Part 1 the SCIENCE of GENETIC MODIFICATION in FOREST TREES
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Efficient Genome Editing of an Extreme Thermophile, Thermus
www.nature.com/scientificreports OPEN Efcient genome editing of an extreme thermophile, Thermus thermophilus, using a thermostable Cas9 variant Bjorn Thor Adalsteinsson1*, Thordis Kristjansdottir1,2, William Merre3, Alexandra Helleux4, Julia Dusaucy5, Mathilde Tourigny4, Olafur Fridjonsson1 & Gudmundur Oli Hreggvidsson1,2 Thermophilic organisms are extensively studied in industrial biotechnology, for exploration of the limits of life, and in other contexts. Their optimal growth at high temperatures presents a challenge for the development of genetic tools for their genome editing, since genetic markers and selection substrates are often thermolabile. We sought to develop a thermostable CRISPR-Cas9 based system for genome editing of thermophiles. We identifed CaldoCas9 and designed an associated guide RNA and showed that the pair have targetable nuclease activity in vitro at temperatures up to 65 °C. We performed a detailed characterization of the protospacer adjacent motif specifcity of CaldoCas9, which revealed a preference for 5′-NNNNGNMA. We constructed a plasmid vector for the delivery and use of the CaldoCas9 based genome editing system in the extreme thermophile Thermus thermophilus at 65 °C. Using the vector, we generated gene knock-out mutants of T. thermophilus, targeting genes on the bacterial chromosome and megaplasmid. Mutants were obtained at a frequency of about 90%. We demonstrated that the vector can be cured from mutants for a subsequent round of genome editing. CRISPR-Cas9 based genome editing has not been reported previously in the extreme thermophile T. thermophilus. These results may facilitate development of genome editing tools for other extreme thermophiles and to that end, the vector has been made available via the plasmid repository Addgene. -
Plant Viral, Agrobacterium Tumefaciens, and Xanthomonas Spp.
USDA May conta in Co nfidential Business Information ~ United States Department of Agricu lture . ... - ------------ --------- - - - ------------ Animal and August 28, 201 4 Plant Health Dr. Luc Mathus Inspection Service Cellectis Plant Sciences 600 County Road D West, Suite 8 Biotechnology Regulatory New Brighton, MN 55112 Servi ces 4700 I iver Road Re: Request for Confirmation that I. ] Potato is not a regulated article Unit 98 Riverdale, MD 20737 Dear Dr. Mathis: Thank you for your letter dated July 29, 2013 inquiring whether or not the potato product described in your letter is a regulated article. This letter states that the "potato has· improved consumer safety and processing attributes attributable to a single gene knock-out achieved through transient expression of a Transcription Activator-Like Effector Nuclease (TALEN)." APHIS regulates the introduction of certain genetically engineered organisms which are, or have the potential to be plant pest. Regulations for genetically engineered organisms that have the potenti al to be plant pests, under the Plant Protection Act, are codified at 7 CFR part 340, "Introduction of Organisms and Products Altered or Produced Through Genetic Engineering Which Are Plant Pest or Which There Is Reason To Believe Are Plant Pests." Under the provisions of these regulations, a genetically engineered (GE) organism is deemed a regulated article if it has been genetically engineered from a donor organism, recipient organism, or vector or vector agent listed in §340.2 and the listed organism meets the definition of "plant pest" or is an unclassified organism and/or an organism whose classification is unknown, or if the Administrator dete11nines that tl e GE organism is a plant pest or has reason to believe is a plant pest. -
Phenotypic Impacts of PBAN RNA Interference in an Ant, Solenopsis Invicta, and a Moth, Helicoverpa Zea ⇑ ⇑ Man-Yeon Choi A, , Robert K
Journal of Insect Physiology 58 (2012) 1159–1165 Contents lists available at SciVerse ScienceDirect Journal of Insect Physiology journal homepage: www.elsevier.com/locate/jinsphys Phenotypic impacts of PBAN RNA interference in an ant, Solenopsis invicta, and a moth, Helicoverpa zea ⇑ ⇑ Man-Yeon Choi a, , Robert K. Vander Meer a, , Monique Coy b, Michael E. Scharf b,c a U. S. Department of Agriculture, Agricultural Research Service, Center of Medical, Agricultural and Veterinary Entomology (CMAVE), 1600 SW, 23rd Drive, Gainesville, FL 32608, USA b Department of Entomology and Nematology, University of Florida, Gainesville, FL 32608, USA c Department of Entomology, Purdue University, West Lafayette, IN 47907, USA article info abstract Article history: Insect neuropeptide hormones represent more than 90% of all insect hormones. The PBAN/pyrokinin fam- Received 30 January 2012 ily is a major group of insect neuropeptides, and they are expected to be found from all insect groups. Received in revised form 1 June 2012 These species-specific neuropeptides have been shown to have a variety of functions from embryo to Accepted 5 June 2012 adult. PBAN is well understood in moth species relative to sex pheromone biosynthesis, but other poten- Available online 13 June 2012 tial functions are yet to be determined. Recently, we focused on defining the PBAN gene and peptides in fire ants in preparation for an investigation of their function(s). RNA interference (RNAi) technology is a Keywords: convenient tool to investigate unknown physiological functions in insects, and it is now an emerging PBAN method for development of novel biologically-based control agents as alternatives to insecticides. -
Molecular Basis of Pheromonogenesis Regulation in Moths
Chapter 8 Molecular Basis of Pheromonogenesis Regulation in Moths J. Joe Hull and Adrien Fónagy Abstract Sexual communication among the vast majority of moths typically involves the synthesis and release of species-specifc, multicomponent blends of sex pheromones (types of insect semiochemicals) by females. These compounds are then interpreted by conspecifc males as olfactory cues regarding female reproduc- tive readiness and assist in pinpointing the spatial location of emitting females. Studies by multiple groups using different model systems have shown that most sex pheromones are synthesized de novo from acetyl-CoA by functionally specialized cells that comprise the pheromone gland. Although signifcant progress was made in identifying pheromone components and elucidating their biosynthetic pathways, it wasn’t until the advent of modern molecular approaches and the increased avail- ability of genetic resources that a more complete understanding of the molecular basis underlying pheromonogenesis was developed. Pheromonogenesis is regulated by a neuropeptide termed Pheromone Biosynthesis Activating Neuropeptide (PBAN) that acts on a G protein-coupled receptor expressed at the surface of phero- mone gland cells. Activation of the PBAN receptor (PBANR) triggers a signal trans- duction cascade that utilizes an infux of extracellular Ca2+ to drive the concerted action of multiple enzymatic steps (i.e. chain-shortening, desaturation, and fatty acyl reduction) that generate the multicomponent pheromone blends specifc to each species. In this chapter, we provide a brief overview of moth sex pheromones before expanding on the molecular mechanisms regulating pheromonogenesis, and con- clude by highlighting recent developments in the literature that disrupt/exploit this critical pathway. J. J. Hull (*) USDA-ARS, US Arid Land Agricultural Research Center, Maricopa, AZ, USA e-mail: [email protected] A. -
Elpenor 2010-2015
Projet ELPENOR MACROHETEROCERES DU CANTON DE GENEVE : POINTAGE DES ESPECES PRESENTES Résultats des prospections 2010-2015 Pierre BAUMGART & Maxime PASTORE « Voilà donc les macrohétérocéristes ! Je les imaginais introvertis, le teint blafard, disséquant, cataloguant, épinglant. Ils sont là, enjoués, passionnés, émerveillés par les trésors enfouis des nuits genevoises ! » Blaise Hofman, « La clé des champs » SOMMAIRE • ELPENOR ? 2 • INTRODUCTION 3 • PROTOCOLE DE CHASSE 4 • FICHE D’OBSERVATIONS 4 • MATÉRIEL DE TERRAIN 5 • SITES PROSPECTÉS 7 - 11 • ESPÈCES OBSERVÉES 2010 – 2015 13 (+ 18 p. hors-texte) • ESPECES OBSERVEES CHAQUE ANNEE 13’ • ECHANTILLONNAGE D’ESPECES 14 • CHRONOLOGIE DES OBSERVATIONS REMARQUABLES 15 – 17 • ESPECES A RECHERCHER 18-20 • AUTRES VISITEURS… 21 • PUBLICATIONS 22 (+ 4 p. hors-texte) • ESPECES AJOUTEES A LA LISTE 23 • RARETÉS 24 • DISCUSSION 25 - 26 • PERSPECTIVES 27 • CHOIX DE CROQUIS DE TERRAIN 29 - 31 • COUPURES DE PRESSE 33 - 35 • ALBUM DE FAMILLE 36 • REMERCIEMENTS 37 • BIBLIOGRAPHIE & RESSOURCES INTERNET 38 – 39 1 ELPENOR ? Marin et compagnon d'Ulysse à son retour de la guerre de Troie, Elpenor (en grec Ἐλπήνορος , « homme de l'espoir ») est de ceux qui, sur l'île d'Aenea, furent victimes de la magicienne Circé et transformés en pourceaux jusqu'à ce qu'Ulysse, qui avait été préservé des enchantements de la magicienne grâce à une herbe offerte par le dieu Hermès, la contraigne à redonner à ses compagnons leur forme humaine. Lors de la fête qui s’ensuivit, Elpenor, pris de boisson, s'endormit sur la terrasse de la demeure de Circé, et, réveillé en sursaut, se tua en tombant du toit. Lorsqu'il descendit aux Enfers pour consulter le devin Tirésias, Ulysse croisa l’ombre de son défunt compagnon, à laquelle il promit une sépulture honorable. -
Effect of Micromelalopha Sieversi (Staudinger) Oviposition
Article Effect of Micromelalopha sieversi (Staudinger) Oviposition Behavior on the Transcriptome of Two Populus Section Aigeiros Clones Li Guo 1,2, Sufang Zhang 1, Fu Liu 1 , Xiangbo Kong 1 and Zhen Zhang 1,* 1 Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China; [email protected] (L.G.); [email protected] (S.Z.); [email protected] (F.L.); [email protected] (X.K.) 2 School of Biological Science and Engineering, Xingtai University, Xingtai 054001, China * Correspondence: [email protected]; Tel.: +86-136-7102-2209 Received: 3 September 2020; Accepted: 16 September 2020; Published: 22 September 2020 Abstract: Research Highlights: The molecular mechanisms underlying woody plant resistance upon oviposition by herbivores remain unclear, as studies have focused on herbaceous plants. The effect of oviposition on gene expression in neighboring plants has also not been reported. Elucidating these molecular responses can help cultivate insect-resistant trees. Background and Objectives: Oviposition by herbivorous insects acts as an early warning signal, inducing plant resistance responses. Here, we employed poplar as a model woody plant to elucidate gene expression and the molecular mechanisms underlying plant resistance after oviposition by Micromelalopha sieversi (Staudinger) (Lepidoptera: Notodontidae). Materials and Methods: The differences in gene expression of two Populus section Aigeiros clones (‘108’ (Populus euramericana ‘Guariento’) and ‘111’ × (Populus euramericana ‘Bellotto’)) were analyzed via high-throughput sequencing of oviposited, × neighboring, and control plants. Results: We obtained 304,526,107 reads, with an average length of 300 bp and a total size of 40.77 Gb. Differentially expressed genes (DEGs) in gene ontology terms of biological process, cellular component, and molecular function were mainly enriched in the “cell part”, “catalytic”, and “metabolic process” functions. -
Histochemical Analysis of Expression Pattern of Camv 35S Promoter in Transgenic Rapeseed (Brassica Napus L.)
Current World Environment Vol. 10(Special Issue 1), 752-757 (2015) Histochemical Analysis of Expression Pattern of CaMV 35S Promoter in Transgenic Rapeseed (Brassica napus L.) PARISSA JONOUBI1, ALI HateF SALMANIAN2 and AMIN RavaeI3 1Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran. 2Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran. 3Master of Science, Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran. http://dx.doi.org/10.12944/CWE.10.Special-Issue1.90 (Received: November, 2014; Accepted: April, 2015) ABstract Promoters are considered valuable tools for biotechnology and provide great opportunities for eugenic purposes. This study aimed to investigate the expression pattern of GUS gene directed by CaMV 35S promoter in transgenic rapeseed (Brassica napus L.). The GUS gene was transferred to the rapeseed explants by Agrobacterium. The regenerated and rooted transgenic plantlets were transferred to the pots containing a mixture of soli and vermiculite. These plants underwent PCR and histochemical GUS assay. The cross-section of leaf, petiole, and stem of the transformed plants was obtained. GUS activity was observed in phloem, parenchyma, collenchyma, and supporting tissue of vascular bundles. It was also observed in cambium, endoderm, vascular ray, pith parenchyma, epidermis, and trichomes. These results showed that CaMV 35S causes the expression of transgene in various tissues differently. -
Comparative Genomics of the Restriction-Modification Systems in Helicobacter Pylori
Comparative genomics of the restriction-modification systems in Helicobacter pylori Lee-Fong Lin, Janos Posfai, Richard J. Roberts, and Huimin Kong* New England Biolabs, Inc., 32 Tozer Road, Beverly, MA 01915 Communicated by Charles R. Cantor, Sequenom Industrial Genomics, Inc., San Diego, CA, December 22, 2000 (received for review October 31, 2000) Helicobacter pylori is a Gram-negative bacterial pathogen with a small are subject to loss or gain of a repeat unit, presumably through genome of 1.64–1.67 Mb. More than 20 putative DNA restriction- slipped-strand mispairing during replication. This results in frame- modification (R-M) systems, comprising more than 4% of the total shifting, which can alternatively activate or inactivate genes (10). genome, have been identified in the two completely sequenced H. Tetranucleotide repeats were found in a Type III DNA methylase pylori strains, 26695 and J99, based on sequence similarities. In this gene and the length of the repeat tract determined the phase study, we have investigated the biochemical activities of 14 Type II variation rate (11). In the case of the H. pylori 26695 genome, 27 R-M systems in H. pylori 26695. Less than 30% of the Type II R-M putative genes that contain simple sequence repeats and that may systems in 26695 are fully functional, similar to the results obtained be subject to phase variation have been identified. These putative from strain J99. Although nearly 90% of the R-M genes are shared by phase-variable elements can be divided into three groups: lipopoly- the two H. pylori strains, different sets of these R-M genes are saccharide (LPS) biosynthesis, cell-surface-associated proteins and functionally active in each strain. -
Possible Implications for Prader-Willi and Angelman Syndromes KARIN Buiting*, VALERIE GREGER*, BERNHARD H
Proc. Nadl. Acad. Sci. USA Vol. 89, pp. 5457-5461, June 1992 Medical Sciences A putative gene family in 15q11-13 and 16pll.2: Possible implications for Prader-Willi and Angelman syndromes KARIN BuITING*, VALERIE GREGER*, BERNHARD H. BROWNSTEINt, ROSE M. MOHRt, ION VOICULESCuO, ANDREAS WINTERPACHT§, BERNHARD ZABEL§, AND BERNHARD HORSTHEMKE*¶ *Institut for Humangenetik, Universititsklinikum Essen, 4300 Essen 1, Federal Republic of Germany; tCenter for Genetics in Medicine, Washington University, St. Louis, MO 63110; tInstitut fOr Humangenetik und Anthropologie, Universitit Freiburg, 7800 Freiburg, Federal Republic of Germany; and §Kinderklinik, UniversitAt Mainz, 6500 Mainz, Federal Republic of Germany Communicated by Victor A. McKusick, February 13, 1992 ABSTRACT The genetic defects in Prader-Willi syndrome of mouse A9 cells with lymphoblastoid cells from PWS (PWS) and Angelman syndrome (AS) map to 15q11-13. Using patient 168 (14) as described by Wigler et al. (15). The somatic microdissection, we have recently isolated several DNA probes cell hybrid mapping panels were kindly provided by G. Bruns for the critical region. Here we report that microclone MN7 (Boston) (panel I) and K. H. Grzeschik (Marburg) (panel II). detects multiple loci in 15q11-13 and 16pll.2. Eight yeast Genomic DNA Analysis. Genomic DNA was analyzed by artificial chromosome (YAC) clones, two genomic phage Southern blot hybridization as described (16). The final wash clones, and two placenta cDNA dones were isolated to analyze was usually at 650C in 150 mM sodium chloride/15 mM these loci in detail. Two ofthe YAC clones map to 16p. Six YAC sodium citrate (lx SSC) containing 0.1% SDS. The following clones and two genomic phage clones contain a total of four or probes were used: HuD2 (IGHDY2) (17), MN60 (D15564) five different MN7 copies, which are spread over a large (14), MN8 (D15S77) (14), MN47 (D15S78) (14), MN43 distance within 15q11-13. -
“Core” Genome: Pairwise Similarity Searches on Interspecific Genomic Data
Towards a “core” genome: pairwise similarity searches on interspecific genomic data. Bradly J. Alicea1, Marcela A. Carvallo-Pinto2, Jorge L.M. Rodrigues3 1 Department of Telecommunication, Information Studies, and Media, Michigan State University, East Lansing, MI 2 Department of Plant Biology, Michigan State University, East Lansing, MI 3 Center for Microbial Ecology, Michigan State University, East Lansing, MI. Keywords: Biological Variation, Genomics, Evolution, Bioinformatics Abstract The phenomenon of gene conservation is an interesting evolutionary problem related to speciation and adaptation. Conserved genes are acted upon in evolution in a way that preserves their function despite other structural and functional changes going on around them. The recent availability of whole-genomic data from closely related species allows us to test the hypothesis that a “core” genome present in a hypothetical common ancestor is inherited by all sister taxa. Furthermore, this “core” genome should serve essential functions such as genetic regulation and cellular repair. Whole-genome sequences from three strains of bacteria (Shewanella sp.) were used in this analysis. The open reading frames (ORFs) for each identified and putative gene were used for each genome. Reciprocal Blast searches were conducted on all three genomes, which distilled a list of thousands of genes to 68 genes that were identical across taxa. Based on functional annotation, these genes were identified as housekeeping genes, which confirmed the original hypothesis. This method could be used in eukaryotes as well, in particular the relationship between humans, chimps, and macaques. Introduction The study of gene conservation is an intriguing scientific problem that has consequences for understanding functional differences between species and biological variation in general. -
Weathering Behaviour of Cunninghamia Lanceolata (Lamb.) Hook
Article Weathering Behaviour of Cunninghamia lanceolata (Lamb.) Hook. under Natural Conditions Xinjie Cui 1 and Junji Matsumura 2,* 1 Graduate School of Bioresource and Bioenvironmental Sciences, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; [email protected] 2 Laboratory of Wood Science, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan * Correspondence: [email protected]; Tel.: +81-092-802-4656 Received: 18 July 2020; Accepted: 10 December 2020; Published: 14 December 2020 Abstract: Information on the weathering behaviour of Cunninghamia lanceolata (Lamb.) Hook. is needed to provide references for wood weatherproof pre-treatment and to improve wood utilization. Therefore, this study was conducted to understand the variation in the intrinsic weathering behaviour of Cunninghamia lanceolata (Chinese fir) under natural conditions. Wood samples from 15 Cunninghamia lanceolata trees aged 26–30 years old were used. The structural degradation and discoloration of wood surfaces before and after exposure were compared. The results show that the weathering behaviour of wood was weakened from heartwood to sapwood and enhanced from the bottom to the top. This study provided information for weatherability research and improved wood utilization of Cunninghamia lanceolata. Keywords: Cunninghamia lanceolata; weathering; density; colour change; wood structure 1. Introduction Cunninghamia lanceolata (Lamb.) Hook. is a member of the family Cupressaceae. It is an evergreen tree that can grow up to 50 m in height and over 3 m in diameter. It forms mixed broad-leaved forests or small, pure stands, rocky hillsides, roadsides, with altitudes ranging from 200 to 2800 m [1]. -
The Ethics of Changing People Through Genetic Engineering, 13 Notre Dame J.L
Notre Dame Journal of Law, Ethics & Public Policy Volume 13 Article 5 Issue 1 Sym[posium on Emerging Issues in Technology 1-1-2012 What Sort of People Do We Want - The thicE s of Changing People through Genetic Engineering Michael J. Reiss Follow this and additional works at: http://scholarship.law.nd.edu/ndjlepp Recommended Citation Michael J. Reiss, What Sort of People Do We Want - The Ethics of Changing People through Genetic Engineering, 13 Notre Dame J.L. Ethics & Pub. Pol'y 63 (1999). Available at: http://scholarship.law.nd.edu/ndjlepp/vol13/iss1/5 This Article is brought to you for free and open access by the Notre Dame Journal of Law, Ethics & Public Policy at NDLScholarship. It has been accepted for inclusion in Notre Dame Journal of Law, Ethics & Public Policy by an authorized administrator of NDLScholarship. For more information, please contact [email protected]. WHAT SORT OF PEOPLE DO WE WANT? THE ETHICS OF CHANGING PEOPLE THROUGH GENETIC ENGINEERING MICHAEL J. REISS* Within the last decade, genetic engineering has changed from being a relatively esoteric research technique of molecular biologists to an application of considerable power, yet one which raises widespread public concern. In this article, I first briefly summarize the principles of genetic engineering, as applied to any organism. I then concentrate on humans, reviewing both progress to date and possible future developments. Throughout, my particular focus is on the ethical acceptability or otherwise of the technology. I restrict myself to cases where humans are themselves being genetically engineered. This means, for instance, that I do not cover such topics as xenotransplantation (when animals are genetically engineered to make them suitable for transplantation into humans) and the issues resulting from the production of such products as genetically engineered human growth hor- mone, al-antitrypsin, or vaccines (when micro-organisms, ani- mals, or plants are genetically engineered to produce human proteins).