해면에서 분리된 Bacillus Megaterium의

Total Page:16

File Type:pdf, Size:1020Kb

해면에서 분리된 Bacillus Megaterium의 저작자표시-비영리-변경금지 2.0 대한민국 이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다. 다음과 같은 조건을 따라야 합니다: 저작자표시. 귀하는 원저작자를 표시하여야 합니다. 비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건 을 명확하게 나타내어야 합니다. l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다. 저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다. Disclaimer Probiotics Properties of Bacillus megaterium Isolated from Marine Sponges and Effect of Enhance Immune Response in Olive flounder Paralichthys olivaceus SoHyun Park (Supervised by professor MoonSoo Heo) A thesis submitted in partial fulfillment of the requirement for the degree of Doctor of Science Department of Marine Life Science GRADUATE SCHOOL JEJU NATIONAL UNIVERSITY 목 차 목 차 ····································································································································· Ⅰ Abstract ······························································································································· Ⅴ List of Tables ···················································································································· Ⅸ List of Figures ·················································································································· Ⅺ 제 1장. 제주 해면에서 분리된 세균의 세균군집 구조 분석 및 신종후보균주의 분류학적 연구 및 동정 1.1. 서론 ································································································································ 1 1.2. 재료 및 방법 1.2.1. 시료채집 ················································································································· 3 1.2.2. 해양세균 분리 및 배양 ······················································································· 3 1.2.3. 16S rRNA 염기서열 분석 및 계통학적 분석 ················································· 5 1.2.4. 해면에서 분리된 신종후보균주의 다상학적 분석 1.2.4.1. 16S rRNA 염기서열 분석 및 계통학적 분석 ········································· 8 1.2.4.2. 형태학적 분석 ································································································ 9 1.2.4.3. 생리학적 및 생화학적 분석 ······································································ 11 1.2.4.4. 화학분류학적 분석 ······················································································ 13 1.2.4.5. Genomic 분석 ···························································································· 16 1.3. 결과 및 고찰 1.3.1. 해면 내 분리세균의 16S RNA 염기서열 및 계통학적 분석 1.3.1.1. 보라예쁜이해면 ···························································································· 17 1.3.1.2. 굵은나선별해면 ···························································································· 24 1.3.1.3. 호박해면 ······································································································· 30 - I - 1.3.1.4. 주황해변해면 ······························································································· 36 1.3.2. 주요 세균군집구조 분석 ··················································································· 42 1.3.3. 해면에서 분리된 신종후보균주의 다상학적 분석 1.3.3.1. 계통학적 분석 ····························································································· 44 1.3.3.2. 형태학적, 생리학적 및 생화학적 특성 ··················································· 46 1.3.3.3. pufLM gene ······························································································· 48 1.3.3.4. 화학분류학적 특성 ······················································································ 49 1.3.3.5. 균주기탁 ······································································································· 53 1.3.3.6. GenBank Accession Number ······························································· 53 1.3.4. Description of Labrenzia callyspongiae sp. nov., ······························ 54 제 2장. 해면에서 분리된 세균의 항균활성 탐색 및 Probiotics 특성 연구 2.1. 서론 ······························································································································ 57 2.2. 재료 및 방법 2.2.1. 분리된 세균의 어류질병에 대한 항균활성 탐색 ·········································· 58 2.2.2. 용혈성 및 유해효소 생성 ················································································· 60 2.2.3. pH, NaCl, 온도 ································································································· 61 2.2.4. 고분자 유기물질 분해능 ··················································································· 62 2.2.5. 인공위액과 인공담즙에서의 생존력 ································································ 63 2.2.6. API 50CHB 시험 ······························································································· 64 2.2.7. 항생제 감수성 시험 ··························································································· 65 2.2.8. 배양액 물질분석 ································································································· 66 2.3. 결과 및 고찰 2.3.1. 어류질병세균에 대한 항균활성 탐색 ······························································ 67 2.3.2. 용혈성과 유해효소 생성여부 확인 ·································································· 69 2.3.3. 고분자 유기물질 분해능 ··················································································· 70 2.3.4. pH, NaCl, 온도 ································································································· 72 - II - 2.3.5. 인공위액과 담즙내성 ························································································· 74 2.3.6. Probiotics 균주 선정 ······················································································· 74 2.3.7. API 50CHB 시험 ······························································································· 75 2.3.8. 항생제 감수성 시험 ··························································································· 76 2.3.9. 배양액 물질분석 ································································································· 77 2.3.10. 최종 선별균주 동정 및 계통수 작성 ···························································· 78 제 3장. Bacillus megaterium PPR15T 첨가사료를 급이시 넙치의 비특이적 면역반응과 질병저항성에 미치는 영향 3.1. 서론 ······························································································································ 80 3.2. 재료 및 실험방법 3.2.1. 실험사료 제작 ····································································································· 82 3.2.2. 어류 준비 및 사육조건 ····················································································· 82 3.2.3. 성장도 조사 및 혈액학적 분석 ········································································ 83 3.2.4. 식세포 활성 ········································································································· 84 3.2.5. Lysozyme 활성 ·································································································· 85 3.2.6. Myeloperoxidase 활성 ···················································································· 86 3.2.7. Superoxide dismutase (SOD) activity ······················································ 87 3.2.8. RNA 추출 ············································································································ 88 3.2.9. cDNA 합성 ·········································································································· 90 3.2.10. qRT-PCR ·········································································································· 91 3.2.11. 인위감염에 대한 질병 저항성 ······································································· 92 3.2.12. 유의학적 통계분석 ··························································································· 92 3.3. 결과 및 고찰 3.3.1. 성장도 조사 ········································································································· 93 3.3.2. 혈액학적 분석 ····································································································· 94 3.3.3. 식세포 활성 ········································································································· 97 - III - 3.3.4. Lysozyme 및 Myeloperoxidase 활성 ·························································· 98 3.3.5. Superoxide dismutase (SOD) 활성 ·························································· 100 3.3.6. qRT-PCR을 통한 면역관련 유전자 발현 ···················································· 101 3.3.7. 인위감염에 대한 질병 저항성 ······································································· 104 국문요약 ····························································································································· 105 참고문헌 ····························································································································· 108 감사의 글 ··························································································································· 125 - IV - Abstract The ocean is a vast ecosystem that is home to more than 80% of living organisms, and is one of the most valuable biological resources. Marine organisms found in the ocean are indigenous to special environments compared to those living on land, in terms of salinity, temperature, and chlorophyll, and thus have the ability to produce unique substances and can produce various biologically active substances. Of all the marine life forms, sea sponges are important resources for studying new materials. The emergence of antibiotic resistant bacteria strains has led to an increase in the research for new substances, and the number of bioactive substances that are isolated from marine sponges is also on the rise. These bioactive substances have been reported to be produced by commensal bacteria existing in the sponges. Bacteria
Recommended publications
  • A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium Smegmatis Is Involved in De Novo Cysteine Biosynthesis
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 5-2020 A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis Saroj Kumar Mahato University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/etd Part of the Cell Biology Commons, Molecular Biology Commons, and the Pathogenic Microbiology Commons Citation Mahato, S. K. (2020). A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis. Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3639 This Thesis is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected]. A Putative Cystathionine Beta-Synthase Homolog of Mycolicibacterium smegmatis is Involved in de novo Cysteine Biosynthesis A thesis submitted in partial fulfillment of the requirement for the degree of Master of Science in Cell and Molecular Biology by Saroj Kumar Mahato Purbanchal University Bachelor of Science in Biotechnology, 2016 May 2020 University of Arkansas This thesis is approved for recommendation to the Graduate Council. ___________________________________ Young Min Kwon, Ph.D. Thesis Director ___________________________________ ___________________________________ Suresh Thallapuranam, Ph.D. Inés Pinto, Ph.D. Committee Member Committee Member ABSTRACT Mycobacteria include serious pathogens of humans and animals. Mycolicibacterium smegmatis is a non-pathogenic model that is widely used to study core mycobacterial metabolism. This thesis explores mycobacterial pathways of cysteine biosynthesis by generating and study of genetic mutants of M. smegmatis. Published in vitro biochemical studies had revealed three independent routes to cysteine synthesis in mycobacteria involving separate homologs of cysteine synthase, namely CysK1, CysK2, and CysM.
    [Show full text]
  • Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2020 Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens LU LU ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-1148-7 UPPSALA urn:nbn:se:uu:diva-435815 2021 Dissertation presented at Uppsala University to be publicly examined in Room A1:111a, BMC, Husargatan 3, Uppsala, Friday, 16 April 2021 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Christian Cambillau. Abstract Lu, L. 2021. Structural and Biochemical Characterizations of Three Potential Drug Targets from Pathogens. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 2020. 91 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1148-7. As antibiotic resistance of various pathogens emerged globally, the need for new effective drugs with novel modes of action became urgent. In this thesis, we focus on infectious diseases, e.g. tuberculosis, malaria, and nosocomial infections, and the corresponding causative pathogens, Mycobacterium tuberculosis, Plasmodium falciparum, and the Gram-negative ESKAPE pathogens that underlie so many healthcare-acquired diseases. Following the same- target-other-pathogen (STOP) strategy, we attempted to comprehensively explore the properties of three promising drug targets. Signal peptidase I (SPase I), existing both in Gram-negative and Gram-positive bacteria, as well as in parasites, is vital for cell viability, due to its critical role in signal peptide cleavage, thus, protein maturation, and secreted protein transport. Three factors, comprising essentiality, a unique mode of action, and easy accessibility, make it an attractive drug target.
    [Show full text]
  • Diversity and Taxonomic Novelty of Actinobacteria Isolated from The
    Diversity and taxonomic novelty of Actinobacteria isolated from the Atacama Desert and their potential to produce antibiotics Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel Vorgelegt von Alvaro S. Villalobos Kiel 2018 Referent: Prof. Dr. Johannes F. Imhoff Korreferent: Prof. Dr. Ute Hentschel Humeida Tag der mündlichen Prüfung: Zum Druck genehmigt: 03.12.2018 gez. Prof. Dr. Frank Kempken, Dekan Table of contents Summary .......................................................................................................................................... 1 Zusammenfassung ............................................................................................................................ 2 Introduction ...................................................................................................................................... 3 Geological and climatic background of Atacama Desert ............................................................. 3 Microbiology of Atacama Desert ................................................................................................. 5 Natural products from Atacama Desert ........................................................................................ 9 References .................................................................................................................................. 12 Aim of the thesis ...........................................................................................................................
    [Show full text]
  • Genomics of Atlantic Forest Mycobacteriaceae Strains Unravels a Mobilome Diversity with a Novel Integrative Conjugative Element and Plasmids Harbouring T7SS
    RESEARCH ARTICLE Morgado and Paulo Vicente, Microbial Genomics 2020;6 DOI 10.1099/mgen.0.000382 Genomics of Atlantic Forest Mycobacteriaceae strains unravels a mobilome diversity with a novel integrative conjugative element and plasmids harbouring T7SS Sergio Mascarenhas Morgado* and Ana Carolina Paulo Vicente Abstract Mobile genetic elements (MGEs) are agents of bacterial evolution and adaptation. Genome sequencing provides an unbiased approach that has revealed an abundance of MGEs in prokaryotes, mainly plasmids and integrative conjugative elements. Nev- ertheless, many mobilomes, particularly those from environmental bacteria, remain underexplored despite their representing a reservoir of genes that can later emerge in the clinic. Here, we explored the mobilome of the Mycobacteriaceae family, focus- ing on strains from Brazilian Atlantic Forest soil. Novel Mycolicibacterium and Mycobacteroides strains were identified, with the former ones harbouring linear and circular plasmids encoding the specialized type- VII secretion system (T7SS) and mobility- associated genes. In addition, we also identified a T4SS- mediated integrative conjugative element (ICEMyc226) encoding two T7SSs and a number of xenobiotic degrading genes. Our study uncovers the diversity of the Mycobacteriaceae mobilome, pro- viding the evidence of an ICE in this bacterial family. Moreover, the presence of T7SS genes in an ICE, as well as plasmids, highlights the role of these mobile genetic elements in the dispersion of T7SS. Data SUMMARY Conjugative elements, such as conjugative plasmids and Genomic data analysed in this work are available in GenBank integrative conjugative elements (ICEs), mediate their own and listed in Tables S1 and S2 (available in the online version transfer to other organisms, often carrying cargo genes.
    [Show full text]
  • Mycolicibacterium Stellarae
    © Nouioui, I., Sangal, V., Cortés-Albayay, C., Jando, M., Igual, J.M., Klenk, H.P.; Zhang, Y.Q., Goodfellow, M. 2019. The definitive peer reviewed, edited version of this article is published in International Journal of Systematic and Evolutionary Microbiology, 69, 11, 2019, http://dx.doi.org/10.1099/ijsem.0.003644 Mycolicibacterium stellerae sp. nov., a rapidly growing scotochromogenic strain isolated from Stellera chamaejasme Imen Nouioui 1* , Vartul Sangal 2, Carlos Cortés-Albayay 1, Marlen Jando 3, José Mariano Igual 4, Hans-Peter Klenk 1, Yu-Qin Zhang 5, Michael Goodfellow 1 1School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University,Newcastle upon Tyne, NE1 7RU, United Kingdom 2Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK 3Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany 4Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), c/Cordel de Merinas 40-52, 37008 Salamanca, Spain 5Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 of Tiantanxili Road, Beijing, Beijing 100050, China Corresponding author : Imen Nouioui [email protected] Section: Actinobacteria Keywords: Actinobacteria, polyphasic taxonomy, draft-whole genome sequence Abbreviations: ANI, Average Nucleotide Identity; A2pm, diaminopimelic acid, BLAST, Basic Local Alignment Search Tool;
    [Show full text]
  • Pathogen Taxonomy Updates at the Comprehensive Antibiotic Resistance Database: Implications for Molecular Epidemiology Kara K
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 July 2019 doi:10.20944/preprints201907.0222.v1 Pathogen taxonomy updates at the Comprehensive Antibiotic Resistance Database: Implications for molecular epidemiology Kara K. Tsang, David J. Speicher, and Andrew G. McArthur* M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada *To whom correspondence should be addressed. Contact: [email protected] Abstract With the increasing use of genome sequencing as a surveillance tool for molecular epidemiology of antimicrobial resistance, we are seeing an increased intersection of genomics, microbiology, and clinical epidemiology. Clear nomenclature for AMR gene families and pathogens is critical for communication. For CARD release version 3.0.3 (July 2019), we updated the entire CARD database to reflect the latest pathogen names. In total, we detected 48 name changes or updates, some of which reflect major changes in familiar names. Keywords: antimicrobial resistance, biocuration, microbial nomenclature, molecular epidemiology Introduction analyses, which proved to be unpopular due to loss of the familiar ‘C. diff’ With the increasing use of genome sequencing as a surveillance tool for and ‘CDAD’ (Clostridium difficile-associated diarrhea) monikers. molecular epidemiology of antimicrobial resistance (AMR) (1, 2), we are Subsequent phylogenetic analysis by Lawson et al. (6) confirmed the seeing an increased intersection of genomics, microbiology, and clinical genus Clostridium had been poorly defined, that C. difficile was indeed epidemiology. As such, clear nomenclature for AMR gene families and more closely related to Peptoclostridium than other Clostridium, and pathogens is critical for communication.
    [Show full text]
  • Different Genome-Wide Transcriptome Responses of Nocardioides Simplex VKM Ac- 2033D to Phytosterol and Cortisone 21- Acetate Victoria Yu Shtratnikova1* , Mikhail I
    Shtratnikova et al. BMC Biotechnology (2021) 21:7 https://doi.org/10.1186/s12896-021-00668-9 RESEARCH ARTICLE Open Access Different genome-wide transcriptome responses of Nocardioides simplex VKM Ac- 2033D to phytosterol and cortisone 21- acetate Victoria Yu Shtratnikova1* , Mikhail I. Sсhelkunov2,3 , Victoria V. Fokina4,5 , Eugeny Y. Bragin4 , Andrey A. Shutov 4,5 and Marina V. Donova4,5 Abstract Background: Bacterial degradation/transformation of steroids is widely investigated to create biotechnologically relevant strains for industrial application. The strain of Nocardioides simplex VKM Ac-2033D is well known mainly for its superior 3-ketosteroid Δ1-dehydrogenase activity towards various 3-oxosteroids and other important reactions of sterol degradation. However, its biocatalytic capacities and the molecular fundamentals of its activity towards natural sterols and synthetic steroids were not fully understood. In this study, a comparative investigation of the genome-wide transcriptome profiling of the N. simplex VKM Ac-2033D grown on phytosterol, or in the presence of cortisone 21-acetate was performed with RNA-seq. Results: Although the gene patterns induced by phytosterol generally resemble the gene sets involved in phytosterol degradation pathways in mycolic acid rich actinobacteria such as Mycolicibacterium, Mycobacterium and Rhodococcus species, the differences in gene organization and previously unreported genes with high expression level were revealed. Transcription of the genes related to KstR- and KstR2-regulons was mainly enhanced in response to phytosterol, and the role in steroid catabolism is predicted for some dozens of the genes in N. simplex. New transcription factors binding motifs and new candidate transcription regulators of steroid catabolism were predicted in N.
    [Show full text]
  • PDF-Document
    SUPPLEMENTARY DATA Characterization of microbial communities associated with ceramic raw materials as potential contributors for the improvement of ceramic rheological properties Angela M. Garcia-Sanchez 1, Bernardino Machado-Moreira 2, Mário Freire 3, Ricardo Santos 3, Sílvia Monteiro 3, Diamantino Dias 4, Orquídia Neves 2, Amélia Dionísio 2 and Ana Z. Miller 5* 1 Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville. Profesor García González 2, 41012 Seville, Spain; 2 CERENA, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001, Lisboa, Portugal; 3 Laboratorio de Análises do Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; 4 Rauschert Portuguesa, SA., Estrada Nacional 249-4, Trajouce, 2785-653 São Domingos de Rana, Portugal; 5 Instituto de Recursos Naturales y Agrobiologia de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain; 6 HERCULES Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal. * Correspondence: [email protected] The Supplementary data include: Figure S1. Rarefaction curves. Table S1. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 1A (74 sequences, 64 OTUs). Table S2. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 2B (69 sequences, 51 OTUs). Table S3. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 4D (80 sequences, 54 OTUs). Table S4. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 6F (86 sequences, 38 OTUs). Table S5. Phylogenetic affiliations of the 16S rRNA gene sequences of total bacteria obtained from sample 7G (79 sequences, 48 OTUs).
    [Show full text]
  • Genomic Molecular Signatures Determined Characterization of Mycolicibacterium Gossypii Sp
    Genomic Molecular Signatures Determined Characterization of Mycolicibacterium gossypii sp. nov., a Fast-Growing Mycobacterial Species Isolated From Cotton Field Soil Ruirui Huang Nanjing Normal University Shenrong Yang Nanjing Normal University Cheng Zhen Nanjing Normal University Xianfeng Ge Nanjing Normal University Xinkai Chen Nanjing Normal University Zhiqiang Wen Nanjing Normal University Yanan Li Nanjing Normal University Wenzheng Liu ( [email protected] ) Nanjing Normal University https://orcid.org/0000-0003-0710-5748 Research Article Keywords: Mycolicibacterium, fast-growing, cotton eld soil, molecular signatures Posted Date: May 27th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-560868/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Antonie van Leeuwenhoek on August 15th, 2021. See the published version at https://doi.org/10.1007/s10482-021-01638-z. 1 Genomic molecular signatures determined characterization of 2 Mycolicibacterium gossypii sp. nov., a fast-growing mycobacterial 3 species isolated from cotton field soil 4 Authors name:Rui-Rui Huang, Shen-Rong Yang, Cheng Zhen, Xian-Feng Ge, Xin-Kai * 5 Chen, Zhi-Qiang Wen, Ya-Nan Li, Wen-Zheng Liu 6 Author affiliation: School of Food and Pharmaceutical Engineering, Nanjing Normal 7 University, Nanjing 210023, PR China. 8 *Correspondence: Wen-Zheng Liu; E-mail: [email protected] 9 Abstract T 10 A Gram-positive, acid-fast and rapidly growing rod, designated S2-37 , that could form 11 yellowish colonies was isolated from soil samples collected from cotton cropping field located T 12 in the Xinjiang region of China.
    [Show full text]
  • Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches
    microorganisms Review Non-Tuberculous Mycobacteria: Molecular and Physiological Bases of Virulence and Adaptation to Ecological Niches André C. Pereira 1,2 , Beatriz Ramos 1,2 , Ana C. Reis 1,2 and Mónica V. Cunha 1,2,* 1 Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal; [email protected] (A.C.P.); [email protected] (B.R.); [email protected] (A.C.R.) 2 Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal * Correspondence: [email protected]; Tel.: +351-217-500-000 (ext. 22461) Received: 26 August 2020; Accepted: 7 September 2020; Published: 9 September 2020 Abstract: Non-tuberculous mycobacteria (NTM) are paradigmatic colonizers of the total environment, circulating at the interfaces of the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. Their striking adaptive ecology on the interconnection of multiple spheres results from the combination of several biological features related to their exclusive hydrophobic and lipid-rich impermeable cell wall, transcriptional regulation signatures, biofilm phenotype, and symbiosis with protozoa. This unique blend of traits is reviewed in this work, with highlights to the prodigious plasticity and persistence hallmarks of NTM in a wide diversity of environments, from extreme natural milieus to microniches in the human body. Knowledge on the taxonomy, evolution, and functional diversity of NTM is updated, as well as the molecular and physiological bases for environmental adaptation, tolerance to xenobiotics, and infection biology in the human and non-human host. The complex interplay between individual, species-specific and ecological niche traits contributing to NTM resilience across ecosystems are also explored.
    [Show full text]
  • The Peptidoglycan Biosynthesis Gene Murc in Frankia: Actinorhizal Vs
    G C A T T A C G G C A T genes Article The Peptidoglycan Biosynthesis Gene murC in Frankia: Actinorhizal vs. Plant Type Fede Berckx 1, Daniel Wibberg 2, Jörn Kalinowski 2 and Katharina Pawlowski 2,* 1 Department of Ecology, Environment, and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden; [email protected] 2 Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany; [email protected] (D.W.); [email protected] (J.K.) * Correspondence: [email protected]; Tel.: +46-8-16-3772; Fax: +46-8-16-5525 Received: 2 March 2020; Accepted: 8 April 2020; Published: 16 April 2020 Abstract: Nitrogen-fixing Actinobacteria of the genus Frankia can be subdivided into four phylogenetically distinct clades; members of clusters one to three engage in nitrogen-fixing root nodule symbioses with actinorhizal plants. Mur enzymes are responsible for the biosynthesis of the peptidoglycan layer of bacteria. The four Mur ligases, MurC, MurD, MurE, and MurF, catalyse the addition of a short polypeptide to UDP-N-acetylmuramic acid. Frankia strains of cluster-2 and cluster-3 contain two copies of murC, while the strains of cluster-1 and cluster-4 contain only one. Phylogenetically, the protein encoded by the murC gene shared only by cluster-2 and cluster-3, termed MurC1, groups with MurC proteins of other Actinobacteria. The protein encoded by the murC gene found in all Frankia strains, MurC2, shows a higher similarity to the MurC proteins of plants than of Actinobacteria. MurC2 could have been either acquired via horizontal gene transfer or via gene duplication and convergent evolution, while murC1 was subsequently lost in the cluster-1 and cluster-4 strains.
    [Show full text]
  • Genome-Based Taxonomic Classification of the Phylum
    ORIGINAL RESEARCH published: 22 August 2018 doi: 10.3389/fmicb.2018.02007 Genome-Based Taxonomic Classification of the Phylum Actinobacteria Imen Nouioui 1†, Lorena Carro 1†, Marina García-López 2†, Jan P. Meier-Kolthoff 2, Tanja Woyke 3, Nikos C. Kyrpides 3, Rüdiger Pukall 2, Hans-Peter Klenk 1, Michael Goodfellow 1 and Markus Göker 2* 1 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom, 2 Department Edited by: of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Martin G. Klotz, Germany, 3 Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States Washington State University Tri-Cities, United States The application of phylogenetic taxonomic procedures led to improvements in the Reviewed by: Nicola Segata, classification of bacteria assigned to the phylum Actinobacteria but even so there remains University of Trento, Italy a need to further clarify relationships within a taxon that encompasses organisms of Antonio Ventosa, agricultural, biotechnological, clinical, and ecological importance. Classification of the Universidad de Sevilla, Spain David Moreira, morphologically diverse bacteria belonging to this large phylum based on a limited Centre National de la Recherche number of features has proved to be difficult, not least when taxonomic decisions Scientifique (CNRS), France rested heavily on interpretation of poorly resolved 16S rRNA gene trees. Here, draft *Correspondence: Markus Göker genome sequences
    [Show full text]