Appendix D – Specialist Studies Appendix D1 – Terrestrial Ecological Assessment Report PROPOSED DUVHA ASH DAM SEEPAGE INTERCEPTION DRAINS

Total Page:16

File Type:pdf, Size:1020Kb

Appendix D – Specialist Studies Appendix D1 – Terrestrial Ecological Assessment Report PROPOSED DUVHA ASH DAM SEEPAGE INTERCEPTION DRAINS Appendix D – Specialist Studies Appendix D1 – Terrestrial Ecological Assessment Report PROPOSED DUVHA ASH DAM SEEPAGE INTERCEPTION DRAINS Terrestrial Ecological Assessment Report July 2017 Prepared for: Eskom Holdings SOC Ltd MONTH YEAR i TERRESTRIAL ECOLOGICAL ASSESSMENT REPORT PROPOSED DUVHA ASH DAM SEEPAGE INTERCEPTION DRAINS Title and Approval Page Project Name: Proposed Duvha Ash Dam Seepage Interception Drains Report Title: Terrestrial Ecological Assessment Report Authority Reference: N/A Report Status: Draft Applicant: Eskom Holdings SOC Ltd Prepared By: Nemai Consulting +27 11 781 1730 147 Bram Fischer Drive, +27 11 781 1730 FERNDALE, 2194 [email protected] PO Box 1673, SUNNINGHILL, www.nemai.co.za 2157 Report Reference: 10628 R-PRO-REP|20150514 Authorisation Name Signature Date Avhafarei Ronald Author: 15/05/2017 Phamphe Reviewed By: Lauren Robson 02/06/2017 Professional Natural Scientist: South African Ecological Science Council for Natural Scientific Professions (400349/2) Professional Member of South African Institute of Ecologists and Author’s affiliations Environmental Scientists Professional Member: South African Association of Botanists. This Document is Confidential Intellectual Property of Nemai Consulting C.C. © copyright and all other rights reserved by Nemai Consulting C.C. This document may only be used for its intended purpose JULY 2017 Pg i TERRESTRIAL ECOLOGICAL ASSESSMENT REPORT PROPOSED DUVHA ASH DAM SEEPAGE INTERCEPTION DRAINS Executive Summary Eskom Holdings SOC (Ltd) has appointed Nemai Consulting as an Independent Environmental Assessment Practitioner to conduct an Environmental Authorisation Process for the proposed Duvha ash dam seepage interception drains. The ash dam, which receives wet ash from the Duvha Power Station, is contaminating groundwater and potentially the Witbank Dam due to seepage. Seepage interception drains have been proposed to mitigate seepage and prevent contamination of the Witbank Dam. A Terrestrial Ecological Assessment was undertaken as part of the Basic Assessment process in order to assess the impacts that the proposed construction activities will have on the receiving environment. The objective of this study was to identify sensitive species and their habitats on the four proposed sites. The current ecological status and conservation priority of vegetation on the four sites were assessed. Potential faunal habitats were investigated on each site and all mammals, birds, reptiles and amphibians known to occur on site or observed on site were recorded. Red Data species (both fauna and flora) that are known to occur on site were also inspected. The four proposed ash dam seepage interception drain sites fall within the grassland biome and have been categorised as Eastern Highveld Grassland and Rand Highveld Grassland vegetation units, of which both are listed as endangered. The Grassland biome has a high biodiversity, ranked only below the Fynbos biome in terms of biodiversity in South Africa. It is found mainly on the high central plateau of South Africa, and the inland areas of KwaZulu- Natal and the Eastern Cape. Grasslands are dominated by a single layer of grasses. Trees are absent, except in a few localised habitats and geophytes are often abundant. According to the data from South African National Biodiversity Institute (SANBI), Eastern Highveld Grassland and Rand Highveld Grassland threatened terrestrial ecosystems were recorded on the proposed sites and these ecosystem types have a vulnerable status. Even though the vegetation types and threatened ecosystems are listed as endangered and vulnerable respectively, the proposed sites have been highly transformed and disturbed due to ash dams, alien plant infestation and mining activities. According to the Mpumalanga Biodiversity Conservation Plan, the proposed development sites fall within the “CBA Optimal”, “Heavily modified” and “Moderately modified- Old lands”. JULY 2017 Pg ii TERRESTRIAL ECOLOGICAL ASSESSMENT REPORT PROPOSED DUVHA ASH DAM SEEPAGE INTERCEPTION DRAINS During the field survey, no threatened species were observed on sites but only one plant species of conservation concern was noted, namely Hypoxis hemerocallidea (Star flower/African potato) and this species is listed as Declining. It is therefore recommended that prior to construction, this species must be rescued and relocated to a safer place with suitable survival and growth-enabling conditions. Following construction activities, the species can be re-established at the sites. During the field assessment, mammal species diversity was very low and this could be attributed to anthropogenic disturbances observed on sites such as habitat transformation and mining activities. Only seven mammal species were recorded on sites during the field assessment. The species recorded have a wide distribution range. Mammals are sensitive to disturbances and as such few were expected to occur on sites. No Red Data mammal species were recorded on site. The proposed development sites will have an insignificant impact on mammal conservation in the region. Species such as Blesbok were recorded in abundance on site. Conservation and planning tools were reviewed for relevancy in terms of the project area, and it was found that the study area did not contain or form part of any Important Bird & Biodiversity areas (IBAs). The unprotected IBA closest to the study area is situated approximately 40km away, namely Amersfoort-Bethal-Carolina IBA. An avifaunal study indicated that large stands of Eucalyptus trees and grasslands should provide natural habitats for bird species, however no Red Data bird species were observed on the study sites. Previous studies conducted near the study sites indicated that Red data birds species such as Southern Bald Ibis has been recorded near the High level dam servitude. Many avifaunal species are adaptable as they are habitat generalists and can therefore accommodate a certain degree of habitat degradation and transformation. Other species are extremely habitat specific and have to rely on certain habitat units for breeding, hunting or foraging and roosting. Habitat-specific species are sensitive to environmental change, with destruction of habitat being the leading cause of species decline worldwide. Due to high levels of habitat transformation, the site offers limited suitable habitat for any larger terrestrial birds as well as certain smaller raptor species. Large areas surrounding the study sites have resulted in increased habitat modification and transformation and are all causal factors in the alteration and disappearance of reptile diversity in the area. Only one reptile species was noted on site, this being the Montane Speckled Skink (Trachylepis punctatissima). This species is found in a variety of habitats, wet and dry, from JULY 2017 Pg iii TERRESTRIAL ECOLOGICAL ASSESSMENT REPORT PROPOSED DUVHA ASH DAM SEEPAGE INTERCEPTION DRAINS grassland and savanna to shrubland, including rock outcrops. It is not considered to be of significant importance from a conservation perspective. The non-perennial river on the proposed Low level dam servitude site holds water on a temporary basis and is likely an important breeding habitat for most of the frog species which occur in the region. During the field assessment, only one frog species was recorded, namely Queckett's River Frog (Amietia quecketti). It is a common species found on the banks of slow- flowing streams or other permanent bodies of water in a wide range of wetland habitats in grassland, savannah and forest fringe. It frequently inhabits garden ponds and water features. From a broad and preliminary evaluation of the study sites, it is evident that the proposed development will have minimal impacts on the receiving environment. The study sites are not unique and do not contain any rare habitats or species, and therefote it is unlikely that any species that potentially occurs will experience a large or disproportionate negative impact as a direct result of the proposed construction of seepage interception drains. The proposed development should proceed subject to the above, and mitigation measures must be employed to minimise potential impacts from the project activities. JULY 2017 Pg iv TERRESTRIAL ECOLOGICAL ASSESSMENT REPORT PROPOSED DUVHA ASH DAM SEEPAGE INTERCEPTION DRAINS Contents 1 BACKGROUND AND INTRODUCTION ________________________ 1 1.1 Objectives of the survey 1 2 RELEVANT LEGISLATION AND GUIDELINES ____________________ 2 3 STUDY AREA ________________________________________ 2 4 MPUMALANGA BIODIVERSITY SECTOR PLAN-TERRESTRIAL CRITICAL BIODIVERSITY AREAS ____________________________ 6 5 LIMITATIONS AND GAPS ________________________________ 8 6 REGIONAL VEGETATION ________________________________ 8 6.1 Eastern Highveld Grassland 10 6.2 Rand Highveld Grassland 10 7 TERRESTRIAL THREATENED ECOSYSTEMS ____________________ 11 8 METHODOLOGY _____________________________________ 13 8.1 Flora 13 8.2 Mammals 15 8.3 Avifauna 15 8.4 Reptiles 15 8.5 Amphibians 16 9 RESULTS AND DISCUSSION______________________________ 16 9.1 Flora 16 9.1.1 Desktop study results _____________________________________________ 16 9.1.2 Plant species recorded in the four proposed ash dam seepage interception drains sites _____________________________________________________ 18 9.1.3 Alien invasive species recorded in the proposed development sites _________ 20 9.1.4 Threatened Species and Species of Conservation Concern and medicinal plants recorded in the proposed development sites______________________
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Herpetofaunal Survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the Foothills of the Drakensberg, Eastern Cape Province, South Africa
    Herpetology Notes, volume 13: 717-730 (2020) (published online on 25 August 2020) Herpetofaunal survey of the Ongeluksnek (Malekgalonyane) Nature Reserve in the foothills of the Drakensberg, Eastern Cape Province, South Africa Werner Conradie1,2,* Brian Reeves3, Sandile Mdoko3, Lwandiso Pamla3, and Oyama Gxabhu3 Abstract. The results of a herpetofaunal survey of Ongeluksnek Nature Reserve, Eastern Cape Province, South Africa are presented here. Combination of visual encounter survey methods and standard Y-shape trap arrays were used to conduct the survey. A total of 26 species (eight amphibians and 18 reptiles) were recorded, representing 29 quarter-degree grid cell records, of which 62% represented the first records for these units. Furthermore, we document the presence of three species of snakes (Crotaphopeltis hotamboeia, Hemachatus haemachatus and Homoroselaps lacteus) for the first time for the whole degree square of 3028 (approx. 100 km2). This study highlights the need to survey poorly known regions to enable us to understand and document the full distributional extent of species. We also discuss the impact of uncontrolled fires on the absence of grassland specialised species during our survey. Keywords. Amphibia, Reptilia, karroid, conservation, biodiversity, fire Introduction has been done in the southern and western regions (e.g. Branch and Braack, 1987), while the northern and The herpetofaunal richness of South Africa is central areas associated with the former homelands of considered to be amongst the highest in the world the Ciskei and Transkei remained poorly surveyed. In (Branch, 1998; Bates et al., 2014; Du Preez and recent years a series of rapid biodiversity studies has Carruthers, 2017; Tolley et al., 2019).
    [Show full text]
  • Ecological Assessment for the Hlabisa Landfill Site
    Ecological Assessment for the Hlabisa landfill site Compiled by: Ina Venter Pr.Sci.Nat Botanical Science (400048/08) M.Sc. Botany trading as Kyllinga Consulting 53 Oakley Street, Rayton, 1001 [email protected] In association with Lukas Niemand Pr.Sci.Nat (400095/06) M.Sc. Restoration Ecology / Zoology Pachnoda Consulting 88 Rubida Street, Murryfield x1, Pretoria [email protected] i Table of Contents 1. Introduction .................................................................................................................................... 1 1.1. Uncertainties and limitations .................................................................................................. 1 2. Site .................................................................................................................................................. 1 2.1. Location ................................................................................................................................... 1 2.2. Site description ....................................................................................................................... 1 3. Background information ................................................................................................................. 4 3.1. Vegetation ............................................................................................................................... 4 3.2. Centres of floristic endemism ................................................................................................
    [Show full text]
  • Guidelines for Using the Checklist
    Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records. This grows naturally under favourable conditions, but there are should be considered preliminary information because much usually only a few isolated individuals.
    [Show full text]
  • Floodplain Vegetation Responses to Flood Regime in the Seasonal Okavango Delta, Botswana
    FLOODPLAIN VEGETATION RESPONSES TO FLOOD REGIME IN THE SEASONAL OKAVANGO DELTA, BOTSWANA By MICHAEL MURRAY-HUDSON A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2009 1 ©2009 Michael Murray-Hudson 2 To the late Pete Smith, who planted the seed, and to Frances, who helped it grow. 3 ACKNOWLEDGEMENTS The research on which this dissertation is based was funded and supported by many and various agencies: The University of Botswana, University of Florida (Adaptive Management: Water, Wetlands and Watersheds program funded by the National Science Foundation), and the Biokavango project (Global Environment Facility). The University of Botswana also provided funding for the costs of studying and living abroad. Their support is gratefully acknowledged. In addition the support of all of the staff at the Harry Oppenheimer Okavango Research Centre was instrumental in facilitating both the field research and the remote sensing components of this work. In particular, Piotr Wolski (who can make computers work for him), Cornelis Vanderpost for help with imagery, and Wilfred Kaneguba, Moagisi Diare, Florian Bendsen and Aulter Karumendu for unflagging enthusiasm, willingness to do transects chest deep in crocodile- infested waters, and very fine goat stews in very remote places. Dr Jonathan Timberlake and the staff at the Royal Botanical Gardens in Kew, England, provided invaluable help with identifying stubborn species. Special thanks are due to Dr Mark Brown, my supervisor, for allowing me great flexibility in achieving my goals, and for the field trips in support of the Integrative Graduate Education and Research Traineeship Program (IGERT) program.
    [Show full text]
  • Vegetation Survey of Mount Gorongosa
    VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 VEGETATION SURVEY OF MOUNT GORONGOSA Tom Müller, Anthony Mapaura, Bart Wursten, Christopher Chapano, Petra Ballings & Robin Wild 2008 (published 2012) Occasional Publications in Biodiversity No. 23 Biodiversity Foundation for Africa P.O. Box FM730, Famona, Bulawayo, Zimbabwe Vegetation Survey of Mt Gorongosa, page 2 SUMMARY Mount Gorongosa is a large inselberg almost 700 sq. km in extent in central Mozambique. With a vertical relief of between 900 and 1400 m above the surrounding plain, the highest point is at 1863 m. The mountain consists of a Lower Zone (mainly below 1100 m altitude) containing settlements and over which the natural vegetation cover has been strongly modified by people, and an Upper Zone in which much of the natural vegetation is still well preserved. Both zones are very important to the hydrology of surrounding areas. Immediately adjacent to the mountain lies Gorongosa National Park, one of Mozambique's main conservation areas. A key issue in recent years has been whether and how to incorporate the upper parts of Mount Gorongosa above 700 m altitude into the existing National Park, which is primarily lowland. [These areas were eventually incorporated into the National Park in 2010.] In recent years the unique biodiversity and scenic beauty of Mount Gorongosa have come under severe threat from the destruction of natural vegetation. This is particularly acute as regards moist evergreen forest, the loss of which has accelerated to alarming proportions.
    [Show full text]
  • Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
    Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in
    [Show full text]
  • Urochloa Mosambicensis
    TECHNICAL HANDBOOK No. 28 Management of rangelands Use of natural grazing resources in Southern Province, Zambia Evaristo C. Chileshe Aichi Kitalyi Regional Land Management Unit (RELMA) RELMA Technical Handbook (TH) series Edible wild plants of Tanzania Christopher K. Ruffo, Ann Birnie and Bo Tengnäs. 2002. TH No. 27. ISBN 9966-896-62-7 Tree nursery manual for Eritrea Chris Palzer. 2002. TH No. 26. ISBN 9966-896-60-0 ULAMP extension approach: a guide for field extension agents Anthony Nyakuni, Gedion Shone and Arne Eriksson. 2001. TH No. 25. ISBN 9966-896-57-0 Drip irrigation: options for smallholder farmers in eastern and southern Africa Isaya V. Sijali. 2001. TH No. 24. ISBN 9966-896-77-5 Water from sand rivers: a manual on site survey, design, construction, and maintenance of seven types of water structures in riverbeds Erik Nissen-Petersen. 2000. TH No. 23. ISBN 9966-896-53-8 Rainwater harvesting for natural resources management: a planning guide for Tanzania Nuhu Hatibu and Henry F. Mahoo (eds.). 2000. TH No. 22. ISBN 9966-896-52-X Agroforestry handbook for the banana-coffee zone of Uganda: farmers’ practices and experiences I. Oluka-Akileng, J. Francis Esegu, Alice Kaudia and Alex Lwakuba. 2000. TH No. 21. ISBN 9966-896-51-1 Land resources management: a guide for extension workers in Uganda Charles Rusoke, Anthony Nyakuni, Sandra Mwebaze, John Okorio, Frank Akena and Gathiru Kimaru. 2000. TH No. 20. ISBN 9966-896-44-9 Wild food plants and mushrooms of Uganda Anthony B. Katende, Paul Ssegawa, Ann Birnie, Christine Holding and Bo Tengnäs.
    [Show full text]
  • Taxonomic Reassessment and Typification of Species Names in Arctotis L
    adansonia 2019 ● 41 ● 14 DIRECTEUR DE LA PUBLICATION : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Thierry Deroin RÉDACTEURS / EDITORS : Porter P. Lowry II ; Zachary S. Rogers ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : P. Baas (Nationaal Herbarium Nederland, Wageningen) F. Blasco (CNRS, Toulouse) M. W. Callmander (Conservatoire et Jardin botaniques de la Ville de Genève) J. A. Doyle (University of California, Davis) P. K. Endress (Institute of Systematic Botany, Zürich) P. Feldmann (Cirad, Montpellier) L. Gautier (Conservatoire et Jardins botaniques de la Ville de Genève) F. Ghahremaninejad (Kharazmi University, Téhéran) K. Iwatsuki (Museum of Nature and Human Activities, Hyogo) K. Kubitzki (Institut für Allgemeine Botanik, Hamburg) J.-Y. Lesouef (Conservatoire botanique de Brest) P. Morat (Muséum national d’Histoire naturelle, Paris) J. Munzinger (Institut de Recherche pour le Développement, Montpellier) S. E. Rakotoarisoa (Millenium Seed Bank, Royal Botanic Gardens Kew, Madagascar Conservation Centre, Antananarivo) É. A. Rakotobe (Centre d’Applications des Recherches pharmaceutiques, Antananarivo) P. H. Raven (Missouri Botanical Garden, St. Louis) G. Tohmé (Conseil national de la Recherche scientifique Liban, Beyrouth) J. G. West (Australian National Herbarium, Canberra) J. R. Wood (Oxford) COUVERTURE / COVER : Lectotype of Calendula graminifolia L. (Commelin
    [Show full text]
  • A Plant Ecological Study and Management Plan for Mogale's Gate Biodiversity Centre, Gauteng
    A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG By Alistair Sean Tuckett submitted in accordance with the requirements for the degree of MASTER OF SCIENCE in the subject ENVIRONMENTAL MANAGEMENT at the UNIVERSITY OF SOUTH AFRICA SUPERVISOR: PROF. L.R. BROWN DECEMBER 2013 “Like winds and sunsets, wild things were taken for granted until progress began to do away with them. Now we face the question whether a still higher 'standard of living' is worth its cost in things natural, wild and free. For us of the minority, the opportunity to see geese is more important that television.” Aldo Leopold 2 Abstract The Mogale’s Gate Biodiversity Centre is a 3 060 ha reserve located within the Gauteng province. The area comprises grassland with woodland patches in valleys and lower-lying areas. To develop a scientifically based management plan a detailed vegetation study was undertaken to identify and describe the different ecosystems present. From a TWINSPAN classification twelve plant communities, which can be grouped into nine major communities, were identified. A classification and description of the plant communities, as well as, a management plan are presented. The area comprises 80% grassland and 20% woodland with 109 different plant families. The centre has a grazing capacity of 5.7 ha/LSU with a moderate to good veld condition. From the results of this study it is clear that the area makes a significant contribution towards carbon storage with a total of 0.520 tC/ha/yr stored in all the plant communities. KEYWORDS Mogale’s Gate Biodiversity Centre, Braun-Blanquet, TWINSPAN, JUICE, GRAZE, floristic composition, carbon storage 3 Declaration I, Alistair Sean Tuckett, declare that “A PLANT ECOLOGICAL STUDY AND MANAGEMENT PLAN FOR MOGALE’S GATE BIODIVERSITY CENTRE, GAUTENG” is my own work and that all sources that I have used or quoted have been indicated and acknowledged by means of complete references.
    [Show full text]
  • Global Relationships Between Plant Functional Traits and Environment in Grasslands
    GLOBAL RELATIONSHIPS BETWEEN PLANT FUNCTIONAL TRAITS AND ENVIRONMENT IN GRASSLANDS EMMA JARDINE A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy The University of Sheffield Department of Animal and Plant Sciences Submission Date July 2017 ACKNOWLEDGMENTS First of all I am enormously thankful to Colin Osborne and Gavin Thomas for giving me the opportunity to undertake the research presented in this thesis. I really appreciate all their invaluable support, guidance and advice. They have helped me to grow in knowledge, skills and confidence and for this I am extremely grateful. I would like to thank the students and post docs in both the Osborne and Christin lab groups for their help, presentations and cake baking. In particular Marjorie Lundgren for teaching me to use the Licor, for insightful discussions and general support. Also Kimberly Simpson for all her firey contributions and Ruth Wade for her moral support and employment. Thanks goes to Dave Simpson, Maria Varontsova and Martin Xanthos for allowing me to work in the herbarium at the Royal Botanic Gardens Kew, for letting me destructively harvest from the specimens and taking me on a worldwide tour of grasses. I would also like to thank Caroline Lehman for her map, her useful comments and advice and also Elisabeth Forrestel and Gareth Hempson for their contributions. I would like to thank Brad Ripley for all of his help and time whilst I was in South Africa. Karmi Du Plessis and her family and Lavinia Perumal for their South African friendliness, warmth and generosity and also Sean Devonport for sharing all the much needed teas and dub.
    [Show full text]
  • Grasses of Namibia Contact
    Checklist of grasses in Namibia Esmerialda S. Klaassen & Patricia Craven For any enquiries about the grasses of Namibia contact: National Botanical Research Institute Private Bag 13184 Windhoek Namibia Tel. (264) 61 202 2023 Fax: (264) 61 258153 E-mail: [email protected] Guidelines for using the checklist Cymbopogon excavatus (Hochst.) Stapf ex Burtt Davy N 9900720 Synonyms: Andropogon excavatus Hochst. 47 Common names: Breëblaarterpentyngras A; Broad-leaved turpentine grass E; Breitblättriges Pfeffergras G; dukwa, heng’ge, kamakama (-si) J Life form: perennial Abundance: uncommon to locally common Habitat: various Distribution: southern Africa Notes: said to smell of turpentine hence common name E2 Uses: used as a thatching grass E3 Cited specimen: Giess 3152 Reference: 37; 47 Botanical Name: The grasses are arranged in alphabetical or- Rukwangali R der according to the currently accepted botanical names. This Shishambyu Sh publication updates the list in Craven (1999). Silozi L Thimbukushu T Status: The following icons indicate the present known status of the grass in Namibia: Life form: This indicates if the plant is generally an annual or G Endemic—occurs only within the political boundaries of perennial and in certain cases whether the plant occurs in water Namibia. as a hydrophyte. = Near endemic—occurs in Namibia and immediate sur- rounding areas in neighbouring countries. Abundance: The frequency of occurrence according to her- N Endemic to southern Africa—occurs more widely within barium holdings of specimens at WIND and PRE is indicated political boundaries of southern Africa. here. 7 Naturalised—not indigenous, but growing naturally. < Cultivated. Habitat: The general environment in which the grasses are % Escapee—a grass that is not indigenous to Namibia and found, is indicated here according to Namibian records.
    [Show full text]