Pdf (876.29 K)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Profile of Nutrition and Hazards of Om-Elkholool (Donax Trunculus) and Gandofly (Ruditapes Decussatus) Clams from Alexandria, Egypt
International Journal For Research In Agricultural And Food Science ISSN: 2208-2719 Profile of Nutrition and Hazards of Om-Elkholool (Donax Trunculus) and Gandofly (Ruditapes Decussatus) Clams From Alexandria, Egypt Sherief Mohammed Sayed Abd-Allah Assistant Professor, Department of Food Hygiene "Meat Hygiene", Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt Email:[email protected] ABSTRACT Clams are delicate nutritious food; however they can harbor potential health hazards. The current work aimed to investigate and compare some of the nutritive criteria and hazards of Om-Elkholool (Donax trunculus) and Gandofly (Ruditapes decussatus) clams sold at Alexandria, Egypt. A total of 46 samples (22 of Om-Elkholool and 24 of Gandofly) were randomly collected from fish retailers during summer of 2017. Samples were analyzed for proximate composition (dry matter, moisture, protein, fat, and ash %). The carbohydrates and energy content was calculated. The count of coliforms, fecal coliforms, E. coli and Cl. perfringenes (MPN/g) was determined. Concentration (mg/kg) of lead and cadmium in 10 randomly selected samples of each type were estimated. The dry matter, moisture, protein, fat, ash and carbohydrates percentages mean values for Om-Elkholool “Om” samples were 30.37±0.22, 69.60±0.21, 8.49±0.14, 1.29±0.03, 18.63±0.09, and 1.99±11, respectively, while for Gandofly “Gd” samples were 16.81±0.21, 83.28±0.2, 8.69±0.13, 1.22±0.03, 3.43±0.09, and 3.37±10, respectively. The gross energy content (Kcal/100g) mean value was 53.55±0.88 for Om and 59.24±0.85 for Gd. -
Global Perspective of Bivalve Hatchery Processes
Global Perspective of Bivalve Hatchery Processes A report for by Ian Duthie 2010 Nuffield Scholar October 2012 Nuffield Australia Project No 1017 Sponsored by: © 2010 Nuffield Australia. All rights reserved. This publication has been prepared in good faith on the basis of information available at the date of publication without any independent verification. Nuffield Australia does not guarantee or warrant the accuracy, reliability, completeness of currency of the information in this publication nor its usefulness in achieving any purpose. Readers are responsible for assessing the relevance and accuracy of the content of this publication. Nuffield Australia will not be liable for any loss, damage, cost or expense incurred or arising by reason of any person using or relying on the information in this publication. Products may be identified by proprietary or trade names to help readers identify particular types of products but this is not, and is not intended to be, an endorsement or recommendation of any product or manufacturer referred to. Other products may perform as well or better than those specifically referred to. This publication is copyright. However, Nuffield Australia encourages wide dissemination of its research, providing the organisation is clearly acknowledged. For any enquiries concerning reproduction or acknowledgement contact the Publications Manager on ph: (03) 54800755. Scholar Contact Details Ian Duthie P.O. Box 74 ORFORD, TASMANIA, 7190 Phone: 03 62 571 239 Mobile: 0409 411 322 Email: [email protected] In submitting this report, the Scholar has agreed to Nuffield Australia publishing this material in its edited form. Nuffield Australia Contact Details Nuffield Australia Telephone: (03) 54800755 Facsimile: (03) 54800233 Mobile: 0412696076 Email: [email protected] 586 Moama NSW 2731 2 Foreword Shellfish (Bivalve) cultivation is a significant form of aquaculture around the world, with production at 13.9 million tonnes and continuing to grow at 5% per annum. -
(Venerupis Decussata, Linnaeus, 1758), from the Tunisian Coast: Trophic Links
GRASAS Y ACEITES 70 (1) January–March 2019, e289 ISSN-L: 0017-3495 https://doi.org/10.3989/gya.0580181 Geographic variation in fatty acid composition and food source of the commercial clam (Venerupis decussata, Linnaeus, 1758), from the Tunisian Coast: Trophic links S. Bejaouia,*, D. Boussoufaa¥, K. Telahiguea¥, I. Chetouia, F. Ghribia, I. Rabeha and M. El Cafsia aUnit of Physiology and Aquatic Environment, Biology Department, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia. ¥ These authors contribute equally to this work *Corresponding author: [email protected] Submitted: 25 May 2018; Accepted: 26 July 2018 SUMMARY: Lake and coastal Tunisian areas are rich biodiversity habitats, although little information is available about the distribution of food sources for the inhabitant species. In this study, a fatty acid analysis was used to study the trophic ecology of Venerupis decussatac ommunities from 10 sites located along the Tunisian Coast. The richest population in fatty acids was found in S4 followed by S5 and S8, while that of S1, S3 and S10 were the least rich. Results from multivariate analysis confirmed the ecological position of the studied population based on their fatty acid composition. Our results divided the ten studied populations into three similar groups according to their eco- logical and geographical positions in relation to environmental parameters and food and trophic links. A principal component analysis revealed that diatoms and dinoflagellates were the predominate diets in all the sampling stations. Bacteria and urban discharge dominated the dietary source of clams from S10 and S9. Zooplankton were the pre- ferred diet of V. -
The Evolution of the Molluscan Biota of Sabaudia Lake: a Matter of Human History
SCIENTIA MARINA 77(4) December 2013, 649-662, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.03858.05M The evolution of the molluscan biota of Sabaudia Lake: a matter of human history ARMANDO MACALI 1, ANXO CONDE 2,3, CARLO SMRIGLIO 1, PAOLO MARIOTTINI 1 and FABIO CROCETTA 4 1 Dipartimento di Biologia, Università Roma Tre, Viale Marconi 446, I-00146 Roma, Italy. 2 IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico (IST), 1049-001, Lisbon, Portugal. 3 Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, Lagoas-Marcosende, Vigo E-36310, Spain. 4 Stazione Zoologica Anton Dohrn, Villa Comunale, I-80121 Napoli, Italy. E-mail: [email protected] SUMMARY: The evolution of the molluscan biota in Sabaudia Lake (Italy, central Tyrrhenian Sea) in the last century is hereby traced on the basis of bibliography, museum type materials, and field samplings carried out from April 2009 to Sep- tember 2011. Biological assessments revealed clearly distinct phases, elucidating the definitive shift of this human-induced coastal lake from a freshwater to a marine-influenced lagoon ecosystem. Records of marine subfossil taxa suggest that previous accommodations to these environmental features have already occurred in the past, in agreement with historical evidence. Faunal and ecological insights are offered for its current malacofauna, and special emphasis is given to alien spe- cies. Within this framework, Mytilodonta Coen, 1936, Mytilodonta paulae Coen, 1936 and Rissoa paulae Coen in Brunelli and Cannicci, 1940 are also considered new synonyms of Mytilaster Monterosato, 1884, Mytilaster marioni (Locard, 1889) and Rissoa membranacea (J. -
2017 SMALL BIVALVE FISHERY ASSESSMENT Venerupis Largillierti - Northern Zone, Georges Bay Katelysia Scalarina - Ansons Bay
2017 SMALL BIVALVE FISHERY ASSESSMENT Venerupis largillierti - Northern Zone, Georges Bay Katelysia scalarina - Ansons Bay John Keane and Caleb Gardner June 2017 Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart TAS 7001 Enquires should be directed to: Dr John Keane Institute for Marine and Antarctic Studies University of Tasmania Private Bag 49, Hobart, Tasmania 7001, Australia [email protected] Ph. (03) 6226 8265 Citation: Keane, J.P. and Gardner, C. (2017), 2017 Small Bivalve Fishery Assessment. Institute for Marine and Antarctic Studies Report. University of Tasmania, Hobart. 18 p. The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstance. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the Institute for Marine and Antarctic Studies (IMAS) or the University of Tasmania (UTas). The Institute for Marine and Antarctic Studies, University of Tasmania 2017. Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Institute for Marine and Antarctic Studies. Small Bivalve Survey 2017 Executive Summary In 2017, stock assessments with total allowable commercial catch recommendations (TACC) ware conducted for the Georges Bay Northern Zone Venus Clam, Venerupis largillierti, fishery and the Ansons Bay Vongole, Katelysia scalarina, fishery. -
For Breeding of Venerupis Decussata (Linnaeus, 1758) Juveniles in a Coastal Lagoon in Sardinia (Italy) G
Transitional Waters Bulletin TWB, Transit. Waters Bull. 7 (2013), n. 2, 53-61 ISSN 1825-229X, DOI 10.1285/i1825229Xv7n2p53 http://siba-ese.unisalento.it The floating upwelling system (FLUPSY) for breeding of Venerupis decussata (Linnaeus, 1758) juveniles in a coastal lagoon in Sardinia (Italy) G. Chessa*, S. Serra, S. Saba, S. Manca, F. Chessa, M. Trentadue, N. Fois AGRIS Sardegna, Dipartimento per la Ricerca nelle Produzioni Animali, RESEARCH ARTICLE Servizio Risorse Ittiche, Località Bonassai S.S. 291 km 18.600, 07040 Olmedo (SS), Italy. *Corresponding author: Phone: +39 079 2842371; Fax: +39 079 389450; E-mail address:[email protected] Abstract 1 - In recent years, interest in farming the grooved carpet shell Venerupis decussata (Linnaeus, 1758) in Sardinian lagoons has greatly increased due to a decrease in clam populations. Aquaculturists around the world have developed a variety of different clam farming systems, notably for the Manila clam, Venerupis philippinarum (Adams & Reeve, 1850). 2 - The aim was to test the aquaculture of V. decussata using the FLoating UPwelling SYstem (FLUPSY) to evaluate their growth rate over two seasons: spring 2011 (from 10 March, 2011, to 21 May, 2011), and autumn 2011 (from 18 October, 2011, to 28 December, 2011). The study was carried out in the Tortolì coastal lagoon, Eastern Sardinia (Italy; latitude 39°56’ N, longitude 9°41’ E). 3 - V. decussata juveniles with mean shell lengths of 10.88±0.91 mm in spring and 8.95 ± 0.75 mm in autumn, mean shell thicknesses of 5.21±0.54 mm in spring and 3.36 ± 0.27 mm in autumn, and mean total weight of 0.33±0.09 g in spring and 0.1 2± 0.03 g in autumn, were bred following FLUPSY. -
Ocean Acidification Impact on the Grooved Carpet Shell Clam (Ruditapes Decussatus)
Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 23(5): 169 - 182 (2019) www.ejabf.journals.ekb.eg Ocean acidification impact on the grooved carpet shell clam (Ruditapes decussatus) Merna E. Awad1, Nayrah A. Shaltout2, Fedekar F. Madkour1, Mohamed A. Abu El-Regal1, Heba S. El-Sayed*3, Eman El-Wazzan3 1- Marine Science Department, Faculty of Science, Port Said University, Port Said, Egypt 2- Marine Chemistry Department, National Institute of Oceanography and Fisheries, Alexandria, Egypt 3- Aquaculture Division, National Institute of Oceanography and Fisheries, Alexandria, Egypt * Corresponding author : [email protected] ARTICLE INFO ABSTRACT Article History: The grooved carpet shell clam (Ruditapes decussatus) is one of the most Received: May 2, 2019 economicallyimportant mollusks inhabiting Mediterranean lagoons and Accepted: Nov. 28, 2019 sandy beaches both from fisheries and aquaculture. The present study aims Online: Dec. 2019 to study the impact of different levels of acidification on this calcifying _______________ organism. Juvenile clams (avg. Shell Length, SL= 23.22 ± 0.84 mm) were incubated in CO enriched seawater at four different CO concentrations Keywords: 2 2 [420 ppm (ambient control), 550 ppm, 750 ppm and 1050 ppm] representing Ocean acidification projected atmospheric CO concentration scenarios for the year 2100 by grooved carpet clam 2 IPCC. The studied biological parameters showed slight decrease with Ruditapes decussatus increasing pCO . However, differences were not significant. Standard length Calcifying organism 2 decreased as pCO concentration increased, with a maximum average Biological impact 2 decrease of (-0.12) recorded at 750 ppm as compared to the control group. -
Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Pullet carpet shell (Venerupis corrugata) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Will Rayment 2007-08-13 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1558]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Rayment, W.J. 2007. Venerupis corrugata Pullet carpet shell. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1558.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2007-08-13 Pullet carpet shell (Venerupis corrugata) - Marine Life Information Network See online review for distribution map Distribution data supplied by the Ocean Biogeographic Information System (OBIS). -
2018 SMALL BIVALVE FISHERY ASSESSMENT Ostrea Angasi - Georges Bay Katelysia Scalarina - Ansons Bay Venerupis Largillierti - Northern Zone, Georges Bay
2018 SMALL BIVALVE FISHERY ASSESSMENT Ostrea angasi - Georges Bay Katelysia scalarina - Ansons Bay Venerupis largillierti - Northern Zone, Georges Bay John Keane and Caleb Gardner June 2018 Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart TAS 7001 Enquires should be directed to: Dr John Keane Institute for Marine and Antarctic Studies University of Tasmania Private Bag 49, Hobart, Tasmania 7001, Australia [email protected] Ph. (03) 6226 8265 Citation: Keane, J.P. and Gardner, C. (2018), 2018 Small Bivalve Fishery Assessment. Institute for Marine and Antarctic Studies Report. University of Tasmania, Hobart. 24 p. The authors do not warrant that the information in this document is free from errors or omissions. The authors do not accept any form of liability, be it contractual, tortious, or otherwise, for the contents of this document or for any consequences arising from its use or any reliance placed upon it. The information, opinions and advice contained in this document may not relate, or be relevant, to a reader’s particular circumstance. Opinions expressed by the authors are the individual opinions expressed by those persons and are not necessarily those of the Institute for Marine and Antarctic Studies (IMAS) or the University of Tasmania (UTas). The Institute for Marine and Antarctic Studies, University of Tasmania 2018. Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Institute for Marine and Antarctic Studies. Small Bivalve Survey 2018 Executive Summary In 2018, stock assessments with total allowable commercial catch recommendations (TACC) ware conducted for the Georges Bay flat oyster, Ostrea angasi, fishery and the Ansons Bay Vongole, Katelysia scalarina, fishery. -
Portadas 25 (1)
© Sociedad Española de Malacología Iberus, 32 (1): 65-85, 2014 Nomenclatural notes on some European marine bivalve species Apuntes nomenclaturales sobre algunas especies de bivalvos de Europa Rudo von COSEL*, Serge GOFAS** & Jean-Maurice POUTIERS* Recibido el 6-XI-2013. Aceptado el 17-I-2014 ABSTRACT Some nomenclatural issues affecting European species are discussed. The following taxa are treated under ICZN Art. 23.9, with the required references provided: - Mytilus variabilis Krauss, 1848 (currently Brachidontes variabilis (Krauss, 1848)) is declared nomen protectum against the senior homonym Mytilus variabilis Fischer von Waldheim, 1807, declared nomen oblitum. The still earlier name Brachidontes ustulatus (Lamarck, 1819), currently used as the valid name for a native species of Western Aus- tralia, should take precedence over B. variabilis (Krauss, 1848) were it demonstrated that it is the same biological species, but in the current state of knowledge it is proposed to keep them separate. - Modiola nigra Gray, 1824 (currently Musculus niger (Gray, 1824)) is declared nomen protectum against the senior synonym Mytilus discors svecicus Fabricius, 1788, declared nomen oblitum. - Ostrea flexuosa Poli, 1795 (currently Flexopecten flexuosus (Poli, 1795)) is declared nomen protectum against the senior synonym Ostrea coarctata Born, 1778, declared nomen oblitum. - Chama aculeata Poli, 1795 (currently Centrocardita aculeata (Poli, 1795)) is declared nomen protectum against the senior homonym Chama aculeata Ström, 1768, declared nomen oblitum, thereby making valid the current usage and avoiding the need for using the junior synonym Centrocardita elegans (Requien, 1848). - Solen marginatus Pulteney, 1799 is declared nomen protectum against the senior syn- onyms Hypogaea tentaculata Poli, 1791, Solen rotundatus Spengler, 1794 and Solen gla- dius Röding, 1798, all declared nomina oblita. -
Growth and Reproduction in Bivalves an Energy Budget Approach
Growth and Reproduction in Bivalves An energy budget approach The research reported in this thesis was carried out at the Department of Marine Ecology and Evolution (MEE) of the Royal Netherlands Institute for Sea Research (NIOZ) and financially supported by the project ‘Praxis XXI’, grant BD/21799/99, from ‘Fundação para a Ciência e a Tecnologia (FCT)’, Portugal. Cover design and thesis layout: Joana Cardoso Figures: Henk Hobbelink, Bert Aggenbach and Joana Cardoso Printed by: PrintPartners Ipskamp RIJKSUNIVERSITEIT GRONINGEN Growth and Reproduction in Bivalves An energy budget approach Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 21 september 2007 om 14.45 uur door Joana Ferreira Marques Ferreira Cardoso geboren op 6 november 1975 te Porto, Portugal Promotores: Prof. dr. W.J. Wolff Prof. dr. P.T. Santos Copromotor: Dr. ir. H.W. van der Veer Beoordelingscommissie: Prof. dr. J.T.M. Elzenga Prof. dr. C.H.R. Heip Prof. dr. S.A.L.M. Kooijman ISBN: 978-90-367-3140-9 Fundo do mar No fundo do mar há brancos pavores, Onde as plantas são animais E os animais são flores. Mundo silencioso que não atinge A agitação das ondas. Abrem-se rindo conchas redondas, Baloiça o cavalo-marinho. Um polvo avança No desalinho Dos seus mil braços, Uma flor dança, Sem ruído vibram os espaços. Sobre a areia o tempo poisa Leve como um lenço. Mas por mais bela que seja cada coisa Tem um monstro em si suspenso. -
Notice Specifying Fish Species Which May Be Farmed (2017) (Notice No
NEW ZEALAND GAZETTE Notice Specifying Fish Species Which May Be Farmed (2017) (Notice No. MPI 842) Pursuant to Regulation 2 of the Freshwater Fish Farming Regulations 1983, I hereby specify the following species to be fish for the purposes of those Regulations: (1.1) Abalone or paua, being: (i) Blackfoot paua (Haliotis iris) (ii) Virgin paua (Haliotis virginea) (iii) Yellowfoot paua (Haliotis australis) (1.2) Carp, being (i) Grass carp (Ctenopharyngodon idella) (ii) Silver carp (Hypophthalmichthys molitrix) (1.3) Anemone, being (i) Common anemone (Actinothoe albocincta) (ii) Dahlia anemone (Isocradactis magna) (1.4) Bass (Polyprion americanus) (1.5) Blue cod (Parapercis colias) (1.6) Bluenose (Hyperoglyphe antarctica) (1.7) Brine shrimp (Artemia salina) (1.8) Bully, common (Gobiomorphus cotidianus) (1.9) Butterfish (Odax pullus) (1.10) Cats eye (Turbo smaragdus) (1.11) Common prawn (Palaemon affinis) (1.12) Crab, being: (i) Cancer crab (Cancer novaezelandiae) (ii) Giant spider crab (Jacquinotia edwardsii) (iii) Murray’s king crab (Lithodes murrayi) (iv) Paddle crab (Ovalipes catharus) (v) Red crab (Chaceon bicolour) (1.13) Coarse dosina (Dosina zelandica) (1.14) Cockle (Austrovenus stutchburyi) (1.15) Collector urchin (Tripneustes gratilla) (1.16) Cooks turban (Cookia sulcata) (1.17) Eel, being: (i) Longfin eel (Anguilla dieffenbachii) (ii) Shortfin eel (Anguilla australis) (1.18) Flounder, being: (i) Black flounder (Rhombosolea retiaria) (ii) Brill (Colistium guntheri) (iii) Greenback flounder (Rhombosolea tapirina) (iv) Sand flounder