Symmetry Analysis of Translational Symmetry Broken Density Waves: Application to Hexagonal Lattices in Two Dimensions

Total Page:16

File Type:pdf, Size:1020Kb

Symmetry Analysis of Translational Symmetry Broken Density Waves: Application to Hexagonal Lattices in Two Dimensions Symmetry analysis of translational symmetry broken density waves: Application to hexagonal lattices in two dimensions The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Venderbos, J. W. F. “Symmetry Analysis of Translational Symmetry Broken Density Waves: Application to Hexagonal Lattices in Two Dimensions.” Physical Review B 93, no. 11 (March 3, 2016). © 2016 American Physical Society As Published http://dx.doi.org/10.1103/PhysRevB.93.115107 Publisher American Physical Society Version Final published version Citable link http://hdl.handle.net/1721.1/101605 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. PHYSICAL REVIEW B 93, 115107 (2016) Symmetry analysis of translational symmetry broken density waves: Application to hexagonal lattices in two dimensions J. W. F. Venderbos Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA (Received 17 December 2015; published 3 March 2016) In this work we introduce a symmetry classification for electronic density waves which break translational symmetry due to commensurate wave-vector modulations. The symmetry classification builds on the concept of extended point groups: symmetry groups which contain, in addition to the lattice point group, translations that do not map the enlarged unit cell of the density wave to itself, and become “nonsymmorphic”-like elements. Multidimensional representations of the extended point group are associated with degenerate wave vectors. Electronic properties such as (nodal) band degeneracies and topological character can be straightforwardly addressed, and often follow directly. To further flesh out the idea of symmetry, the classification is constructed so as to manifestly distinguish time-reversal invariant charge (i.e., site and bond) order, and time-reversal breaking flux order. For the purpose of this work, we particularize to spin-rotation invariant density waves. As a first example of the application of the classification we consider the density waves of a simple single- and two-orbital square lattice model. The main objective, however, is to apply the classification to two-dimensional (2D) hexagonal lattices, specifically the triangular and the honeycomb lattices. The multicomponent density waves corresponding to the commensurate M-point ordering vectors are worked out in detail. To show that our results generally apply to 2D hexagonal lattices, we develop a general low-energy SU(3) theory of (spinless) saddle-point electrons. DOI: 10.1103/PhysRevB.93.115107 I. INTRODUCTION [9–13]. In the context of density wave states, a number of proposals for realizing interaction-induced topological Interactions between electrons in solids are responsible particle-hole condensates have been made in recent years for a large variety of symmetry broken electronic phases. [14–18], which have set the stage for the rapidly growing and Unconventional superconductivity and antiferromagnetism evolving field of interacting topological phases. Motivated by are two canonical examples. From the perspective of weak the exciting possibility of electrons condensing into exotic col- coupling, the antiferromagnet is an example of a density wave: lective phases, possibly characterized by large nonzero angular a spatial modulation of electronic spin density characterized by momentum and spontaneously generated charge or spin cur- a finite (generally commensurate) propagation vector, breaking rents, in this paper we develop a symmetry analysis of density translational symmetry. In general, apart from spin density, waves with finite commensurate wave-vector modulation. other observables involving particle-hole pairs such as charge When particle-hole condensation occurs at finite wave density, orbital density, or current density can acquire finite vector, breaking translational symmetry, the crystal symmetry wave-vector modulations and break translational symmetry, group is reduced to the group of the wave vector. The giving rise to many possible unconventional and exotic density symmetry classification proposed in this paper naturally wave states. takes translational symmetry breaking into account. Instead A systematic way to study unconventional density waves of a reduced symmetry group, it is defined in terms of a is to classify them according to their symmetry properties. symmetry group called the extended point group. The essential Density wave states are condensates of particle-hole pairs and feature of the extended point group can be summarized by can be classified by specifying the angular momentum and spin noting that it treats a given set of ordering wave vectors of the particle-hole pair [1,2], in close analogy to unconven- on similar footing with angular momentum channels. As a tional superconductivity [3]. For instance, the familiar charge result, extended point groups provide a means to classify and spin density waves are both s-wave condensates. Distinct translational symmetry broken density waves, in much the angular momentum channels are labeled by representations same way as ordinary point groups provide a means to classify of the symmetry group of the crystal. In case of particle-hole different angular momentum channels [1–3]. In particular, condensates, contrary to a superconductor, spin and angular multidimensional representations signal degeneracies in both momentum are not tied together by Fermi statistics. cases. This property is particularly useful in case of inequiv- Knowledge of the symmetry of density wave states is alent but symmetry-related ordering wave vectors. Another essential for understanding the properties of materials, in way to think of extended point groups is to consider them as particular for connecting theory to experiment. In addition, the point groups of a mathematically enlarged unit cell, i.e., from a modern condensed matter perspective, determining a unit cell which supports the physically enlarged unit cell the symmetry of an electronic phase is particularly relevant, associated with condensation at given wave vector (or set of as symmetries can give rise to topological electronic states wave vectors). The extended point group contains translations [4–8]. The presence of a symmetry, such as time-reversal that do not map the enlarged unit cell to itself. These are the and/or parity symmetry, can protect or prohibit a topological translations broken by density wave formation. phase, which may be either gapped or gapless. A number of In the next section we start by introducing the symmetry works have specifically explored the role of lattice symmetries classification based on the notion of extended point groups. 2469-9950/2016/93(11)/115107(22) 115107-1 ©2016 American Physical Society J. W. F. VENDERBOS PHYSICAL REVIEW B 93, 115107 (2016) The classification of particle-hole condensates manifestly classification that takes this feature into account in a systematic distinguishes two types of order: time-reversal invariant charge way, we describe the system in terms of a mathematically order and time-reversal breaking flux order. The former class enlarged unit cell, chosen so as to support the physically ∼ˆ † ˆ enlarged unit cell of the density waves we want to study. The consists of diagonal site order of the form ψi ψi and ∼ ˆ † ˆ choice of the mathematically enlarged unit cell is determined off-diagonal bond order of the form Re ψi ψj , where i,j label lattice sites. The second class, flux order, corresponds to by the ordering wave vectors relevant to the particular physical dynamically generated orbital currents, i.e., order of the form system. All possible patterns of translational symmetry break- † ing can then be described within the new enlarged unit cell. ∼ Im ψˆ ψˆ . Importantly, instead of the imaginary part of i j The symmetry group of the (mathematically) enlarged unit bond expectation values, the symmetry classification is defined cell is the extended point group, which consists of all point in terms of fluxes: the sum of phases around a closed lattice group elements of the Bravais lattice supplemented with the plaquette. This preserves gauge invariance by construction. translations that do not map the enlarged unit cell onto itself, In this work, we only consider spin-singlet or spin-rotation i.e., the translations that can be broken in the density wave state. invariant density wave order. As a result, these are an extension of the ordinary point groups As a simple first example, we revisit the density wave with additional composite elements. Naturally, the extended states of the square lattice by an application of the symmetry point group depends on the set of ordering vectors. classification. As a second example, we apply the symmetry As an example, consider ordering at wave vector Q = classification to a two-orbital square lattice model, which can be viewed as a basic description of certain iron-pnictide ma- (π,π) of the square lattice. This breaks the translation T (a1) over the unit vector a1 and doubles the unit cell. Clearly, the terials [19,20]. Given these useful examples, our main goal is to apply the symmetry classification to lattices with hexagonal translation T (a1) does not map the doubled unit cell onto itself, but instead connects the two sites of the enlarged cell. The symmetry, in particular the triangular and honeycomb lattices. + − Hexagonal lattices have two sets of special
Recommended publications
  • 1-Crystal Symmetry and Classification-1.Pdf
    R. I. Badran Solid State Physics Fundamental types of lattices and crystal symmetry Crystal symmetry: What is a symmetry operation? It is a physical operation that changes the positions of the lattice points at exactly the same places after and before the operation. In other words, it is an operation when applied to an object leaves it apparently unchanged. e.g. A translational symmetry is occurred, for example, when the function sin x has a translation through an interval x = 2 leaves it apparently unchanged. Otherwise a non-symmetric operation can be foreseen by the rotation of a rectangle through /2. There are two groups of symmetry operations represented by: a) The point groups. b) The space groups (these are a combination of point groups with translation symmetry elements). There are 230 space groups exhibited by crystals. a) When the symmetry operations in crystal lattice are applied about a lattice point, the point groups must be used. b) When the symmetry operations are performed about a point or a line in addition to symmetry operations performed by translations, these are called space group symmetry operations. Types of symmetry operations: There are five types of symmetry operations and their corresponding elements. 85 R. I. Badran Solid State Physics Note: The operation and its corresponding element are denoted by the same symbol. 1) The identity E: It consists of doing nothing. 2) Rotation Cn: It is the rotation about an axis of symmetry (which is called "element"). If the rotation through 2/n (where n is integer), and the lattice remains unchanged by this rotation, then it has an n-fold axis.
    [Show full text]
  • Arxiv:1910.10745V1 [Cond-Mat.Str-El] 23 Oct 2019 2.2 Symmetry-Protected Time Crystals
    A Brief History of Time Crystals Vedika Khemania,b,∗, Roderich Moessnerc, S. L. Sondhid aDepartment of Physics, Harvard University, Cambridge, Massachusetts 02138, USA bDepartment of Physics, Stanford University, Stanford, California 94305, USA cMax-Planck-Institut f¨urPhysik komplexer Systeme, 01187 Dresden, Germany dDepartment of Physics, Princeton University, Princeton, New Jersey 08544, USA Abstract The idea of breaking time-translation symmetry has fascinated humanity at least since ancient proposals of the per- petuum mobile. Unlike the breaking of other symmetries, such as spatial translation in a crystal or spin rotation in a magnet, time translation symmetry breaking (TTSB) has been tantalisingly elusive. We review this history up to recent developments which have shown that discrete TTSB does takes place in periodically driven (Floquet) systems in the presence of many-body localization (MBL). Such Floquet time-crystals represent a new paradigm in quantum statistical mechanics — that of an intrinsically out-of-equilibrium many-body phase of matter with no equilibrium counterpart. We include a compendium of the necessary background on the statistical mechanics of phase structure in many- body systems, before specializing to a detailed discussion of the nature, and diagnostics, of TTSB. In particular, we provide precise definitions that formalize the notion of a time-crystal as a stable, macroscopic, conservative clock — explaining both the need for a many-body system in the infinite volume limit, and for a lack of net energy absorption or dissipation. Our discussion emphasizes that TTSB in a time-crystal is accompanied by the breaking of a spatial symmetry — so that time-crystals exhibit a novel form of spatiotemporal order.
    [Show full text]
  • Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: a View from the Surface
    PHYSICAL REVIEW X 6, 041068 (2016) Translational Symmetry and Microscopic Constraints on Symmetry-Enriched Topological Phases: A View from the Surface Meng Cheng,1 Michael Zaletel,1 Maissam Barkeshli,1 Ashvin Vishwanath,2 and Parsa Bonderson1 1Station Q, Microsoft Research, Santa Barbara, California 93106-6105, USA 2Department of Physics, University of California, Berkeley, California 94720, USA (Received 15 August 2016; revised manuscript received 26 November 2016; published 29 December 2016) The Lieb-Schultz-Mattis theorem and its higher-dimensional generalizations by Oshikawa and Hastings require that translationally invariant 2D spin systems with a half-integer spin per unit cell must either have a continuum of low energy excitations, spontaneously break some symmetries, or exhibit topological order with anyonic excitations. We establish a connection between these constraints and a remarkably similar set of constraints at the surface of a 3D interacting topological insulator. This, combined with recent work on symmetry-enriched topological phases with on-site unitary symmetries, enables us to develop a framework for understanding the structure of symmetry-enriched topological phases with both translational and on-site unitary symmetries, including the effective theory of symmetry defects. This framework places stringent constraints on the possible types of symmetry fractionalization that can occur in 2D systems whose unit cell contains fractional spin, fractional charge, or a projective representation of the symmetry group. As a concrete application, we determine when a topological phase must possess a “spinon” excitation, even in cases when spin rotational invariance is broken down to a discrete subgroup by the crystal structure. We also describe the phenomena of “anyonic spin-orbit coupling,” which may arise from the interplay of translational and on-site symmetries.
    [Show full text]
  • About Symmetries in Physics
    LYCEN 9754 December 1997 ABOUT SYMMETRIES IN PHYSICS Dedicated to H. Reeh and R. Stora1 Fran¸cois Gieres Institut de Physique Nucl´eaire de Lyon, IN2P3/CNRS, Universit´eClaude Bernard 43, boulevard du 11 novembre 1918, F - 69622 - Villeurbanne CEDEX Abstract. The goal of this introduction to symmetries is to present some general ideas, to outline the fundamental concepts and results of the subject and to situate a bit the following arXiv:hep-th/9712154v1 16 Dec 1997 lectures of this school. [These notes represent the write-up of a lecture presented at the fifth S´eminaire Rhodanien de Physique “Sur les Sym´etries en Physique” held at Dolomieu (France), 17-21 March 1997. Up to the appendix and the graphics, it is to be published in Symmetries in Physics, F. Gieres, M. Kibler, C. Lucchesi and O. Piguet, eds. (Editions Fronti`eres, 1998).] 1I wish to dedicate these notes to my diploma and Ph.D. supervisors H. Reeh and R. Stora who devoted a major part of their scientific work to the understanding, description and explo- ration of symmetries in physics. Contents 1 Introduction ................................................... .......1 2 Symmetries of geometric objects ...................................2 3 Symmetries of the laws of nature ..................................5 1 Geometric (space-time) symmetries .............................6 2 Internal symmetries .............................................10 3 From global to local symmetries ...............................11 4 Combining geometric and internal symmetries ...............14
    [Show full text]
  • 5.2 Symmetries • Symmetries Can Be Used to Classify Electromagnetic Modes and to Make Statements About the System‘S General Behaviour
    5.2 Symmetries • Symmetries can be used to classify electromagnetic modes and to make statements about the system‘s general behaviour. • Example: inversion symmetry: Consider a 2D metal cavity that looks like this: J. D. Joannopoulos et al., Photonic Crystals – Molding the flow of light, Princeton University Press (2008). 1 • The shape is somewhat arbitrary, making an analytical solution difficult, but it has inversion symmetry if is a mode with frequency , then must also be a mode with frequency • Unless is a member of a degenerate family of modes, then if has the same frequency, it must be the same mode, i.e. it must be a multiple of : . • If we invert the system twice we obtain or . • A given nondegenerate mode must be of one of the two types, either it is invariant under inversion (even mode) or it becomes its own opposite (odd mode). • Thereby we have classified the modes of the system based on how they respond to one of its symmetry operations. 2 • Let‘s capture this idea in a more abstract language • Suppose is an operator (a 3x3 matrix) that inverts vectors (3x1 matrices), so that • To invert a vector field, we need an operator that inverts both the vector and ist argument : • For an inversion symmetric system it does not matter if we operate with or if we first invert the coordinates, then operate with , and then change them back, i.e.: (73) • This equation can be rearranged: =0 • We can define the commutator (74) which is itself an operator 3 • For our inversion symmetric example system we have ,Θ 0.
    [Show full text]
  • Translational Spacetime Symmetries in Gravitational Theories
    Class. Quantum Grav. 23 (2006) 737-751 Page 1 Translational Spacetime Symmetries in Gravitational Theories R. J. Petti The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760, U.S.A. E-mail: [email protected] Received 24 October 2005, in final form 25 October 2005 Published DD MM 2006 Online ta stacks.iop.org/CQG/23/1 Abstract How to include spacetime translations in fibre bundle gauge theories has been a subject of controversy, because spacetime symmetries are not internal symmetries of the bundle structure group. The standard method for including affine symmetry in differential geometry is to define a Cartan connection on an affine bundle over spacetime. This is equivalent to (1) defining an affine connection on the affine bundle, (2) defining a zero section on the associated affine vector bundle, and (3) using the affine connection and the zero section to define an ‘associated solder form,’ whose lift to a tensorial form on the frame bundle becomes the solder form. The zero section reduces the affine bundle to a linear bundle and splits the affine connection into translational and homogeneous parts; however it violates translational equivariance / gauge symmetry. This is the natural geometric framework for Einstein-Cartan theory as an affine theory of gravitation. The last section discusses some alternative approaches that claim to preserve translational gauge symmetry. PACS numbers: 02.40.Hw, 04.20.Fy 1. Introduction Since the beginning of the twentieth century, much of the foundations of physics has been interpreted in terms of the geometry of connections and curvature. Connections appear in three main areas.
    [Show full text]
  • Effective Field Theory for Spacetime Symmetry Breaking
    RIKEN-MP-96, RIKEN-QHP-171, MAD-TH-14-10 Effective field theory for spacetime symmetry breaking Yoshimasa Hidaka1, Toshifumi Noumi1 and Gary Shiu2;3 1Theoretical Research Devision, RIKEN Nishina Center, Japan 2Department of Physics, University of Wisconsin, Madison, WI 53706, USA 3Center for Fundamental Physics and Institute for Advanced Study, Hong Kong University of Science and Technology, Hong Kong [email protected], [email protected], [email protected] Abstract We discuss the effective field theory for spacetime symmetry breaking from the local symmetry point of view. By gauging spacetime symmetries, the identification of Nambu-Goldstone (NG) fields and the construction of the effective action are performed based on the breaking pattern of diffeomor- phism, local Lorentz, and (an)isotropic Weyl symmetries as well as the internal symmetries including possible central extensions in nonrelativistic systems. Such a local picture distinguishes, e.g., whether the symmetry breaking condensations have spins and provides a correct identification of the physical NG fields, while the standard coset construction based on global symmetry breaking does not. We illustrate that the local picture becomes important in particular when we take into account massive modes associated with symmetry breaking, whose masses are not necessarily high. We also revisit the coset construction for spacetime symmetry breaking. Based on the relation between the Maurer- arXiv:1412.5601v2 [hep-th] 7 Nov 2015 Cartan one form and connections for spacetime symmetries, we classify the physical meanings of the inverse Higgs constraints by the coordinate dimension of broken symmetries. Inverse Higgs constraints for spacetime symmetries with a higher dimension remove the redundant NG fields, whereas those for dimensionless symmetries can be further classified by the local symmetry breaking pattern.
    [Show full text]
  • Diffeomorphisms and Spin Foam Models
    Diffeomorphisms and spin foam models Laurent Freidel∗ Perimeter Institute for Theoretical Physics 35 King street North, Waterloo N2J-2G9,Ontario, Canada and Laboratoire de Physique, Ecole´ Normale Sup´erieure de Lyon 46 all´ee d’Italie, 69364 Lyon Cedex 07, France David Louapre† Laboratoire de Physique, Ecole´ Normale Sup´erieure de Lyon 46 all´ee d’Italie, 69364 Lyon Cedex 07, France‡ (Dated: February 7, 2008) Abstract We study the action of diffeomorphisms on spin foam models. We prove that in 3 dimensions, there is a residual action of the diffeomorphisms that explains the naive divergences of state sum models. We present the gauge fixing of this symmetry and show that it explains the original renormalization of Ponzano-Regge model. We discuss the implication this action of diffeomorphisms has on higher dimensional spin foam models and especially the finite ones. arXiv:gr-qc/0212001v2 29 Jan 2003 ∗Electronic address: [email protected] †Electronic address: [email protected] ‡UMR 5672 du CNRS 0 I. INTRODUCTION Spin foam models are an attempt to describe the geometry of spacetime at the quantum level. They give a construction of transition amplitudes between initial and final spatial geometries labeled by spin network states. A spin foam is a 2-dimensional cell complex F with polygonal faces labeled by representations jf and edges labeled by intertwining operators ie. Given a spin foam we associate an amplitude Af , Ae and Av to the faces, edges and vertices of the spin foam respectively. They depend only locally on the spins jf and intertwiners ıe, e-g the vertex amplitude is computed using the spins labeling the faces incident to that vertex and intertwiners on incident edges.
    [Show full text]
  • Translational Symmetry. Rotational Symmetry
    Physics and Material Science of Semiconductor Nanostructures PHYS 570P Prof. Oana Malis Email: [email protected] Course website: http://www.physics.purdue.edu/academic_programs/courses/phys570P/ Lecture Review of quantum mechanics, statistical physics, and solid state Band structure of materials Semiconductor band structure Semiconductor nanostructures Ref. Ihn Ch. 3, Yu&Cardona Ch. 2 The Bandstructure Problem • Begin with the one‐electron Hamiltonian: 2 H1e = (p) /(2mo) + V(r) p ‐iħ, V(r) Periodic Effective Potential • Solve the one‐electron Schrödinger Equation: H1eψn(r) = Enψn(r) In general, this is still a very complex, highly computational problem! The Bandstructure Problem (Many people’s careers over many years!) • Start with the 1 e‐ Hamiltonian: 2 H1e = ‐(iħ) /(2mo) + V(r) • Step 1: Determine the effective periodic potential V(r) • Step 2: Solve the one‐electron Schrödinger Equation: H1eψn(r) = Enψn(r) A complex, sophisticated, highly computational problem! • There are many schemes, methods, & theories to do this! • We’ll give a brief overview of only a few. • The 1 e‐ Hamiltonian is: 2 H1e = ‐(iħ) /(2mo) + V(r) NOTE Knowing the exact form of the effective periodic potential V(r) is itself a difficult problem! • However, we can go a long way towards understanding the physics behind the nature of bandstructures without specifying V(r). We can USE SYMMETRY. Group Theory A math tool which does this in detail. V(r) Periodic Crystal Potential. It has all of the symmetries of the crystal lattice. Translational symmetry. Rotational symmetry. Reflection symmetry • The most important symmetry is Translational Symmetry. • Using this considerably reduces the complexities of bandstructure calculations.
    [Show full text]
  • 1 General Impact of Translational Symmetry in Crystals on Solid State Physics
    1 1 General Impact of Translational Symmetry in Crystals on Solid State Physics Atomic order in crystals. Local and translational symmetries. Symmetry impact on physical properties in crystals. Wave propagation in periodic media. Quasi-momentum conservation law. Reciprocal space. Wave diffraction conditions. Degeneracy of electron energy states at the Brillouin zone boundary. Diffraction of valence electrons and bandgap formation. In contrast to liquids or gases, atoms in a solid state, in average (over time), are located at fixed atomic positions. The thermally assisted movements around them or between them are strongly limited in space (as for thermal vibrations in potential wells) or have rather low probabilities (as for long-range atomic diffusion). Accord- ing to the types of the averaged long-range atomic arrangements, all solid materials can be sub-divided into the three following classes, i.e. regular crystals, amorphous materials, and quasicrystals. Most solid materials are regular (conventional) crystals with fully ordered and periodic atomic arrangements, which can be described by the set of translated elementary blocks (unit cells) densely covering the space with no voids. Nowadays, using the advanced characterization methods, such as high-resolution electron microscopy or scanning tunneling microscopy, it is possible to directly visualize this atomic periodicity (Figure 1.1). Due to the translational symmetry, the key phenomenon – namely, diffraction of short-wavelength quantum beams (electrons, X-rays, neutrons) – takes place. As we show in the following text, sharp diffraction peaks (or spots), which are the “visiting card” of crystalline state, are originated from the quasi-momentum (quasi-wavevector) conservation law in 3D. In contrary, amorphous materials, being characterized by some kind of short- range ordering, do not reveal atomic order on a long range (Figure 1.2).
    [Show full text]
  • On One-Dimensional Crystals Earlier, We Saw Earlier That the Characters for the N Irreducible Representations Of
    More on One-Dimensional Crystals Earlier, we saw earlier that the characters for the N irreducible representations of the one-dimensional translation group (TN) can be written as tt2 t3 tN1 tN = E 2 i(k•a) 2 i(k•2a) 2 i(k•3a) 2 i(k•a) (k) e e e e 1 Where k takes on exactly N discrete values within the range -1 (2a) < k 1(2a) and a is the unit cell length. This compressed “table” tells us all we need to know to discuss functions that form a basis for any of the irreducible representations of the TN group. For example, we know that if we operate on a function k that forms a basis for the irreducible representation (k) with the translation operator t , the result can be read directly from the character table: 2i(ka) tk = e k . m More generally, if we operate on k with any of the translation operators t , we obtain m 2i(kma) t k = e k . It is also useful to note that the representation (-k) (with a corresponding basis function k ) yields eigenvalues that are just the complex conjugates 2i(ka) m 2i(kma) tk = e k and t k = e k , where e2i(ka) = (e2i(k a) )* and e2i(kma) = (e2i(kma))* . But, because the operator t simply shifts the chain by one unit cell length (a ) along the x -axis, this means that as functions that belong to the (k) and (-k) representations, k and k have the important properties: 2i(k a) 2i(ka ) k (x + a) = e k (x) and k (x + a) = e k (x) .
    [Show full text]
  • Lectures on “Introduction to the Group Theory” (I. Eremin, MPIPKS Dresden and TU Braunschweig)
    Lectures on “Introduction to the Group Theory” (I. Eremin, MPIPKS Dresden and TU Braunschweig) Lecture1 (21.04.2006) Abstract Group Theory • What is a Group? • The Multiplication Table, Conjugate Eelements and Classes • Subgroups • The Direct Product of Groups • Homomorphism, Permutation Groups Lecture 2* (24.04.2006) Hilbert Spaces and Operators • Vector Spaces and Hilbert Spaces • Coordinate Geometry and Vector Algebra in a New Notation • Operators • Unitary Operators and Unitary Matrices Lecture 3 (26.04.2006) Representation of a Group I • Invariant Subspaces and Reducible Representations • The Schur’s Lemmas and OrthogonalityTheorem • The Characters of a Representation • The example of C4v Lecture 4 (28.04.2006) Representation of a Group II • The Regular Representation • Other Reducible Representations • The Direct Product of Reprsentations Lecture 5 (03.05.2006) Continuous Groups • Topological Groups and Lie Groups • The Axial Rotation Group O(2) • The three-dimensional Rotation Group O(3) • The Special Unitary Group SU(2) • Lie Algebra and Representations of a Lie Group Lecture 6 (05.05.2006) Group Theory in Quantum Mechanics I • Hilbert Spaces in Quantum Mechanics • Space and Time Displacements • Symmetry of the Hamiltonian • Reduction due to Symmetry Lecture 7* (08.05.2006) Group Theory in Quantum Mechanics II • Perturbation and Level Splitting • The Matrix Element Theorem and Selection Rules • Dynamical Symmetry • Time Reversal and Space Inversion Symmetries Lecture 8 (10.05.2006) Group Theory in Quantum Mechanics III • Atomic
    [Show full text]