Distribution and Microhabitat Selection of Hemigrapsus Oregonensis (Dana) and Pachygrapsus Crassipes Randall in Elkhorn Slough, Monterey County, California

Total Page:16

File Type:pdf, Size:1020Kb

Distribution and Microhabitat Selection of Hemigrapsus Oregonensis (Dana) and Pachygrapsus Crassipes Randall in Elkhorn Slough, Monterey County, California DISTRIBUTION AND MICROHABITAT SELECTION OF HEMIGRAPSUS OREGONENSIS (DANA) AND PACHYGRAPSUS CRASSIPES RANDALL IN ELKHORN SLOUGH, MONTEREY COUNTY, CALIFORNIA A Thesis Presented to the Graduate Faculty of California State University, Hayward In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology By Mark C. Sliger March 1982 Copyright © 1982 by Mark C. Sliger ii ABSTRACT The vertical distribution and habitat selection of two species of grapsid crabs Hemigrapsus oregonensis (Dana) and Pachygrapsus crassipes Randall along the main channel bank of Elkhorn Slough, Monterey County, California was investigated. While the vertical distribution of the two crab species was found to overlap, H. oregonensis typically occupied burrows in the lower region of the bank and P. crassipes was usually found in burrows located in the upper bank or in bank slumps located on the lower mudflat. Substratum and tidal elevation were found to be the most important factors influencing crab distribution along the banks of Elkhorn Slough. Both H. oregonensis and P. crassipes had similar resistance to desiccation abilities, however smaller members of each crab species were more susceptible to desiccation. · Hernigrapsus oregonensis was found to be able to tolerate silty-clay water while P. crassipes was highly susceptible to small, unconsoli­ dated mud particles. iii DISTRIBUTION AND MICROHABITAT SELECTION OF HEMIGRAPSUS OREGONENSIS (DANA) AND PACHYGRAPSUS SIPES RANDALL IN ELKHORN SLOUGH, MONTEREY COUNTY, CALIFORNIA By Nark C. Sliger Date: ' .,.( 7. -i"-- . ...: ~-- 17 [ iv ACKNOWLEDGMENTS There are a great number of people without whose help this work would not have been completed. Financial support was provided by Sea Grant #R/CZ-45. I wish to thank the members of my committee, Drs. James Nybakken, Pamela Roe and Gregor Caillier for their continued support through the duration of this research. I am especially grateful to Dr. Pamela Roe for her contagious vitality, inspiration and encouragement during times of crisis. Thanks to Dr. Ann Hurley for providing assistance with statistical analysis and experimental design during the critical preliminary phase of the study. I am grateful to Dr. John Oliver for his stimulating conversations and cr ical review of the initial draft. Chris Jong deserves special thanks for providing friendship, thought-provoking ideas and valuable assistance in collecting data. Her undaunted spir contributed greatly to the successful comp tion of this research. I wish to express my gratitude to numerous iends at the Moss Landing Marine Laboratories who supported and encouraged me throughout this study. In particular, I am indebted to Signe Johnsen for her help with computer analysis; Sheila Baldridge, the librarian, for locating needed references; Rosie Stelow for editing the manuscript; v . vi and Lynn McMasters for her exceptional illustrations. I also greatly appreciate the assistance of Joy Milhaven, Neal Scanlon and Fred Lauber with the field work. Special thanks to the "Benthic Bubs" for the camaraderie and help in unraveling some of the mysteries of Elkhorn Slough. My sincere appreciation to Valerie Breda, Debbie Fellows and Melanie Mayer for their advice and emotional support. Finally, I extend the deepest appreciation to my family for their understanding, love, and support. TABLE OF CONTENTS ABSTRACT o o • • iii ACKNOWLEDGMENTS v LIST OF TABLES . ix LIST OF FIGURES x· INTRODUCTION . 1 METHODS AND MATERIALS 4 Study Area 4 Crab Distribution . 5 Vertical Bank 5 Bank Slumps 6 Physical Properties of the Channel Bank 7 Erosion 7 Exposure 10 Field Experiments 11 Tidal Height Preference 11 Bank Region Preference 13 Substratum Transferal 13 Laboratory Experiments 14 Desiccation 14 Tolerance to Silty-Clay Water 15 RESULTS 16 vii viii Page Crab Distribution . 16 Vertical Bank 16 Bank Slumps 17 Physical Properties of the Channel Bank 17 Field Experiments 19 Tidal Height Preference 19 Bank Region Preference . 20 Substratum Transferal 20 Laboratory Experiments 21 Desiccation 21 Tolerance to Silty-Clay Water 21 DISCUSSION . 22 SUMMARY 30 LITERATURE CITED 31 TABLES . 35 FIGURES 39 - LIST OF TABLES Table Page 1. Mean densities and mean differences in densities of Pachygrapsus crassipes and Hemigrapsus oregonensis collected in 0.25 m2 quadrats in Elkhorn Slough from December 1979 to May 1980 . .. 35 2. Summary of stat tical analysis for the physical charac tics of the upper and lower bank regions of the main channel bank of Elkhorn Slough . 36 3. Summary of chi-square tests for tidal height preferences of Pachygrapsus crassipes and Hemigrapsus oregonensis . 37 ! 4. Summary of chi-square tests for the bank region preferences of Pachygrapsus crassipes and Hemigrapsus oregonensis . 38 'i ix LIST OF FIGURES Figure Page 1. Map of Elkhorn Slough showing position of study site . 39 2. Photograph bank slumps at the study site in Elkhorn Slough during low tide 41 3. Diagram of the device used in the substratum erodibility experiment . 43 4. Artificial substratum cage against the main channel bank of the study site during low tide . 45 5. Size frequency diagram of all Hemigrapsus oregonensis collected from mud burrows of the upper bank region . 47 6. Size frequency diagram of all Hemigrapsus oregonensis collected from mud burrows of the lower bank region . 49 7. Size frequency diagram of all Pachygrapsus crassipes collected from mud burrows of the upper bank region . 51 8. Size frequency diagram of all Pachygrapsus crassipes collected from mud burrows of the lower bank region . 53 9. Results of five Vertical Height Preference/ Species Interaction experiments . 55 10. Tolerance to desiccation of Hemigrapsus oregonensis and Pachygrapsus crassipes 57 11. Regression of desiccation survival time of Hemigrapsus oregonensis against crab size as determined by carapace width . 59 12. Regression of desiccation survival time of Pachygrapsus crassipes against crab s e as determined by carapace width 61 13. Tolerance to silty-clay water 63 X INTRODUCTION While the study of the distribution and habitat preference of brachyuran crabs has been generally limited i . to works which concentrated on the burrowing, depos feed- i: .r' I , I , ing ocypoid crabs of the genus Uca (for a review, see i ~ Crane, 1975), a number of investigators have focused on the crabs of the family Grapsidae. For example, Bacon (1971) studied the distribution of Cyclograpsus insularum and Cyclograpsus lavauxi and found substratum and tidal elevation important factors for habitat selection. Sub- stratum and behavior were suggested by Abele (1973) as important factors in limiting the distribution in Florida of six species of closely associated grapsid crabs of the genus Sesarma. Salinity has been found to affect the distribution of several species of grapsid crabs (Snelling, 1959; Jones, 1976; Seiple, 1979) and Kikuchi et al. (1981) found that the distribution of the pebble crab (Gaetice depressus was correlat with beach elevation. Although MacGinitie (1935) f st noted the occurrence of the grapsid crabs Hemigrapsus oregonensis, Hemigrapsus nudus and Pachygrapsus crassipes among rocks or in inter- tidal mud burrows in Elkhorn Slough, California and additional studies (Knudsen, 1964; Ricketts and Calvin, 1968; Batie, 1974) have shown that Pacific coast populations of 1 2 the three grapsid crabs generally form distinct distribu- tional patterns, few authors have explored experimentally the biological and physical parameters influencing the distribution and habitat selection of these crabs. Hiatt (1948) suggested that the observed habitats of H. oregonensis, H. nudus and P. crassipes along the coast of California were influenced by substratum and desiccation. He in- vestigated the relative abilities of the three grapsid crabs to withstand siccation and found that ~· crassipes and H. nudus apparently had greater tolerances to desiccation than H. oregonensis. Low (1970) found that the divergent habitat preferences of H. oregonensis and H. nudus ~ I were influenced by different physiological tolerances I~ to muddy water and low oxygen concentrations. Hemigrapsus oregonensis outlived H. nudus when both spec s of crabs I. were placed in flasks filled with low oxygenated, muddy \ water. His results were consistent with Hiatt's (1948) suggestion that morphological differences in the respira- tory systems of H. oregonensis, H. nudus and P. affected the ability of the di erent cies to survive on fine particulate substratum. Willason (1981) found that the distribution and coexistence of P. crassipes and H. oregonensis a southern Californian saltrnar were primarily the result of predation. By preying on H. P. crassipes restrict that crab spec s to 3 lower intertidal areas. He suggested that a possible release mechanism for H. oregonensis was the inability of small P. crassipes to cope with the stressful estuarine environment. Hemigrapsus oregonensis (Dana) and Pachygrapsus crassipes Randall form an important part of the invertebrate macrofauna of Elkhorn Slough, Monterey County, California. Both species of crabs occupy similar habitats, generally found in burrows located in the intertidal mudflat or pickleweed Salicornia virginica) marsh. The present study examined the abundance and distribution of H. oregonensis and P. crassipes along the intertidal mud banks of this embayment and sought to answer questions concerning the limits of their distribution and habitat selection and how these m~y be influenced by tolerances to environmental variables and crab agonistic behavior.
Recommended publications
  • Phylogeography of Pachygrapsus Transversus (Gibbes, 1850): The
    Nauplius 13(2): 99-113, 2005 ^ Phylogeography of Pachygrapsus transversus (Gibbes, 1850): The effect of the American continent and the Atlantic Ocean as gene flow barriers and recognition of Pachygrapsus socius Stimpson 1871 as a valid species Schubart ', C. D.; Cuesta2, J. A. and Felder3, D. L. 1 Biologie I, Universitat Regensburg, D-93040 Regensburg, Germany, e-mail: [email protected] regensburg.de 2 Instituto de Ciencias Marinas de Andalucia, CSIC, Avda. Republica Saharaui, 2,11510 Puerto Real, Cadiz, Spain, e-mail: [email protected] 3 Department of Biology, Laboratory for Crustacean Research, University of Louisiana at Lafayette, Lafayette, LA 70504- 2451, USA, e-mail: [email protected] Abstract Genetic and morphometric comparisons among a few specimens of the littoral crab Pachygrapsus transversus have revealed marked intraspecific differences between three different coastlines (Cuesta and Schubart, 1998). Here we build on the previous study by presenting a more comprehensive analysis covering the entire range of this species from the Galapagos Islands to Israel, based on 195 specimens for morphometric analysis and 39 individuals for genetic comparisons of the 16S mtDNA. It is confirmed that marked genetic differences are present between three major coastlines (eastern Pacific, western and eastern Adantic), whereas along single coastlines there is mostly high genetic homogeneity. Morphometric analyses also allow distinction of adult specimens from the three coastlines. In contrast, larval morphological and morphometric differences were less consistent and cannot be used to separate zoea I stages from the different megapopulations. In addition to the genetic separation of populations from different coastlines, this study provides new evidence for less marked, but consistent genetic differentiation between European and northern African populations of P.
    [Show full text]
  • Pachygrapsus Transversus
    Population biology of two sympatric crabs: Pachygrapsus transversus (Gibbes, 1850) (Brachyura, Grapsidae) and Eriphia gonagra (Fabricius, 1781) (Brachyura, Eriphidae) in reefs of Boa Viagem beach, Recife, Brazil MARINA DE SÁ LEITÃO CÂMARA DE ARAÚJO¹*, DAVID DOS SANTOS AZEVEDO², JULIANE VANESSA CARNEIRO DE LIMA SILVA3, CYNTHIA LETYCIA FERREIRA PEREIRA1 & DANIELA DA SILVA CASTIGLIONI4,5 1. Universidade de Pernambuco (UPE), Coleção Didática de Zoologia (CDZ/UPE), Faculdade de Ciências, Educação e Tecnologia (FACETEG), Campus Garanhuns, Rua Capitão Pedro Rodrigues, 105, São José, CEP 55290-000, Garanhuns, PE. 2. Instituto Federal de Educação Ciência e Tecnologia de Pernambuco (IFPE), Av. Prof. Luiz Freire, 500, Cidade Universitária, CEP 55740-540, Recife, PE. 3. Universidade Federal de Pernambuco (UFPE), Programa de Pós-Graduação em Biologia Animal, Centro de Ciências Biológicas, Departamento de Zoologia, Av. Professor Moraes Rego, s-n, Cidade Universitária, CEP 50670-901, Recife, PE. 4. Universidade Federal de Santa Maria (UFSM), Departamento de Zootecnia e Ciências Biológicas, Campus de Palmeira das Missões, Avenida Independência, 3751, Bairro Vista Alegre, CEP 983000-000, Palmeira das Missões, RS. 5. Programa de Pós-Graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), Prédio 17, sala 1140-D, Cidade Universitária, Camobi, km 9, Santa Maria, RS. *Corresponding author: [email protected] Abstract. This study characterizes the population biology of two crabs: Pachygrapsus transversus and Eriphia gonagra from reefs at Boa Viagem Beach, Pernambuco. Carapace width (CW) was measured and all animals were sexed. A total of 1.174 specimens of P. transversus and 558 specimens of E. gonagra were sampled.
    [Show full text]
  • Looking Beyond the Mortality of Bycatch: Sublethal Effects of Incidental Capture on Marine Animals
    Biological Conservation 171 (2014) 61–72 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review Looking beyond the mortality of bycatch: sublethal effects of incidental capture on marine animals a, a a,b b a Samantha M. Wilson ⇑, Graham D. Raby , Nicholas J. Burnett , Scott G. Hinch , Steven J. Cooke a Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Sciences, Carleton University, Ottawa, ON, Canada b Pacific Salmon Ecology and Conservation Laboratory, Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, Canada article info abstract Article history: There is a widely recognized need to understand and reduce the incidental effects of marine fishing on Received 14 August 2013 non-target animals. Previous research on marine bycatch has largely focused on simply quantifying mor- Received in revised form 10 January 2014 tality. However, much less is known about the organism-level sublethal effects, including the potential Accepted 13 January 2014 for behavioural alterations, physiological and energetic costs, and associated reductions in feeding, growth, or reproduction (i.e., fitness) which can occur undetected following escape or release from fishing gear. We reviewed the literature and found 133 marine bycatch papers that included sublethal endpoints Keywords: such as physiological disturbance, behavioural impairment, injury, reflex impairment, and effects on RAMP reproduction,
    [Show full text]
  • Olympia Oyster (Ostrea Lurida)
    COSEWIC Assessment and Status Report on the Olympia Oyster Ostrea lurida in Canada SPECIAL CONCERN 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Olympia Oyster Ostrea lurida in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 56 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): COSEWIC. 2000. COSEWIC assessment and status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm) Gillespie, G.E. 2000. COSEWIC status report on the Olympia Oyster Ostrea conchaphila in Canada in COSEWIC assessment and update status report on the Olympia Oyster Ostrea conchaphila in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-30 pp. Production note: COSEWIC acknowledges Graham E. Gillespie for writing the provisional status report on the Olympia Oyster, Ostrea lurida, prepared under contract with Environment Canada and Fisheries and Oceans Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Robert Forsyth and Dr. Gerald Mackie, COSEWIC Molluscs Specialist Subcommittee Co-Chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’huître plate du Pacifique (Ostrea lurida) au Canada.
    [Show full text]
  • The Crabs from Mayotte Island (Crustacea, Decapoda, Brachyura)
    THE CRABS FROM MAYOTTE ISLAND (CRUSTACEA, DECAPODA, BRACHYURA) Joseph Poupin, Régis Cleva, Jean-Marie Bouchard, Vincent Dinhut, and Jacques Dumas Atoll Research Bulletin No. 617 1 May 2018 Washington, D.C. All statements made in papers published in the Atoll Research Bulletin are the sole responsibility of the authors and do not necessarily represent the views of the Smithsonian Institution or of the editors of the bulletin. Articles submitted for publication in the Atoll Research Bulletin should be original papers and must be made available by authors for open access publication. Manuscripts should be consistent with the “Author Formatting Guidelines for Publication in the Atoll Research Bulletin.” All submissions to the bulletin are peer reviewed and, after revision, are evaluated prior to acceptance and publication through the publisher’s open access portal, Open SI (http://opensi.si.edu). Published by SMITHSONIAN INSTITUTION SCHOLARLY PRESS P.O. Box 37012, MRC 957 Washington, D.C. 20013-7012 https://scholarlypress.si.edu/ The rights to all text and images in this publication are owned either by the contributing authors or by third parties. Fair use of materials is permitted for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify the content, and must comply with all other terms or restrictions that may be applicable. Users are responsible for securing permission from a rights holder for any other use. ISSN: 0077-5630 (online) This work is dedicated to our friend Alain Crosnier, great contributor for crab sampling in Mayotte region between 1958-1971 and author of several important taxonomic contributions in the region.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • Substrate Mediates Consumer Control of Salt Marsh Cordgrass on Cape Cod, New England
    Ecology, 90(8), 2009, pp. 2108–2117 Ó 2009 by the Ecological Society of America Substrate mediates consumer control of salt marsh cordgrass on Cape Cod, New England 1 MARK D. BERTNESS, CHRISTINE HOLDREDGE, AND ANDREW H. ALTIERI Department of Ecology and Evolutionary Biology, 80 Waterman Street, Brown University, Providence, Rhode Island 02912 USA Abstract. Cordgrass die-offs in Cape Cod, Massachusetts, USA, salt marshes have challenged the view that the primary production of New England salt marshes is controlled by physical factors. These die-offs have increased dramatically over the last decade and are caused by the common herbivorous marsh crab Sesarma reticulatum, but other factors that control crab impacts remain unclear. We examined the influence of plant nutrient supply and disturbances on Sesarma herbivory by fertilizing plots and creating experimental disturbances, since previous studies have revealed that they mediate the intensity of herbivory in other Western Atlantic marshes. Neither nutrient enrichment nor experimental disturbances affected crab grazing intensity despite their strong effects in other marsh systems. Within and among Cape Cod salt marshes, however, Sesarma burrows are concentrated on peat substrate. Surveys of 10 Cape Cod marshes revealed that burrow density, depth, and complexity are all much higher on peat than on sand or mud substrate, and paralleling these patterns, crab abundance, herbivore pressure, and the expansion of die-off areas are markedly higher on peat than on other substrates. Complementing work hypothesizing that predator release is triggering increased crab herbivory in Cape Cod marshes, these results suggest that cordgrass die-offs are constrained to the peat substrate commonly found on the leading edge of marshes and that the vulnerability of New England salt marshes to crab herbivory and future die-offs may be predictable.
    [Show full text]
  • The Oceanic Crabs of the Genera Planes and Pachygrapsus
    PROCEEDINGS OF THE UNITED STATES NATIONAL MUSEUM issued IflfNvA-QJsl|} by ^e SMITHSONIAN INSTITUTION U. S. NATIONAL MUSEUM Vol. 101 Washington: 1951 No. 3272 THE OCEANIC CRABS OF THE GENERA PLANES AND PACHYGRAPSUS By FENNEB A. CHACE, Jr. ON September 17, 1492, at latitude approximately 28° N. and longitude 37° W., Columbus and his crew, during their first voyage to the New World, "saw much more weed appearing, like herbs from rivers, in which they found a live crab, which the Admiral kept. He says that these crabs are certain signs of land . "(Markham, 1893, p. 25). This is possibly the first recorded reference to oceanic crabs. Whether it refers to Planes or to the larger swimming crab, Portunus (Portunus) sayi (Gibbes), which is seldom found this far to the east, may be open to question, but the smaller and commoner Planes is frequently called Columbus's crab after this item in the discov­ erer's diary. Although these crabs must have been a source of wonder to mariners on the high seas in the past as they are today, the first adequate description of them did not appear until more than two centuries after Columbus's voyage when Sloane (1725, p. 270, pi. 245, fig. 1) recorded specimens from seaweed north of Jamaica. A short time later Linnaeus (1747, p. 137, pi. 1, figs. 1, a-b) described a similar form, which he had received from a Gflteborg druggist and which was reputed to have come from Canton. This specimen, which Linnaeus named Cancer cantonensis, may he the first record of the Pacific Planes cyaneus.
    [Show full text]
  • Life History of the Native Shore Crabs Hemigrapsus Oregonensis And
    3/12/2018 people.oregonstate.edu/~yamadas/crab/ch5.htm Life History of Hemigrapsus oregonensis and Hemigrapsus nudus Objective of study Materials and Methods Results SEX SPECIES TIDE LEVEL SITE Discussion Prediction of the possible impact of Carcinus maenas on the populations of Hemigrapsus oregonensis and Hemigrapsus nudus Life History of the native shore crabs Hemigrapsus oregonensis and Hemigrapsus nudus and their distribution, relative abundance and size frequency distribution at four sites in Yaquina Bay, Oregon. Jennifer Oliver and Anja Schmelter Life History of Hemigrapsus oregonensis and Hemigrapsus nudus Much is known about the life history of the two common intertidal shore crabs Hemigrapsus oregonensis and Hemigrapsus nudus. The following summary was compiled from Batie 1975; Behrens Yamada and Boulding 1996 and 1998; Cohen et. al 1995; Daly 1981; Grosholz and Ruiz 1995; Harms and Seeger 1989; Low 1970; Morris Abbot and Haderlie 1980; Naylor 1962; and Rudy and Rudy 1983. Both of these species are Brachyuran crabs belonging to the family Grapsidae. These crabs can be distinguished from other crabs by their square carapace and eyes, which are set out towards the front corners of their carapace. The characteristic features of Hemigrapsus oregonensis are the dull olive-colored hairs on its legs, and a carapace width ranging up to 34.7 mm for males and 29.1 mm for females. This carapace is colored yellow-green or gray and has a four-lobed anterior margin (Plate 1). H. oregonensis occurs from the high to low intertidal zones of bays and estuaries from Resurrection Bay (Alaska) to Bahia de Todos Santos (Baja California).
    [Show full text]
  • Pachygrapsus Crassipes Class: Multicrustacea, Malacostraca, Eumalacostraca
    Phylum: Arthropoda, Crustacea Pachygrapsus crassipes Class: Multicrustacea, Malacostraca, Eumalacostraca Order: Eucarida, Decapoda, Pleocyemata, Brachyura, The lined shore crab Eubrachyura, Heterotremata Family: Majoidea, Epialtidae, Epialtinae Taxonomy: Until recently the brachyuran Cephalothorax: family Grapsidae, the shore crabs, was very Eyes: Eyes present at anterolateral large with several subfamilies and little taxo- angle and eyestalks of moderate size with nomic scrutiny. Based on molecular and orbits deep and oblique (Fig. 2). morphological evidence, authors (von Stern- Antenna: berg and Cumberlidge 2000; Schubart et al. Mouthparts: The mouth of decapod 2000; de Grave et al. 2009; Schubart 2011) crustaceans comprises six pairs of appendag- elevated all grapsid subfamilies to the family es including one pair of mandibles (on either level, reducing the number of species for- side of the mouth), two pairs of maxillae and mally within the Grapsidae. Although recent three pairs of maxillipeds. The maxillae and molecular evidence suggest that maxillipeds attach posterior to the mouth and Hemigrapsus is no longer within this family, extend to cover the mandibles (Ruppert et al. Pachygrapsus remains one of the few 2004). The third maxilliped in P. crassipes members of the Grapsidae sensu stricto has merus, lobate and at an angle (Wicksten based on morphological evidence from 2011). adults, larvae and molecular data (Schubart Carapace: Nearly square in shape and 2011). a little broader than long, transverse lines or grooves on anterior. Lateral margins are Description most broad posterior to orbit (Wicksten 2011). Size: Carapace approximately 40 mm in Carapace sides nearly parallel, but arched width and males are larger than females (Fig. 1). (Hiatt 1948) (Fig.
    [Show full text]
  • An Invitation to Monitor Georgia's Coastal Wetlands
    An Invitation to Monitor Georgia’s Coastal Wetlands www.shellfish.uga.edu By Mary Sweeney-Reeves, Dr. Alan Power, & Ellie Covington First Printing 2003, Second Printing 2006, Copyright University of Georgia “This book was prepared by Mary Sweeney-Reeves, Dr. Alan Power, and Ellie Covington under an award from the Office of Ocean and Coastal Resource Management, National Oceanic and Atmospheric Administration. The statements, findings, conclusions, and recommendations are those of the authors and do not necessarily reflect the views of OCRM and NOAA.” 2 Acknowledgements Funding for the development of the Coastal Georgia Adopt-A-Wetland Program was provided by a NOAA Coastal Incentive Grant, awarded under the Georgia Department of Natural Resources Coastal Zone Management Program (UGA Grant # 27 31 RE 337130). The Coastal Georgia Adopt-A-Wetland Program owes much of its success to the support, experience, and contributions of the following individuals: Dr. Randal Walker, Marie Scoggins, Dodie Thompson, Edith Schmidt, John Crawford, Dr. Mare Timmons, Marcy Mitchell, Pete Schlein, Sue Finkle, Jenny Makosky, Natasha Wampler, Molly Russell, Rebecca Green, and Jeanette Henderson (University of Georgia Marine Extension Service); Courtney Power (Chatham County Savannah Metropolitan Planning Commission); Dr. Joe Richardson (Savannah State University); Dr. Chandra Franklin (Savannah State University); Dr. Dionne Hoskins (NOAA); Dr. Charles Belin (Armstrong Atlantic University); Dr. Merryl Alber (University of Georgia); (Dr. Mac Rawson (Georgia Sea Grant College Program); Harold Harbert, Kim Morris-Zarneke, and Michele Droszcz (Georgia Adopt-A-Stream); Dorset Hurley and Aimee Gaddis (Sapelo Island National Estuarine Research Reserve); Dr. Charra Sweeney-Reeves (All About Pets); Captain Judy Helmey (Miss Judy Charters); Jan Mackinnon and Jill Huntington (Georgia Department of Natural Resources).
    [Show full text]
  • The Chinese Mitten Crab Eriocheir Sinensis (Decapoda: Grapsidae)
    The Chinese mitten OCEANOLOGIA, 42 (3), 2000. pp. 375–383. crab Eriocheir sinensis 2000, by Institute of (Decapoda: Grapsidae) Oceanology PAS. from Polish waters* KEYWORDS Catadromous species Eriocheir sinensis Non-indigenous organism Monika Normant Anna Wiszniewska Anna Szaniawska Institute of Oceanography, University of Gdańsk, al. Marszałka J. Piłsudskiego 46, PL–81–378 Gdynia, Poland; e-mail: [email protected] Manuscript received 2 June 2000, reviewed 19 June 2000, accepted 30 June 2000. Abstract The Chinese mitten crab Eriocheir sinensis Milne-Edwards, 1854 is a newcomer to the Baltic Sea. Previous studies have shown that since the 1940s single large specimens of this species have been caught annually in Polish waters. The invasion of the Chinese mitten crab has been reported from many European countries, including Poland, where it is especially abundant in the Odra Estuary. Of 186 specimens captured in Lake Dąbie in August 1998, 45% were females and 55% males. The carapace width of these crabs varied between 53 and 88 mm and the average wet weight was 169 ± 45.3 g. 1. Introduction New species, sometimes from very remote regions, have appeared in recent decades in the Baltic Sea. The introduction of these organisms to the Baltic is primarily the result of human activity, most often during the dumping of ballast water from ships (Ingle 1986). One of these immigrants to the Baltic is the Chinese mitten crab Eriocheir sinensis Milne-Edwards, 1854, so named because of the dense patches of hair on the claws of * The research was supported by grant No. 0915/P04/98/15 from the Polish State Committee for Scientific Research.
    [Show full text]