Isolation of Cell Specific Peptide Ligands Using Fluorescent Bacterial Display Libraries ⁎ Karen Y

Total Page:16

File Type:pdf, Size:1020Kb

Isolation of Cell Specific Peptide Ligands Using Fluorescent Bacterial Display Libraries ⁎ Karen Y Journal of Immunological Methods 309 (2006) 120–129 www.elsevier.com/locate/jim Research paper Isolation of cell specific peptide ligands using fluorescent bacterial display libraries ⁎ Karen Y. Dane, Lisa A. Chan, Jeffrey J. Rice, Patrick S. Daugherty Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, United States Received 3 May 2005; received in revised form 15 August 2005; accepted 28 November 2005 Available online 11 January 2006 Abstract Methods for identifying and producing cell specific affinity reagents are critical in cell detection, separation, and therapeutic delivery applications, yet remain difficult and time consuming. To address these limitations, a rapid and quantitative screening approach was developed using intrinsically fluorescent bacterial display peptide libraries and fluorescence-activated cell sorting (FACS). High-throughput screening of fluorescent libraries yielded a panel of peptide ligands mediating specific recognition of human breast cancer tumor cells. Clonal populations of fluorescent, peptide-displaying bacteria enabled single-step, fluorescent labeling of the target cells for cytometry and microscopy analysis. Isolated peptides could be categorized into several distinct groups possessing strong consensus sequences with as many as six identities. Importantly, individual clones exhibited high specificity target cell binding, with more than 80-fold increased binding to tumor cells (ZR-75-1) relative to cell lines derived from healthy tissue (HMEC, MCF-10A). Fluorescent display libraries thus provide a powerful new methodology for parallel identification of cell specific affinity ligands. © 2006 Elsevier B.V. All rights reserved. Keywords: Bacterial display; Breast cancer; FACS; Peptide library; Targeting ligand 1. Introduction peptide libraries displayed on filamentous bacterio- phage (Brown, 2000; Landon and Deutscher, 2003). Cell specific affinity reagents are widely used in Phage display libraries have been applied in ligand biotechnology applications ranging from cell detec- selections using cultured cells, animals (Pasqualini and tion, separation, and characterization (Brown, 2000), Ruoslahti, 1996), or human patients (Zurita et al., to the delivery of imaging and therapeutic agents to 2004), yielding peptides specific for cell surface specific cell types in vivo (Arap et al., 1998; Landon markers (Rasmussen et al., 2002). The principle and Deutscher, 2003). Cell specific reagents have been advantage of display library methodologies is that discovered almost exclusively using antibody or selection can be performed in a native-like, mem- brane-bound environment without a priori knowledge Abbreviations: FACS, fluorescence activated cell sorting; GFP, of the target cell receptors. Peptide ligands generated green fluorescent protein; OmpA, outer membrane protein A; CPX, in this manner have proven useful for in vivo imaging circularly permuted outer membrane protein OmpX; SA-PE, strepta- studies (Ladner, 1999), therapeutic targeting (Park et vidin R-phycoerythrin ⁎ Corresponding author. Tel.: +1 805 893 2610; fax: +1 805 893 al., 2002; Sapra and Allen, 2002), and for identifica- 4731. tion of cell specific surface markers (Pasqualini et al., E-mail address: [email protected] (P.S. Daugherty). 2000; Landon and Deutscher, 2003). 0022-1759/$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.jim.2005.11.021 K.Y. Dane et al. / Journal of Immunological Methods 309 (2006) 120–129 121 The development of cell specific affinity reagents (Walkersville, MD). ZR-75-1 tumor cells were cultured in using display technology would benefit from more RPMI-1640 medium (ATCC) with 10% fetal bovine efficient and quantitative screening processes. Previous serum (Invitrogen, Carlsbad, California). Normal mam- efforts to identify cell binding peptides using phage and mary cells were cultured in complete mammary epithelial cell display methodologies have relied upon a selection cell medium (MEGM, Cambrex Bio Science). The process referred to as panning (Lu et al., 1995; Brown et OmpA 15mer bacterial display library was propagated al., 2000; Nakajima et al., 2000). These studies have as previously described (Bessette et al., 2004). For the successfully enabled isolation of cell binding or specificity selection, two random peptide libraries of the invading peptides, though rarely reveal a consensus form X15 and X2CX7CX2 were constructed as fusions to motif among the isolated peptides (Brown et al., 2000; the extracellular N-terminus of a circularly permuted Nakajima et al., 2000; Taschner et al., 2002). Methods variant of outer membrane protein OmpX (CPX) (Rice et for ligand selection using display on the outer surface of al., in press). Following the native signaling sequence of cells are attractive since fluorescence-activated cell OmpX, CPX was constructed by fusion of the native C- sorting (FACS) instrumentation can be applied for and N-terminus of OmpX with a GGSG linker, and by quantitative clone screening and analysis (Feldhaus et opening loop 2 between residues S53 and S54 yielding a al., 2003; Bessette et al., 2004). Importantly, cell display scaffold with extracellular C- and N-termini. Each library methods allow direct clone recovery from target cells was comprised of 2×109 members. The gene encoding and amplification by regrowth, without requiring the CPX scaffold was inserted into the multiple cloning separation or infection steps. Consequently, improved site of pBAD33 (Guzman et al., 1995)downstreamof cell display library and screening methodologies would alajGFP1 (Bessette and Daugherty, 2004). This bicis- substantially simplify cell specific ligand isolation, as tronic cassette allowed for simultaneous expression of well as enable quantitative library screening and clone both alajGFP1 and CPX under the control of the analysis. arabinose inducible araBAD promoter (Guzman et al., A high-throughput, quantitative screening approach 1995). was developed to isolate cell specific affinity reagents using fluorescent bacterial display peptide libraries 2.2. Library selection, screening, and analysis coupled with FACS. Fluorescent display libraries were constructed that co-express a green fluorescent protein For the first two cycles of selection, bacteria binding (GFP) intracellularly, while efficiently displaying pep- to tumor cells were selected using co-sedimentation. tides on the surface of Escherichia coli to the Frozen aliquots of 2.5×1011 cells containing the OmpA extracellular environment. In this way, living bacterial surface display library were thawed and grown cells served as fluorescent affinity reagents, thereby overnight in Luria Bertani (LB) broth supplemented enabling quantitative library screening and subsequent with 34 μg/mL chloramphenicol (Cm) and 0.2% D-(+)- clone characterization. To demonstrate the utility of this glucose. The bacteria were subcultured 1:50 for 3 h in approach, two different fluorescent bacterial display LB supplemented with Cm and induced with 0.02% L- libraries were screened for peptides binding to human (+)-arabinose for 2 h. Tumor cells were harvested from breast cancer tumor cells. Quantitative screening using dishes, resuspended in conical tubes, and co-incubated FACS succeeded in identifying, for the first time, an with 100-fold excess bacterial cells for 1 h on an array of unique peptide consensus groups binding to the inversion shaker at 37 °C. For round 1, 108 tumor cells target cells. By incorporating negative selections using were incubated with 1010 bacterial cells, while in round healthy breast derived cell lines, highly specific tumor 2, 10-fold fewer cells of each type were used. Cell cell binding peptides were identified. suspensions were centrifuged at 2500 rpm for 4 min and non-binding bacteria in the supernatant were removed. 2. Materials and methods Tumor cells were washed three times in phosphate buffered saline (PBS) and resuspended in LB for 2.1. Cell lines, vectors, and reagents overnight growth of binding bacteria. Recovered bacterial clones were counted by plating on LB-agar The human breast ductal carcinoma cell line (ZR-75-1) plates supplemented with Cm. A depletion step was and the immortalized human mammary cell line (MCF- performed between rounds one and two to remove any 10A) were obtained from ATCC (American Type Culture bacteria sedimenting as a result of increased aggregation Collection, Manassas, VA). Clonetics® human mammary by centrifuging bacteria at 2500 rpm for 4 min and epithelial cells (HMEC) were from Cambrex Bio Science recovering 95% of the supernatant. 122 K.Y. Dane et al. / Journal of Immunological Methods 309 (2006) 120–129 For flow cytometric sorting and screening, plasmids 2.3. Soluble peptide interactions of the unselected and selected OmpA library popula- tions were extracted from bacterial cells using Qiagen Two cyclic peptides with N-terminal biotin (bio) and Miniprep kits (Qiagen, Valencia, CA). Subsequently, disulfide bond formation (pep5: (bio)GGCLQILPTL- these plasmids were transformed into E. coli MC1061/ SECFGR and pep17 (bio)GLKVCGRYPGICDGIR) pUC18-EGFP for constitutive GFP expression. Sample and a linear peptide binding to human erythrocytes preparation for FACS was performed using similar (unpublished) pepE1: (bio)GKYTWYGYSLRANWMR) techniques as described above with 106 tumor cells synthesized by Invitrogen (Carlsbad, CA) were used suspended in 2 mL of culture medium. After coincuba- for tumor cell binding studies. Peptides were purified
Recommended publications
  • Using Peptide-Phage Display to Capture Conditional Motif-Based Interactions
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1716 Using peptide-phage display to capture conditional motif-based interactions GUSTAV SUNDELL ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0433-5 UPPSALA urn:nbn:se:uu:diva-359434 2018 Dissertation presented at Uppsala University to be publicly examined in B42, BMC, Husargatan 3, Uppsala, Friday, 19 October 2018 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Doctor Attila Reményi (nstitute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary). Abstract Sundell, G. 2018. Using peptide-phage display to capture conditional motif-based interactions. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1716. 87 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0433-5. This thesis explores the world of conditional protein-protein interactions using combinatorial peptide-phage display and proteomic peptide-phage display (ProP-PD). Large parts of proteins in the human proteome do not fold in to well-defined structures instead they are intrinsically disordered. The disordered parts are enriched in linear binding-motifs that participate in protein-protein interaction. These motifs are 3-12 residue long stretches of proteins where post-translational modifications, like protein phosphorylation, can occur changing the binding preference of the motif. Allosteric changes in a protein or domain due to phosphorylation or binding to second messenger molecules like Ca2+ can also lead conditional interactions. Finding phosphorylation regulated motif-based interactions on a proteome-wide scale has been a challenge for the scientific community.
    [Show full text]
  • Development of a Phage Display Library for Discovery of Antigenic Brucella Peptides Jeffrey Williams Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Development of a phage display library for discovery of antigenic Brucella peptides Jeffrey Williams Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Microbiology Commons Recommended Citation Williams, Jeffrey, "Development of a phage display library for discovery of antigenic Brucella peptides" (2018). Graduate Theses and Dissertations. 16896. https://lib.dr.iastate.edu/etd/16896 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Development of a phage display library for discovery of antigenic Brucella peptides by Jeffrey Williams A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Microbiology Program of Study Committee: Bryan H. Bellaire, Major Professor Steven Olsen Steven Carlson The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University
    [Show full text]
  • Peptide Tag Systems That Spontaneously Form An
    (19) TZZ ¥_T (11) EP 2 534 484 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: G01N 33/531 (2006.01) C07K 14/315 (2006.01) 19.11.2014 Bulletin 2014/47 C12N 15/00 (2006.01) (21) Application number: 11706621.7 (86) International application number: PCT/GB2011/000188 (22) Date of filing: 11.02.2011 (87) International publication number: WO 2011/098772 (18.08.2011 Gazette 2011/33) (54) PEPTIDE TAG SYSTEMS THAT SPONTANEOUSLY FORM AN IRREVERSIBLE LINK TO PROTEIN PARTNERS VIA ISOPEPTIDE BONDS PEPTIDMARKIERUNGSSYSTEME MIT SPONTANER BILDUNG EINER IRREVERSIBLEN VERBINDUNG ZU PROTEINPARTNERN ÜBER ISOPEPTIDBINDUNGEN SYSTÈMES DE MARQUAGE PEPTIDIQUE QUI FORMENT SPONTANÉMENT UNE LIAISON IRRÉVERSIBLE AVEC DES PARTENAIRES PROTÉIQUES PAR L’INTERMÉDIAIRE DE LIAISONS ISOPEPTIDIQUES (84) Designated Contracting States: • TOMINAGA J ET AL: "Design of a specific peptide AL AT BE BG CH CY CZ DE DK EE ES FI FR GB tagthat affords covalent and site- specificenzyme GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO immobilization catalyzed by microbial PL PT RO RS SE SI SK SM TR transglutaminase", BIOMACROMOLECULES JULY/AUGUST 2005 AMERICAN CHEMICAL (30) Priority: 11.02.2010 GB 201002362 SOCIETY US, vol. 6, no. 4, July 2005 (2005-07), pages 2299-2304, XP002631438, DOI: DOI: (43) Date of publication of application: 10.1021/BM050193O 19.12.2012 Bulletin 2012/51 • DONG RUI-PING ET AL: "Characterization of T cell epitopes restricted by HLA-DP9 in (73) Proprietor: Isis Innovation Limited streptococcal M12 protein", JOURNAL OF Summertown, Oxford OX2 7SQ (GB) IMMUNOLOGY, vol.
    [Show full text]
  • Phage Display Libraries for Antibody Therapeutic Discovery and Development
    antibodies Review Phage Display Libraries for Antibody Therapeutic Discovery and Development Juan C. Almagro 1,2,* , Martha Pedraza-Escalona 3, Hugo Iván Arrieta 3 and Sonia Mayra Pérez-Tapia 3 1 GlobalBio, Inc., 320, Cambridge, MA 02138, USA 2 UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico 3 CONACyT-UDIBI, ENCB, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Colonia Casco de Santo Tomas, Delegación Miguel Hidalgo, Ciudad de Mexico 11340, Mexico * Correspondence: [email protected] Received: 24 June 2019; Accepted: 15 August 2019; Published: 23 August 2019 Abstract: Phage display technology has played a key role in the remarkable progress of discovering and optimizing antibodies for diverse applications, particularly antibody-based drugs. This technology was initially developed by George Smith in the mid-1980s and applied by John McCafferty and Gregory Winter to antibody engineering at the beginning of 1990s. Here, we compare nine phage display antibody libraries published in the last decade, which represent the state of the art in the discovery and development of therapeutic antibodies using phage display. We first discuss the quality of the libraries and the diverse types of antibody repertoires used as substrates to build the libraries, i.e., naïve, synthetic, and semisynthetic. Second, we review the performance of the libraries in terms of the number of positive clones per panning, hit rate, affinity, and developability of the selected antibodies. Finally, we highlight current opportunities and challenges pertaining to phage display platforms and related display technologies.
    [Show full text]
  • Revealing Protein Structures: a New Method for Mapping Antibody Epitopes
    Revealing protein structures: A new method for mapping antibody epitopes Brendan M. Mumey Brian W. Bailey Edward A. Dratz Department of Computer NIH/NlAAA/DlCBWLMBB Department of Chemistry and Science Fluorescence Studies Biochemistry Montana State University Park 5 Building Montana State University Bozeman, MT 59717-3880 12420 Parklawn Dr. MSC Bozeman, MT 59717-3400 [email protected] 8115 [email protected] Bethesda, MD 20892-8115 [email protected] ABSTRACT cells [9] and each protein has a unique folded structure. Whenever A recent idea for determining the three-dimensional structure of a the 3-D folding structure of linear protein sequences can be de- protein uses antibody recognition of surface structure and random termined this information has provided fundamental insights into peptide libraries to map antibody epitope combining sites. Anti- mechanisms of action that are often extremely useful in drug de- bodies that bind to the surface of the protein of interest can be sign. Traditional methods of protein structure determination re- used as “witnesses” to report the structure of the protein as follows: quire preparation of large amounts of protein in functional form, Proteins are composed of linear polypeptide chains that come to- which often may not be feasible. Attempts are then made to grow gether in complex spatial folding patterns to create the native pro- 3-D crystals of the proteins of interest for structure determination tein structures and these folded structures form the binding sites by x-ray diffraction, however, obtaining crystals of sufficient qual- for the antibodies. Short amino acid probe sequences, which bind ity is still an art and may not be possible [24, 251.
    [Show full text]
  • Monitoramento Em Biotecnologia Desenvolvimento Científico E Tecnológico
    Centro de Gestão e Estudos Estratégicos Ciência, Tecnologia e Inovação Monitoramento em Biotecnologia Desenvolvimento científico e tecnológico 3° Relatório Volume II - Patentes e Países Depositantes Coordenação Adelaide Antunes Rio de Janeiro Março, 2005 MONITORAMENTO EM BIOTECNOLOGIA Desenvolvimento científico e tecnológico 3° Relatório Volume II Patentes e Países Depositantes Executor: Sistema de Informação sobre a Indústria Química (SIQUIM) Escola de Química (EQ) Universidade Federal do Rio de Janeiro (UFRJ) Março / 2005 2 A Biotecnologia tem sido destacada como tecnologia portadora do futuro e consequentemente, com alto componente de desenvolvimento econômico e social, em vários países, principalmente nos últimos anos. O estudo "Monitoramento em Biotecnologia" encomendado pelo CGEE ao SIQUIM/EQ/UFRJ, permite visualizar a dinâmica de P,D&I desta área, a diversidade de atores envolvidos e o forte escopo de atuação em desenvolvimentos que impactam fortemente "Saúde e Qualidade de vida", bem como a "Agricultura e Meio ambiente", por meio de desenvolvimento acelerado de publicações científicas e de patentes nos Temas e/ou Termos tratados neste estudo. Reforça-se, então, que este estudo representa um instrumento importante de apoio à decisão aos stakeholders atuantes na área, pois permite priorizar ações concernentes ao desenvolvimento e estímulo ao uso sustentável da biodiversidade, à segurança biológica e à produção de bioprodutos, biodrogas, transgênicos. Monitoramento em Biotecnologia SIQUIM/EQ/UFRJ e CGEE 3 EQUIPE: Coordenação Geral:
    [Show full text]
  • Phage Display
    Chem. Rev. 1997, 97, 391−410 391 Phage Display George P. Smith* and Valery A. Petrenko Division of Biological Sciences, University of Missouri, Columbia, Missouri 65211 Received January 2, 1997 (Revised Manuscript Received January 23, 1997) Contents more, and that in a degree which exceeds all computation.”1 I. In Vitro Evolution of Chemicals 391 II. Phage-Display Libraries as Populations of 392 Replicable, Mutable Chemicals But ever since Darwin we have come to understand that the exquisite “watches” of the living world are A. Phage-Display Vectors 392 fashioned by an altogether different process. As B. How Foreign Peptides Are Displayed on 393 Richard Dawkins writes in his compelling book on Filamentous Phages evolution, natural selection “does not plan for the C. Types of Phage-Display Systems 394 future. It has no vision, no foresight, no sight at all. III. Types of Displayed Peptides and Proteins 394 If it can be said to play the role of watchmaker in IV. Selection 397 nature, it is the blind watchmaker.”2 A. General Principles 397 Imagine, then, the applied chemist, not as designer B. Affinity Selection 397 of molecules with a particular purpose, but rather C. Selection for Traits Other than Affinity 399 as custodian of a highly diverse population of chemi- D. Enrichment of Specific Sequence Motifs 399 cals evolving in vitro as if they were organisms V. Exploring the Fitness Landscape 400 subject to natural selection. A chemical’s “fitness” A. Sequence Space, Fitness Landscapes, and 400 in this artificial biosphere would be imposed by the Sparse Libraries custodian for his or her own ends.
    [Show full text]
  • Improving Protein Therapeutics Through Quantitative Molecular Engineering Approaches and a Cell-Based Oral Delivery Platform
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Improving Protein Therapeutics Through Quantitative Molecular Engineering Approaches and A Cell-Based Oral Delivery Platform Ting Wun Ng University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Biomedical Commons Recommended Citation Ng, Ting Wun, "Improving Protein Therapeutics Through Quantitative Molecular Engineering Approaches and A Cell-Based Oral Delivery Platform" (2013). Publicly Accessible Penn Dissertations. 784. https://repository.upenn.edu/edissertations/784 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/784 For more information, please contact [email protected]. Improving Protein Therapeutics Through Quantitative Molecular Engineering Approaches and A Cell-Based Oral Delivery Platform Abstract Proteins, with their ability to perform a variety of highly specific biological functions, have emerged as an important class of therapeutics. However, to fully harness their therapeutic potential, proteins often need to be optimized by molecular engineering; therapeutic efficacy can be improved by modulating protein properties such as binding affinity/specificity, half-life, bioavailability, and immunogenicity. In this work, we first present an introductory example in which a mechanistic mathematical model was used to improve target selection for directed evolution of an aglycosylated Fc domain of an antibody to enhance
    [Show full text]
  • Large-Scale Interaction Profiling of PDZ Domains Through Proteomic Peptide-Phage Display Using Human and Viral Phage Peptidomes
    Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes Ylva Ivarssona,1, Roland Arnolda, Megan McLaughlina,b, Satra Nima, Rakesh Joshic, Debashish Raya, Bernard Liud, Joan Teyraa, Tony Pawsond,2, Jason Moffata,b, Shawn Shun-Cheng Lic, Sachdev S. Sidhua,c,3, and Philip M. Kima,b,e,3 bDepartment of Molecular Genetics, eDepartment of Computer Science, aDonnelly Centre, University of Toronto, Toronto, ON, Canada M5S 3E1; cDepartment of Biochemistry, Western University, London, ON, Canada N6A 5C1; and dLunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada M5G 1X5 Edited* by William F. DeGrado, University of California at San Francisco School of Pharmacy, San Francisco, CA, and approved January 6, 2014 (receivedfor review July 2, 2013) The human proteome contains a plethora of short linear motifs advantage of microarray-based oligonucleotide synthesis to con- (SLiMs) that serve as binding interfaces for modular protein domains. struct custom-made peptide-phage libraries for screening peptide– Such interactions are crucial for signaling and other cellular processes, protein interactions, an approach we call proteomic peptide- but are difficult to detect because of their low to moderate phage display (ProP-PD) (Fig. 1). This process is similar in con- affinities. Here we developed a dedicated approach, proteomic cept to the method for autoantigen discovery recently proposed peptide-phage display (ProP-PD), to identify domain–SLiM interac- by Larman et al. (12). In this earlier work, a T7 phage display tions. Specifically, we generated phage libraries containing all hu- library comprising 36-residue overlapping peptides covering all man and viral C-terminal peptides using custom oligonucleotide ORFs in the human genome was used to develop a phage im- microarrays.
    [Show full text]
  • A Bacterial Display System for Effective Selection of Protein-Biotin Ligase Bira Variants with Novel Peptide Specificity
    bioRxiv preprint doi: https://doi.org/10.1101/367730; this version posted July 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A bacterial display system for effective selection of protein-biotin ligase BirA variants with novel peptide specificity Jeff Granhøj, Henrik Dimke and Per Svenningsen* Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark * Corresponding author: Dr. Per Svenningsen, Institute of Molecular Medicine, University of Southern Denmark, J.B. Winsloews vej 21.3, DK-5000 Odense C, Denmark. Running title: Bacterial display of enzymatic peptide biotinylation 1 bioRxiv preprint doi: https://doi.org/10.1101/367730; this version posted July 12, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Biotinylation creates a sensitive and specific tag for purification and detection of target proteins. The E. coli protein-biotin ligase BirA biotinylates a lysine within a synthetic biotin acceptor peptide (AP) and allow for specific tagging of proteins fused to the AP. The approach is not applicable to unmodified proteins, and we sought to develop an effective selection system that could form the basis for directed evolution of novel BirA variants with specificity towards unmodified proteins. The system was based on bacterial display of a target peptide sequence, which could be biotinylated by cytosolic BirA variants before being displayed on the surface. In a model selection, the bacterial display system accomplished >1.000.000 enrichment in a single selection step.
    [Show full text]
  • Strategies for Selecting Membrane Protein-Specific Antibodies Using Phage Display with Cell-Based Panning
    antibodies Review Strategies for Selecting Membrane Protein-Specific Antibodies using Phage Display with Cell-Based Panning Mohamed A. Alfaleh 1,2,* ID , Martina L. Jones 1,3,* ID , Christopher B. Howard 1,3,4 and Stephen M. Mahler 1,3 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia; [email protected] (C.B.H.); [email protected] (S.M.M) 2 Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia 3 Australian Research Council Training Centre for Biopharmaceutical Innovation, The University of Queensland, Brisbane, Queensland 4072, Australia 4 Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland 4072, Australia * Correspondence: [email protected] (M.A.A.); [email protected] (M.L.J.); Tel.: +61-733-463-178 (M.L.J.) Academic Editor: Dimiter S. Dimitrov Received: 14 June 2017; Accepted: 7 July 2017; Published: 5 August 2017 Abstract: Membrane proteins are attractive targets for monoclonal antibody (mAb) discovery and development. Although several approved mAbs against membrane proteins have been isolated from phage antibody libraries, the process is challenging, as it requires the presentation of a correctly folded protein to screen the antibody library. Cell-based panning could represent the optimal method for antibody discovery against membrane proteins, since it allows for presentation in their natural conformation along with the appropriate post-translational modifications. Nevertheless, screening antibodies against a desired antigen, within a selected cell line, may be difficult due to the abundance of irrelevant organic molecules, which can potentially obscure the antigen of interest.
    [Show full text]
  • Supporting Information for a Chemically Synthesized Capture
    Supporting Information for A Chemically Synthesized Capture Agent Enables the Selective, Sensitive, and Robust Electrochemical Detection of Anthrax Protective Antigen Blake Farrow 1,2,§ , Sung A Hong 3,§ , Errika C. Romero 2, Bert Lai 4, Matthew B. Coppock 5, Kaycie M. Deyle 2, Amethist S. Finch 5, Dimitra N. Stratis-Cullum 5, Heather D. Agnew 4, Sung Yang 3,* and James R. Heath 2,* 1. Department of Applied Physics and Materials Science, and 2. Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard, Pasadena, California 91125 3. Department of Medical System Engineering Gwangju Institute of Science and Technology Gwangju, 500712, Republic of Korea 4. Indi Molecular 6162 Bristol Parkway, Culver City, California 90230 5. Biotechnology Branch, Sensors & Electronic Devices Directorate U.S. Army Research Laboratory 2800 Powder Mill Rd. Adelphi, MD 20783 § These authors contributed equally to this work. 1 OH (e) NH 2 O NH N NH HN HN O O NH H 2 N O N O H2N NH H O O O O N O O O HN H NH NH N O NH O HN O H O O N O H N O NH 2 O O H O N O NH H N NH O O N O O O O O H2N O C O HN NH H H N O S NH H Figure S1: Screening protocol and anchor ligand. (a-d), Detailed screening steps for identifying biligand capture agent candidates. The details of this protocol are provided in the Supplementary Methods. (b) Structure of anchor ligand used in the biligand screen.
    [Show full text]