The International Fujita (IF) Scale Tornado and Wind Damage Assessment Guide
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
What Are We Doing with (Or To) the F-Scale?
5.6 What Are We Doing with (or to) the F-Scale? Daniel McCarthy, Joseph Schaefer and Roger Edwards NOAA/NWS Storm Prediction Center Norman, OK 1. Introduction Dr. T. Theodore Fujita developed the F- Scale, or Fujita Scale, in 1971 to provide a way to compare mesoscale windstorms by estimating the wind speed in hurricanes or tornadoes through an evaluation of the observed damage (Fujita 1971). Fujita grouped wind damage into six categories of increasing devastation (F0 through F5). Then for each damage class, he estimated the wind speed range capable of causing the damage. When deriving the scale, Fujita cunningly bridged the speeds between the Beaufort Scale (Huler 2005) used to estimate wind speeds through hurricane intensity and the Mach scale for near sonic speed winds. Fujita developed the following equation to estimate the wind speed associated with the damage produced by a tornado: Figure 1: Fujita's plot of how the F-Scale V = 14.1(F+2)3/2 connects with the Beaufort Scale and Mach number. From Fujita’s SMRP No. 91, 1971. where V is the speed in miles per hour, and F is the F-category of the damage. This Amazingly, the University of Oklahoma equation led to the graph devised by Fujita Doppler-On-Wheels measured up to 318 in Figure 1. mph flow some tens of meters above the ground in this tornado (Burgess et. al, 2002). Fujita and his staff used this scale to map out and analyze 148 tornadoes in the Super 2. Early Applications Tornado Outbreak of 3-4 April 1974. -
19.4 Updated Mobile Radar Climatology of Supercell
19.4 UPDATED MOBILE RADAR CLIMATOLOGY OF SUPERCELL TORNADO STRUCTURES AND DYNAMICS Curtis R. Alexander* and Joshua M. Wurman Center for Severe Weather Research, Boulder, Colorado 1. INTRODUCTION evolution of angular momentum and vorticity near the surface in many of the tornado cases is also High-resolution mobile radar observations of providing some insight into possible modes of supercell tornadoes have been collected by the scale contraction for tornadogenesis and failure. Doppler On Wheels (DOWs) platform between 1995 and present. The result of this ongoing effort 2. DATA is a large observational database spanning over 150 separate supercell tornadoes with a typical The DOWs have collected observations in and data resolution of O(50 m X 50 m X 50 m), near supercell tornadoes from 1995 through 2008 updates every O(60 s) and measurements within including the fields of Doppler velocity, received 20 m of the surface (Wurman et al. 1997; Wurman power, normalized coherent power, radar 1999, 2001). reflectivity, coherent reflectivity and spectral width (Wurman et al. 1997). Stemming from this database is a multi-tiered effort to characterize the structure and dynamics of A typical observation is a four-second quasi- the high wind speed environments in and near horizontal scan through a tornado vortex. To date supercell tornadoes. To this end, a suite of there have been over 10000 DOW observations of algorithms is applied to the radar tornado supercell tornadoes comprising over 150 individual observations for quality assurance along with tornadoes. detection, tracking and extraction of kinematic attributes. Data used for this study include DOW supercell tornado observations from 1995-2003 comprising The integration of observations across tornado about 5000 individual observations of 69 different cases in the database is providing an estimate of mesocyclone-associated tornadoes. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere. -
1 International Approaches to Tornado Damage and Intensity Classification International Association of Wind Engineers
International Approaches to Tornado Damage and Intensity Classification International Association of Wind Engineers (IAWE), International Tornado Working Group 2017 June 6, DRAFT FINAL REPORT 1. Introduction Tornadoes are one of the most destructive natural Hazards on Earth, with occurrences Having been observed on every continent except Antarctica. It is difficult to determine worldwide occurrences, or even the fatalities or losses due to tornadoes, because of a lack of systematic observations and widely varying approacHes. In many jurisdictions, there is not any tracking of losses from severe storms, let alone the details pertaining to tornado intensity. Table 1 provides a summary estimate of tornado occurrence by continent, with details, wHere they are available, for countries or regions Having more than a few observations per year. Because of the lack of systematic identification of tornadoes, the entries in the Table are a mix of verified tornadoes, reports of tornadoes and climatological estimates. Nevertheless, on average, there appear to be more than 1800 tornadoes per year, worldwide, with about 70% of these occurring in North America. It is estimated that Europe is the second most active continent, with more than 240 per year, and Asia third, with more than 130 tornadoes per year on average. Since these numbers are based on observations, there could be a significant number of un-reported tornadoes in regions with low population density (CHeng et al., 2013), not to mention the lack of systematic analysis and reporting, or the complexity of identifying tornadoes that may occur in tropical cyclones. Table 1 also provides information on the approximate annual fatalities, althougH these data are unavailable in many jurisdictions and could be unreliable. -
The Enhanced Fujita Tornado Scale
NCDC: Educational Topics: Enhanced Fujita Scale Page 1 of 3 DOC NOAA NESDIS NCDC > > > Search Field: Search NCDC Education / EF Tornado Scale / Tornado Climatology / Search NCDC The Enhanced Fujita Tornado Scale Wind speeds in tornadoes range from values below that of weak hurricane speeds to more than 300 miles per hour! Unlike hurricanes, which produce wind speeds of generally lesser values over relatively widespread areas (when compared to tornadoes), the maximum winds in tornadoes are often confined to extremely small areas and can vary tremendously over very short distances, even within the funnel itself. The tales of complete destruction of one house next to one that is totally undamaged are true and well-documented. The Original Fujita Tornado Scale In 1971, Dr. T. Theodore Fujita of the University of Chicago devised a six-category scale to classify U.S. tornadoes into six damage categories, called F0-F5. F0 describes the weakest tornadoes and F5 describes only the most destructive tornadoes. The Fujita tornado scale (or the "F-scale") has subsequently become the definitive scale for estimating wind speeds within tornadoes based upon the damage caused by the tornado. It is used extensively by the National Weather Service in investigating tornadoes, by scientists studying the behavior and climatology of tornadoes, and by engineers correlating damage to different types of structures with different estimated tornado wind speeds. The original Fujita scale bridges the gap between the Beaufort Wind Speed Scale and Mach numbers (ratio of the speed of an object to the speed of sound) by connecting Beaufort Force 12 with Mach 1 in twelve steps. -
Estimating Enhanced Fujita Scale Levels Based on Forest Damage Severity
832 ESTIMATING ENHANCED FUJITA SCALE LEVELS BASED ON FOREST DAMAGE SEVERITY Christopher M. Godfrey∗ University of North Carolina at Asheville, Asheville, North Carolina Chris J. Peterson University of Georgia, Athens, Georgia 1. INTRODUCTION tion of how terrain-channeled low-level flow influences the mesoscale environment and tornadogenesis. Both Enhanced Fujita (EF) scale estimates following tor- Bluestein (2000) and Bosart et al. (2006) suggest that nadoes remain challenging in rural areas with few tra- further numerical simulations of the supercellular and ditional damage indicators. In some cases, traditional low-level environment are warranted. Indeed, numerous ground-based tornado damage surveys prove nearly im- authors use numerical simulations to study near-surface possible, such as in several 27 April 2011 long-track tornado dynamics (e.g., Dessens 1972; Fiedler 1994; tornadoes that passed through heavily forested and of- Fiedler and Rotunno 1986; Lewellen and Lewellen 2007; ten inaccessible terrain across the southern Appalachian Lewellen et al. 1997, 2000, 2008), but only recently has Mountains. One tornado, rated EF4, traveled 18 miles anyone attempted to incorporate very simple terrain vari- over the western portion of the Great Smoky Moun- ations into such models (e.g., D. Lewellen 2012, personal tains National Park (GSMNP) in eastern Tennessee. This communication). Thus, observational studies that char- tornado received its rating based on a single damage acterize the near-surface tornadic wind field in complex indicator—the tornado collapsed a metal truss tower topography remain vitally important. along an electrical transmission line (NWS Morristown 2011, personal communication). Although the upper Previous studies of tornado tracks through forests (e.g., Bech et al. -
The Historic Derecho of June 29, 2012
Service Assessment The Historic Derecho of June 29, 2012 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Weather Service Silver Spring, Maryland Cover Photograph: Visible satellite image at 5 p.m. Eastern Daylight Time (EDT) June 29, 2012, as the derecho moved across Ohio. National Lightning Data Network (NLDN) Cloud to ground (CG) lightning strikes for the 1-hour period, 4-5 p.m. EDT, are plotted in red. Surface observations are plotted in green. Smaller insets show radar reflectivity images of the derecho during the afternoon and evening. ii Service Assessment The Historic Derecho of June 29, 2012 January 2013 National Weather Service Laura K. Furgione Acting Assistant Administrator for Weather Services iii Preface On June 29, 2012, a derecho of historic proportions struck the Ohio Valley and Mid-Atlantic states. The derecho traveled for 700 miles, impacting 10 states and Washington, D.C. The hardest hit states were Ohio, West Virginia, Virginia, and Maryland, as well as Washington, D.C. The winds generated by this system were intense, with several measured gusts exceeding 80 mph. Unfortunately, 13 people were killed by the extreme winds, mainly by falling trees. An estimated 4 million customers lost power for up to a week. The region impacted by the derecho was also in the midst of a heat wave. The heat, coupled with the loss of power, led to a life-threatening situation. Heat claimed 34 lives in areas without power following the derecho. Due to the significance of this event, the National Oceanic and Atmospheric Administration’s National Weather Service formed a Service Assessment Team to evaluate the National Weather Service’s performance before and during the event. -
On the Implementation of the Enhanced Fujita Scale in the USA
Atmospheric Research 93 (2009) 554–563 Contents lists available at ScienceDirect Atmospheric Research journal homepage: www.elsevier.com/locate/atmos On the implementation of the enhanced Fujita scale in the USA Charles A. Doswell III a,⁎, Harold E. Brooks b, Nikolai Dotzek c,d a Cooperative Institute for Mesoscale Meteorological Studies, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072, USA b NOAA/National Severe Storms Laboratory, National Weather Center, 120 David L. Boren Blvd., Norman, OK 73072, USA c Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Wessling, Germany d European Severe Storms Laboratory (ESSL), Münchner Str. 20, 82234 Wessling, Germany article info abstract Article history: The history of tornado intensity rating in the United States of America (USA), pioneered by Received 1 December 2007 T. Fujita, is reviewed, showing that non-meteorological changes in the climatology of the Received in revised form 5 November 2008 tornado intensity ratings are likely, raising questions about the temporal (and spatial) Accepted 14 November 2008 consistency of the ratings. Although the Fujita scale (F-scale) originally was formulated as a peak wind speed scale for tornadoes, it necessarily has been implemented using damage to Keywords: estimate the wind speed. Complexities of the damage-wind speed relationship are discussed. Tornado Recently, the Fujita scale has been replaced in the USA as the official system for rating tornado F-scale intensity by the so-called Enhanced Fujita scale (EF-scale). Several features of the new rating EF-scale Intensity distribution system are reviewed and discussed in the context of a proposed set of desirable features of a tornado intensity rating system. -
T. Theodore Fujita Professor of Meteorology the University of Chicago
*1> Of TORNADOES c3nd HIGH WINDS I / For Engineering Appl ications I \ BY T. THEODORE F U J I T A A ;I , / I I I ), 'I \, W O R K B O O K of TOR NAD O ES AND HI G H WINDS for Engineering Applications by T. Theodore Fujita Professor of Meteorology The University of Chicago September 1978 This workbook was prepared by T. Theodore Fujita under Argonne National Laboratory Contract No. 31-109-38-4500 for use in the Department of Energy, Division of Operational and Environmental Safety, Workshops on .Tornadoes and High Winds. (July and September 1978 at Argonne National Laboratory) 0 Design-basis tornado (DBT-77) in Chapter 6 was finalized in the summer of 1977 under ANL Contract No. 31-109-38-3731. o Basic concept of DBT-78 leading to -the computation of new DAPPLE values was developed under NRC Contract No. AT(49-24)-0239. PREFACE At the request of Mr. W. J. McCool, DOE, two workshops on tornadoes and high winds were organized and a workbook prepared for DOE personnel. The emphasis in the workshops, held at Argonne National Laboratory, Illinois in July and September, 1978 is on the understanding of meteorological phenomena related to severe local storms in general and the tornado in particular. The workshops cover a range of topics dealing with terminology, meteo- rology aspects, photogrammetric analyses, aerial surveys, statistical data base, hazard probabilities and analytical models of tornadoes that incorporate suction vortices. This workbook, prepared by the principal lecturer, outlines the current state-of-knowledge of the above subjects. -
Statistical Modeling of Tornado Intensity Distributions
Atmospheric Research 67–68 (2003) 163–187 www.elsevier.com/locate/atmos Statistical modeling of tornado intensity distributions Nikolai Dotzeka,*,Ju¨rgen Grieserb, Harold E. Brooksc a DLR-Institut fu¨r Physik der Atmospha¨re, Oberpfaffenhofen, D-82234 Wessling, Germany b DWD-Deutscher Wetterdienst, Frankfurter Str. 135, D-63067 Offenbach, Germany c NOAA-National Severe Storms Laboratory, 1313 Halley Circle, Norman, OK 73069, USA Accepted 28 March 2003 Abstract We address the issue to determine an appropriate general functional shape of observed tornado intensity distributions. Recently, it was suggested that in the limit of long and large tornado records, exponential distributions over all positive Fujita or TORRO scale classes would result. Yet, our analysis shows that even for large databases observations contradict the validity of exponential distributions for weak (F0) and violent (F5) tornadoes. We show that observed tornado intensities can be much better described by Weibull distributions, for which an exponential remains a special case. Weibull fits in either v or F scale reproduce the observations significantly better than exponentials. In addition, we suggest to apply the original definition of negative intensity scales down to F-2 and T-4 (corresponding to v =0msÀ 1) at least for climatological analyses. Weibull distributions allow for an improved risk assessment of violent tornadoes up to F6, and better estimates of total tornado occurrence, degree of underreporting and existence of subcritical tornadic circulations below damaging intensity. Therefore, our results are relevant for climatologists and risk assessment managers alike. D 2003 Elsevier B.V. All rights reserved. Keywords: Tornado; Intensity distribution; Statistical climatology; Risk assessment 1. -
Tornado Learning Module
Tornado Learning Module Tornadoes are defined as rapidly rotating columns of air that extend from the base of a thunderstorm and make contact with the ground. Before reaching the surface, they are called funnel clouds 1. Tornadoes are the most concentrated, powerful, and destructive forms of weather on the planet, and in this learning module, we will explore where tornadoes exist in the world, how they form, and how to stay safe if a tornado is close to you. Source Introduction to Tornadoes (5:01) Tornado Intensity Figure 1 divides tornado strength into three categories: weak, strong, and violent. The average tornado is weak and produces wind speeds that are generally less than 120 mph. While 85% of all tornadoes fall into this weak category, 70% of all tornado fatalities are from violent tornadoes (Figure 1). Luckily, as we can see from the chart, only 2% of all tornadoes reach the violent category. To get a feel for what these violent tornadoes look like, check out this video: Tornado Destruction (1:23) Figure 1. Top - A chart that defines the characteristics of a tornado. Bottom – The definition of an average tornado. Source Created by Tyra Brown, Nicole Riemer, Eric Snodgrass and Anna Ortiz at the University of Illinois at 1 Urbana-Champaign. 2015-2016. Supported by the National Science Foundation CAREER Grant #1254428. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Figure 2. Tornado frequency and percentage of fatalities associated with each type. Tornadoes in the U.S. On average, 57 people are killed each year in the U.S. -
Analysis of Tornado-Induced Tree Fall Using Aerial Photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, Tornadoes of 2011*
VOLUME 52 JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY MAY 2013 Analysis of Tornado-Induced Tree Fall Using Aerial Photography from the Joplin, Missouri, and Tuscaloosa–Birmingham, Alabama, Tornadoes of 2011* CHRISTOPHER D. KARSTENS AND WILLIAM A. GALLUS JR. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa BRUCE D. LEE AND CATHERINE A. FINLEY WindLogics, Inc., Grand Rapids, Minnesota (Manuscript received 26 July 2012, in final form 4 December 2012) ABSTRACT In this study, aerial imagery of tornado damage is used to digitize the falling direction of trees (i.e., tree fall) along the 22 May 2011 Joplin, Missouri, and 27 April 2011 Tuscaloosa–Birmingham, Alabama, tornado tracks. Normalized mean patterns of observed tree fall from each tornado’s peak-intensity period are sub- jectively compared with results from analytical vortex simulations of idealized tornado-induced tree fall to characterize mean properties of the near-surface flow as depicted by the model. A computationally efficient method of simulating tree fall is applied that uses a Gumbel distribution of critical tree-falling wind speeds on the basis of the enhanced Fujita scale. Results from these simulations suggest that both tornadoes had strong radial near-surface winds. A few distinct tree-fall patterns are identified at various locations along the Tuscaloosa–Birmingham tornado track. Concentrated bands of intense tree fall, collocated with and aligned parallel to the axis of underlying valley channels, extend well beyond the primary damage path. These damage patterns are hypothesized to be the result of flow acceleration caused by channeling within valleys. Another distinct pattern of tree fall, likely not linked to the underlying topography, may have been associated with a rear-flank downdraft (RFD) internal surge during the tornado’s intensification stage.