Linear Optical Quantum Computing with Photonic Qubits
REVIEWS OF MODERN PHYSICS, VOLUME 79, JANUARY–MARCH 2007 Linear optical quantum computing with photonic qubits Pieter Kok* Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom and Hewlett-Packard Laboratories, Filton Road Stoke Gifford, Bristol BS34 8QZ, United Kingdom W. J. Munro Hewlett-Packard Laboratories, Filton Road Stoke Gifford, Bristol BS34 8QZ, United Kingdom Kae Nemoto National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan T. C. Ralph Centre for Quantum Computer Technology, University of Queensland, St. Lucia, Queensland 4072, Australia Jonathan P. Dowling Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA and Institute for Quantum Studies, Department of Physics, Texas A&M University, College Park, Texas 77843-4242, USA G. J. Milburn Centre for Quantum Computer Technology, University of Queensland, St. Lucia, Queensland 4072, Australia ͑Published 24 January 2007͒ Linear optics with photon counting is a prominent candidate for practical quantum computing. The protocol by Knill, Laflamme, and Milburn ͓2001, Nature ͑London͒ 409,46͔ explicitly demonstrates that efficient scalable quantum computing with single photons, linear optical elements, and projective measurements is possible. Subsequently, several improvements on this protocol have started to bridge the gap between theoretical scalability and practical implementation. The original theory and its improvements are reviewed, and a few examples of experimental two-qubit gates are given. The use of realistic components, the errors they induce in the computation, and how these errors can be corrected is discussed. DOI: 10.1103/RevModPhys.79.135 PACS number͑s͒: 03.67.Lx, 42.50.Dv, 03.65.Ud, 42.79.Ta CONTENTS G.
[Show full text]