Course Notes
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Modules and Vector Spaces
Modules and Vector Spaces R. C. Daileda October 16, 2017 1 Modules Definition 1. A (left) R-module is a triple (R; M; ·) consisting of a ring R, an (additive) abelian group M and a binary operation · : R × M ! M (simply written as r · m = rm) that for all r; s 2 R and m; n 2 M satisfies • r(m + n) = rm + rn ; • (r + s)m = rm + sm ; • r(sm) = (rs)m. If R has unity we also require that 1m = m for all m 2 M. If R = F , a field, we call M a vector space (over F ). N Remark 1. One can show that as a consequence of this definition, the zeros of R and M both \act like zero" relative to the binary operation between R and M, i.e. 0Rm = 0M and r0M = 0M for all r 2 R and m 2 M. H Example 1. Let R be a ring. • R is an R-module using multiplication in R as the binary operation. • Every (additive) abelian group G is a Z-module via n · g = ng for n 2 Z and g 2 G. In fact, this is the only way to make G into a Z-module. Since we must have 1 · g = g for all g 2 G, one can show that n · g = ng for all n 2 Z. Thus there is only one possible Z-module structure on any abelian group. • Rn = R ⊕ R ⊕ · · · ⊕ R is an R-module via | {z } n times r(a1; a2; : : : ; an) = (ra1; ra2; : : : ; ran): • Mn(R) is an R-module via r(aij) = (raij): • R[x] is an R-module via X i X i r aix = raix : i i • Every ideal in R is an R-module. -
The Geometry of Syzygies
The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points . -
Homotopy Equivalences and Free Modules Steven
Topology, Vol. 21, No. 1, pp. 91-99, 1982 0040-93831821010091-09502.00/0 Printed in Great Britain. Pergamon Press Ltd. HOMOTOPY EQUIVALENCES AND FREE MODULES STEVEN PLOTNICKt:~ (Received 15 December 1980) INTRODUCTION IN THIS PAPER, we are concerned with the problem of determining the group of self-homotopy equivalences of some familiar spaces. We have in mind the following spaces: Let ~- be a finite group acting freely and cellulary on a CW-complex with the homotopy type of S 2m+1. Removing a point from S2m+1/Tr yields a 2m-complex X. We will (theoretically) describe the self-homotopy equivalences of X. (I use the word theoretically since the results is given in terms of units in the integral group ring Z Tr and certain projective modules over ZTr, and these are far from being completely understood.) Once this has been done, it will be fairly straightforward to describe the self-homotopy equivalences of $2~+1/7r and of the 2m-complex which results from removing more than one point from s2m+l/Tr (i.e. X v v $2~). As one might expect, the more points one removes, the easier it is to realize automorphisms of ~r by homotopy equivalences. It seems quite nice that this can be phrased as a question in Ko(Z~). The results can be summarised as follows. First, some standard facts, definitions, and notation: If ~r has order n and acts freely on S :m+~, then H:m+1(~r; Z)m Zn. Thus, a E Aut ~r acts on H2m+l(~r) via multiplication by an integer r~, where (r~, n) = 1. -
Projective Dimensions and Almost Split Sequences
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Algebra 271 (2004) 652–672 www.elsevier.com/locate/jalgebra Projective dimensions and almost split sequences Dag Madsen 1 Department of Mathematical Sciences, NTNU, NO-7491 Trondheim, Norway Received 11 September 2002 Communicated by Kent R. Fuller Abstract Let Λ be an Artin algebra and let 0 → A → B → C → 0 be an almost split sequence. In this paper we discuss under which conditions the inequality pd B max{pd A,pd C} is strict. 2004 Elsevier Inc. All rights reserved. Keywords: Almost split sequences; Homological dimensions Let R be a ring. If we have an exact sequence ε :0→ A → B → C → 0ofR-modules, then pd B max{pdA,pd C}. In some cases, for instance if the sequence is split exact, equality holds, but in general the inequality may be strict. In this paper we will discuss a problem first considered by Auslander (see [5]): Let Λ be an Artin algebra (for example a finite dimensional algebra over a field) and let ε :0→ A → B → C → 0 be an almost split sequence. To which extent does the equality pdB = max{pdA,pd C} hold? Given an exact sequence 0 → A → B → C → 0, we investigate in Section 1 what can be said in complete generality about when pd B<max{pdA,pd C}.Inthissectionwedo not make any assumptions on the rings or the exact sequences involved. In all sections except Section 1 the rings we consider are Artin algebras. -
Kernel Methods for Knowledge Structures
Kernel Methods for Knowledge Structures Zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften (Dr. rer. pol.) von der Fakultät für Wirtschaftswissenschaften der Universität Karlsruhe (TH) genehmigte DISSERTATION von Dipl.-Inform.-Wirt. Stephan Bloehdorn Tag der mündlichen Prüfung: 10. Juli 2008 Referent: Prof. Dr. Rudi Studer Koreferent: Prof. Dr. Dr. Lars Schmidt-Thieme 2008 Karlsruhe Abstract Kernel methods constitute a new and popular field of research in the area of machine learning. Kernel-based machine learning algorithms abandon the explicit represen- tation of data items in the vector space in which the sought-after patterns are to be detected. Instead, they implicitly mimic the geometry of the feature space by means of the kernel function, a similarity function which maintains a geometric interpreta- tion as the inner product of two vectors. Knowledge structures and ontologies allow to formally model domain knowledge which can constitute valuable complementary information for pattern discovery. For kernel-based machine learning algorithms, a good way to make such prior knowledge about the problem domain available to a machine learning technique is to incorporate it into the kernel function. This thesis studies the design of such kernel functions. First, this thesis provides a theoretical analysis of popular similarity functions for entities in taxonomic knowledge structures in terms of their suitability as kernel func- tions. It shows that, in a general setting, many taxonomic similarity functions can not be guaranteed to yield valid kernel functions and discusses the alternatives. Secondly, the thesis addresses the design of expressive kernel functions for text mining applications. A first group of kernel functions, Semantic Smoothing Kernels (SSKs) retain the Vector Space Models (VSMs) representation of textual data as vec- tors of term weights but employ linguistic background knowledge resources to bias the original inner product in such a way that cross-term similarities adequately con- tribute to the kernel result. -
The Exchange Property and Direct Sums of Indecomposable Injective Modules
Pacific Journal of Mathematics THE EXCHANGE PROPERTY AND DIRECT SUMS OF INDECOMPOSABLE INJECTIVE MODULES KUNIO YAMAGATA Vol. 55, No. 1 September 1974 PACIFIC JOURNAL OF MATHEMATICS Vol. 55, No. 1, 1974 THE EXCHANGE PROPERTY AND DIRECT SUMS OF INDECOMPOSABLE INJECTIVE MODULES KUNIO YAMAGATA This paper contains two main results. The first gives a necessary and sufficient condition for a direct sum of inde- composable injective modules to have the exchange property. It is seen that the class of these modules satisfying the con- dition is a new one of modules having the exchange property. The second gives a necessary and sufficient condition on a ring for all direct sums of indecomposable injective modules to have the exchange property. Throughout this paper R will be an associative ring with identity and all modules will be right i?-modules. A module M has the exchange property [5] if for any module A and any two direct sum decompositions iel f with M ~ M, there exist submodules A\ £ At such that The module M has the finite exchange property if this holds whenever the index set I is finite. As examples of modules which have the exchange property, we know quasi-injective modules and modules whose endomorphism rings are local (see [16], [7], [15] and for the other ones [5]). It is well known that a finite direct sum M = φj=1 Mt has the exchange property if and only if each of the modules Λft has the same property ([5, Lemma 3.10]). In general, however, an infinite direct sum M = ®i&IMi has not the exchange property even if each of Λf/s has the same property. -
6. Localization
52 Andreas Gathmann 6. Localization Localization is a very powerful technique in commutative algebra that often allows to reduce ques- tions on rings and modules to a union of smaller “local” problems. It can easily be motivated both from an algebraic and a geometric point of view, so let us start by explaining the idea behind it in these two settings. Remark 6.1 (Motivation for localization). (a) Algebraic motivation: Let R be a ring which is not a field, i. e. in which not all non-zero elements are units. The algebraic idea of localization is then to make more (or even all) non-zero elements invertible by introducing fractions, in the same way as one passes from the integers Z to the rational numbers Q. Let us have a more precise look at this particular example: in order to construct the rational numbers from the integers we start with R = Z, and let S = Znf0g be the subset of the elements of R that we would like to become invertible. On the set R×S we then consider the equivalence relation (a;s) ∼ (a0;s0) , as0 − a0s = 0 a and denote the equivalence class of a pair (a;s) by s . The set of these “fractions” is then obviously Q, and we can define addition and multiplication on it in the expected way by a a0 as0+a0s a a0 aa0 s + s0 := ss0 and s · s0 := ss0 . (b) Geometric motivation: Now let R = A(X) be the ring of polynomial functions on a variety X. In the same way as in (a) we can ask if it makes sense to consider fractions of such polynomials, i. -
2.2 Kernel and Range of a Linear Transformation
2.2 Kernel and Range of a Linear Transformation Performance Criteria: 2. (c) Determine whether a given vector is in the kernel or range of a linear trans- formation. Describe the kernel and range of a linear transformation. (d) Determine whether a transformation is one-to-one; determine whether a transformation is onto. When working with transformations T : Rm → Rn in Math 341, you found that any linear transformation can be represented by multiplication by a matrix. At some point after that you were introduced to the concepts of the null space and column space of a matrix. In this section we present the analogous ideas for general vector spaces. Definition 2.4: Let V and W be vector spaces, and let T : V → W be a transformation. We will call V the domain of T , and W is the codomain of T . Definition 2.5: Let V and W be vector spaces, and let T : V → W be a linear transformation. • The set of all vectors v ∈ V for which T v = 0 is a subspace of V . It is called the kernel of T , And we will denote it by ker(T ). • The set of all vectors w ∈ W such that w = T v for some v ∈ V is called the range of T . It is a subspace of W , and is denoted ran(T ). It is worth making a few comments about the above: • The kernel and range “belong to” the transformation, not the vector spaces V and W . If we had another linear transformation S : V → W , it would most likely have a different kernel and range. -
23. Kernel, Rank, Range
23. Kernel, Rank, Range We now study linear transformations in more detail. First, we establish some important vocabulary. The range of a linear transformation f : V ! W is the set of vectors the linear transformation maps to. This set is also often called the image of f, written ran(f) = Im(f) = L(V ) = fL(v)jv 2 V g ⊂ W: The domain of a linear transformation is often called the pre-image of f. We can also talk about the pre-image of any subset of vectors U 2 W : L−1(U) = fv 2 V jL(v) 2 Ug ⊂ V: A linear transformation f is one-to-one if for any x 6= y 2 V , f(x) 6= f(y). In other words, different vector in V always map to different vectors in W . One-to-one transformations are also known as injective transformations. Notice that injectivity is a condition on the pre-image of f. A linear transformation f is onto if for every w 2 W , there exists an x 2 V such that f(x) = w. In other words, every vector in W is the image of some vector in V . An onto transformation is also known as an surjective transformation. Notice that surjectivity is a condition on the image of f. 1 Suppose L : V ! W is not injective. Then we can find v1 6= v2 such that Lv1 = Lv2. Then v1 − v2 6= 0, but L(v1 − v2) = 0: Definition Let L : V ! W be a linear transformation. The set of all vectors v such that Lv = 0W is called the kernel of L: ker L = fv 2 V jLv = 0g: 1 The notions of one-to-one and onto can be generalized to arbitrary functions on sets. -
11. Finitely-Generated Modules
11. Finitely-generated modules 11.1 Free modules 11.2 Finitely-generated modules over domains 11.3 PIDs are UFDs 11.4 Structure theorem, again 11.5 Recovering the earlier structure theorem 11.6 Submodules of free modules 1. Free modules The following definition is an example of defining things by mapping properties, that is, by the way the object relates to other objects, rather than by internal structure. The first proposition, which says that there is at most one such thing, is typical, as is its proof. Let R be a commutative ring with 1. Let S be a set. A free R-module M on generators S is an R-module M and a set map i : S −! M such that, for any R-module N and any set map f : S −! N, there is a unique R-module homomorphism f~ : M −! N such that f~◦ i = f : S −! N The elements of i(S) in M are an R-basis for M. [1.0.1] Proposition: If a free R-module M on generators S exists, it is unique up to unique isomorphism. Proof: First, we claim that the only R-module homomorphism F : M −! M such that F ◦ i = i is the identity map. Indeed, by definition, [1] given i : S −! M there is a unique ~i : M −! M such that ~i ◦ i = i. The identity map on M certainly meets this requirement, so, by uniqueness, ~i can only be the identity. Now let M 0 be another free module on generators S, with i0 : S −! M 0 as in the definition. -
Math 711: Lecture of September 24, 2007 Flat Base Change and Hom
Math 711: Lecture of September 24, 2007 Flat base change and Hom We want to discuss in some detail when a short exact sequence splits. The following result is very useful. Theorem (Hom commutes with flat base change). If S is a flat R-algebra and M, N are R-modules such that M is finitely presented over R, then the canonical homomorphism θM : S ⊗R HomR(M, N) → HomS(S ⊗R M, S ⊗R N) sending s ⊗ f to s(1S ⊗ f) is an isomorphism. | Proof. It is easy to see that θR is an isomorphism and that θM1⊕M2 may be identified with θM1 ⊕ θM2 , so that θG is an isomorphism whenever G is a finitely generated free R-module. Since M is finitely presented, we have an exact sequence H → G M → 0 where G, H are finitely generated free R-modules. In the diagram below the right column is obtained by first applying S ⊗R (exactness is preserved since ⊗ is right exact), and then applying HomS( ,S ⊗R N), so that the right column is exact. The left column is obtained by first applying HomR( ,N), and then S ⊗R (exactness is preserved because of the hypothesis that S is R-flat). The squares are easily seen to commute. θH S ⊗R HomR(H, N) −−−−→ HomS(S ⊗R H, S ⊗R N) x x θG S ⊗R HomR(G, N) −−−−→ HomS(S ⊗R G, S ⊗R N) x x θM S ⊗R HomR(M, N) −−−−→ HomS(S ⊗R M, S ⊗R N) x x 0 −−−−→ 0 From the fact, established in the first paragraph, that θG and θH are isomorphisms and the exactness of the two columns, it follows that θM is an isomorphism as well (kernels of isomorphic maps are isomorphic). -
Cohomology of Split Group Extensions
JOURNAL OF ALGEBRA 29, 255-302 (1974) Cohomology of Split Group Extensions CHIH-HAN SAH* State University of New York at Stony Brook, New York, 11790 Communicated by Walter Fed Received December 15, 1972 In a fundamental paper [ 121, Hochschild and Serre studied the cohomology of a group extension: l+K+G+G/K+l. They introduced a spectral sequence relating the cohomology of G (with a suitable filtration) to the cohomologies of G/K and K. In later developments, Charlap and Vasquez [5, 61 showed that, under suitable restrictions, d, of the Hochschild-Serre spectral sequence can be described as the cup product with certain “characteristic” cohomology classes. In the special case where K is a free abelian group L of finite rank N and when G splits over K by r = G/K, these characteristic classes v 2t lie in H2(r, fP1(L, H,(L, Z))). Through straightforward, though formidable, procedures, Charlap and Vasquez found a number of interesting results concerning these characteristic classes. However, these characteristic classes still appeared mysterious and difficult to handle. The purpose of the present paper is to present a procedure to determine the most important one of these characteristic classes. To be precise, Charlap and Vasquez showed that vZt E H2(F, fPl(L, H,(L, Z))) have orders dividing 2; vsl = 0 and vpt = 0 holds for all t if and only if v22 = 0. They also showed that vZt are functorial in r so that vZt are universal when .F = GL(N, Z). We show that H2(GL(N, Z), HI(L, H,(L, Z))) is a group of order 2 for N > 2, and when N > 2, its generator is the universal characteristic class.