Primary funding is provided by

The SPE Foundation through member donations and a contribution from Offshore Europe

The Society is grateful to those companies that allow their professionals to serve as lecturers

Additional su pport prov ided by AIME

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl Completion of Hydrocarbon Bearing Reservoirs

George Waters Schlumberger Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl 60,00060k MarcellusMarcellus Shale Shale Evolution of US HaynesvilleHaynesville Shale Shale 50,00050k WoodfordWoodford Shale Shale FayettevilleFayetteville Shale Shale Initially driven by desportion s NewNew Albany Albany Shale Shale 40,00040k LewisLewis Shale Shale BarnettBarnett Shale Shale AntrimAntrim Shale Shale Focus shifts to pore gas OhioOhio Shale Shale 30,00030k

Deeper Gas Well Shale Producing 20,00020k

Higher Reservoir Pressures of Number

10,00010k Dramatic increase in production 00 ~1 BCF/day in 1997 197979 1981 198384 1985 1987 198989 1991 199394 1995 1997 199999 2001 200304 2005 200708 25002,500 +7 BCF/day in 2009 MarcellusMarcellus Shale Shale HaynesvilleHaynesville Shale Shale WoodfordWoodford Shale Shale 20002,000 FayettevilleFayetteville Shale Shale NewNew Albany Albany Shale Shale LewisLewis Shale Shale BarnettBarnett Shale Shale 15001,500 AntrimAntrim Shale Shale duction, Bcf duction, oo OhioOhi Shaleo Sha le

10001,000 Annual Gas Pr Shale Annual

500500

00 197979 1981 198384 1985 1987 198989 1991 199394 1995 1997 199999 2001 200304 2005 200708 Shale in Perspective: Permeability m. ate nn FF Sand h Lance nic Shale -D Carbo aa aa aa kk Jon Org Arab Salt Bric Bere

Unconventional

1000100 10 1.0 0.10.01 0.001 0.0001 0.00001 1e-06 md 100 nd = 0.0000001 D Shale Stimulation Requirements: Closelyyp Spaced Fractures

„ Extremely Low Matrix Permeabilities – Majority of Pressure Drop at Fracture Face – At Initial Reservoir Pressure 10s of feet from fracture for years – Hydraulic Fracture Complexity induces pressure drop from multiple points

„ Horizontal Wells Frequently Employed 10 Year Pressure Profile

– Drilled in direction of sh – Generate multiple, transverse hydraulic fractures 4500 Pressure Profile After 30 years 4000 with 30 Acre Well Spacing

3500

B1 : 1 1 B3 : 1 1

3000

2500 B2 : 1 1 B4 : 1 1

2000 Dense Fracture

1500 Patterns Required 1000 via

500 4500 Closely Spaced 4000 Vertical Wells

B6 : 1 1 3500 B3 : 1 1 B1 : 1 1 or B8 : 1 1 3000

B5 : 1 1 Horizontal Wells B4 : 1 1 2500

B2 : 1 1 B7 : 1 1

2000

1500

1000 Pressure Profile After 30 years with 15 Acre Well Spacing 500 Lateral Landing Example Best Petrophysics „ φ, k, GIP Mineralogy – Lowest Clay Volume Borehole Stability „ Breakout „ Expandable Clays Stress „ Lowest Closure Stress Oppgtimum Landing Points Frac Simulations to Quantify In-situ Stress Direction Induced Fractures, Borehole Breakout, Sonic Logs, & Microseismic

Induced Fractures

oriented in σH direction

Breakout oriented Microseismic events in σh direction orient in σH direction Calibration of In-Situ Stress Isotropic Stress Profile versus Anisotropic Stress Profile Isotropic Stress

Anisotropic Stress Arkoma Shale Fracture Geometry Fracture Geometry

Natural Fractures normal to σH Natural Fractures Parallel to σH Low Horizontal Stress Anisotropy High Horizontal Stress Anisotropy Wide Hydraulic Fracture Networks Narrow Hydraulic Fracture Network

Vertical Well Lateral Azimuth = σH Spacing of Hydraulically Fractures

Example: bb Young’s Modulus = 3x106 psi Hy drau lic Width = 0. 05 in Spacing Stress Increase w = Δb (ft) (psi)

1 12,500 w=Δb 10 1,250 ε =w/b 25 500 50 250 Hooke’s Law 100 125 Δσ = Ε ε = Ε w/b Simultaneous

“In-situ Pulverization” SPE 119635 Simultaneously Hydraulically Fracturing Results

1,000,000

100,000 [mscf]

Gas 10,000 [mscfd],

te aa R

1,000

100 0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0

Days

Initial Gas Simulfrac Gas Simul Cum Initial Cum The Role of Effective Stress – Do We Need Proppant? Force actinggy on fracture systems

σ’ = σ - αPf Barnett Shale Example 150000 5 MMPSI, 1.0 lb/ft2 D = 7,000 ft Pr = 0.55 psi/ft 5MMPSI05lb/ft25 MMPSI, 0.5 lb/ft2 5 MMPSI, 0.25 lb/ft2 σh = 0.60 psi/ft Pwf = 500 psi 120000 2 MMPSI, 1.0 lb/ft2 2 MMPSI, 0.5 lb/ft2 σH = 0.65 psi/ft 2 MMPSI, 0.25 lb/ft2 1 MMPSI, 1.0 lb/ft2 90000 Barnett 1 MMPSI, 0.5 lb/ft2 (md)

Initial Conditions During Production yy 1 MMPSI, 0.25 lb/ft2

σ’h = 350 psi σ’h = 3,700 psi 60000 σ’H = 700 psi σ’H = 4,050 psi Permeabilit Haynesville late Δσ’ = 350 psi Haynesville H-h Production 30000early Haynesville Shale Example Production

D = 11,000 ft Pr = 0.85 psi/ft 0 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 σh = 0.95 psi/ft Pwf = 7,,p500 psi Stress on Proppant σH = 1.00 psi/ft Pwf = 3,000 psi Initial Conditions During Production σ’h = 1,100 psi σ’h = 2,950 psi

σ’H = 1,650 psi σ’H = 3,500 psi

Δσ’H-h = 550 psi σ’h = 7,450 psi σ’H = 8,000 psi Fracturing Fluid Selection

Slickwater Crosslinked Gel Frac „ More Surface Area/Unit Cost „ Wider Fracture “Fairways” GlGels „ Fracture Initiation

Foams SPE 95568 „ Low Pore Pressure

„ Swelling Clays Slickwater Refrac „ Water Shortages Diversion „ FibBllSlSdFibers, Ball Sealers, Sand Slugs „ Simul-fracs, Zipper-fracs, Refracs

Propped Fractures SPE 95568 „ Effective Frac Conductivity „ Prop Volume, Viscous Fluids, Light Weight Props, Foams… Fracturing Fluid Additives Barite Salts ƒ Shale Compatibility ƒ Swelling Clays Scale Inhibitors 30.0

„ Mixed/Reused Waters 25.0 „ High TDS Waters 20.0 tio aa Surfactants 15.0

CST R 10.0

„ Impact Wetting Phase 5.0 „ Exacerbate Imbibition 000.0 01234567 „ Oil or Non-Wetting KCl [%] Bactericides „ Untreated Water Breakers „ Higgoyesh MW Polymers Iron Stabilizers „ Chlorite & Pyrite Perforation Practices – Impact on NWB Complexity σ Longer Perforation Clusters v 2 Can induce Parallel Fracturing σH 1.98 Q ρ Δp = perf 2 4 2 High Density Phasing c dp Np Tortuous Path leaving the Wellbore

Limited Entry Design σH Perf Clusters per Frac Stage

PfPerf Clust er Spaci ng Surface Can create Fracture Interference Wellhead

Perforation Performance Colinear Fracture Aligned Main Fracture HdHard RRkocks – Shor ter Pene tra tion along Wellbore Axis Secondary & Multiple Argillaceous Rocks – Collapsed Tunnels Competing Fractures Sand Jetting Perforations Deeper Penetration Physically Remove Rock Single Plane Phasing Colinear Frac Projection Projection of Main Fracture Projection of Secondary & Multiple Competing Fractures

Wellbore Projection Summary KtOtiiiShlGCltiKeys to Optimizing Shale Gas Completions:

– Identify Stimulation Drivers • Fracture Height Growth & Complexity • Fracture Conductivity & Fluid Compatibility – Must Perform “Science” At Beginning of Development • 3D Seismic Acquisition to understand Structure • Core Analysis for Mechanical Properties, Conductivity & Fluids Testing •Loggy Analysis to quantif y Petro pyphysics and Geomechanics • Microseismic Monitoring to Quantify Hydraulic Fracture Geometry – Evolves to Manufacturing Process • Maximize Drilling Efficiency • Optimize Well Spacing & Completion Process – Change Process as Acreage Changes – Continually Learn as Project Evolves Key Parameters for Shale Plays

Geology Engineering • Thermal maturity y Stress field and magnitude • Organic richness y Frac height growth • Mineralogy y Frac orientation • Matrix permeability Hydraulic vs. natural • Thickness y Frac complexity • Porosity y Frac conductivity • Fluid saturations y Fluid compatibility • Hydrocarbons in place • Faults and fractures • Adjacen t wa ter bibearing ftiformations Your Feedback is Important

Enter your section in the DL Evaluation Contest by completing the evaluation form for this presentation or go online at:

http://www.spe.org/events/dl/dl_evaluation_contest.php

Society of Petroleum Engineers Distinguished Lecturer Program www.spe.org/dl