squarely in the realm of R&D.” (pg 16) “The decision to deploy nuclear energy systems is made by industry and the private sector in market-based economies.” (pg 45) Modular construction of nuclear reactors in a factory environment has become increasingly desirable to reduce uncertainties about costs and quality. Liquid-fluoride reactors, with their low- pressure reactor vessels, are particularly suitable to modular construction in a factory and delivery to a power generation site.
    [Show full text]