Secretase in Alzheimer's Disease

Total Page:16

File Type:pdf, Size:1020Kb

Secretase in Alzheimer's Disease molecules Review Probing Mechanisms and Therapeutic Potential of γ-Secretase in Alzheimer’s Disease Michael S. Wolfe Department of Medicinal Chemistry, University of Kansas, 1567 Irving Hill Road, GLH-2115, Lawrence, KS 66045, USA; [email protected] Abstract: The membrane-embedded γ-secretase complex carries out hydrolysis within the lipid bilayer in proteolyzing nearly 150 different membrane protein substrates. Among these substrates, the amyloid precursor protein (APP) has been the most studied, as generation of aggregation-prone amyloid β-protein (Aβ) is a defining feature of Alzheimer’s disease (AD). Mutations in APP and in presenilin, the catalytic component of γ-secretase, cause familial AD, strong evidence for a pathogenic role of Aβ. Substrate-based chemical probes—synthetic peptides and peptidomimetics—have been critical to unraveling the complexity of γ-secretase, and small drug-like inhibitors and modulators of γ-secretase activity have been essential for exploring the potential of the protease as a therapeutic target for Alzheimer’s disease. Such chemical probes and therapeutic prototypes will be reviewed here, with concluding commentary on the future directions in the study of this biologically important protease complex and the translation of basic findings into therapeutics. Keywords: protease; amyloid; Alzheimer’s disease; inhibitors; modulators 1. Introduction Citation: Wolfe, M.S. Probing Alzheimer’s disease (AD), the most common form of dementia, is a devastating Mechanisms and Therapeutic neurodegenerative disorder that affects perhaps 30 million people worldwide, with demo- Potential of γ-Secretase in graphic projections suggesting this will increase substantially in the coming decades [1]. Alzheimer’s Disease. Molecules 2021, Cerebral neurodegeneration typically takes place first in the hippocampus, a region below 26, 388. https://doi.org/ the neocortex that is critical for consolidating long-term memories. Neuronal loss spreads 10.3390/molecules26020388 to other cortical areas, leading to progressive cognitive decline. By the end stages of the Academic Editors: Wei Li and disease, patients lose cognitive function to the point of requiring constant care, often in- Andrea Trabocchi stitutionalized. Although a number of risk factors have been associated with AD, disease Received: 21 December 2020 onset correlates best with age, and the large majority of cases occur in the elderly. Among Accepted: 10 January 2021 people over age 85, over a third are afflicted. Published: 13 January 2021 Two types of protein deposits are found in the AD brain: amyloid plaques and neurofibrillary tangles [2]. The former are extraneuronal and primarily composed of Publisher’s Note: MDPI stays neu- the 4 kDa amyloid β-peptide (Aβ), whereas the latter are intraneuronal filaments of the tral with regard to jurisdictional clai- normally microtubule-associated protein tau. Neuroinflammation is a third pathological ms in published maps and institutio- feature of AD, in which microglia—phagocytic brain immune cells that release cytokines— nal affiliations. become overactivated [3]. The role of each of these features in AD etiology and pathogenesis are not well understood. However, Aβ aggregation—in the form of oligomers, protofibrils, fibrils, and plaques—is generally observed as the earliest pathology, followed by tau tangle formation and neurodegeneration [4]. For this reason and those mentioned in Copyright: © 2021 by the author. Li- the next section, pathological Aβ is widely considered the initiator of AD, triggering censee MDPI, Basel, Switzerland. β This article is an open access article downstream tau pathology and neuroinflammation, and A has been the primary target distributed under the terms and con- for the development of AD therapeutics for over 25 years [5]. ditions of the Creative Commons At- 2. Familial AD and Genetics tribution (CC BY) license (https:// creativecommons.org/licenses/by/ As mentioned above, the “amyloid hypothesis” of AD pathogenesis has reigned for 4.0/). decades, and AD drug development has largely focused on inhibiting Aβ production, Molecules 2021, 26, 388. https://doi.org/10.3390/molecules26020388 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x 2 of 17 Molecules 2021, 26, 388 2. Familial AD and Genetics 2 of 17 As mentioned above, the “amyloid hypothesis” of AD pathogenesis has reigned for decades, and AD drug development has largely focused on inhibiting Aβ production, blockingblocking Aβ aggregation, Aβ aggregation, or facilitating or facilitating Aβ clearance Aβ clearance from fromthe brain the brain[6]. The [6]. primary The primary basis basis for thisfor dogma this dogma is the isdiscovery the discovery in the in 1990s the 1990sof dominant of dominant genetic genetic mutations mutations associated associated with with early-onsetearly-onset AD [7–10]. AD [7 This–10]. familial This familial AD (FAD) AD (FAD) has a hasdisease a disease onset onsetbefore before age 60 age and 60 can and can occuroccur even evenbefore before age 30. age Other 30. Other than the than mo thenogenetic monogenetic cause causeand mid- andlife mid-life onset, onset, FAD FADis is closelyclosely similar similar to the to sporadic the sporadic AD of AD old of age old with age respect with respect to pathology, to pathology, presentation, presentation, and and progression.progression. The most The mostparsimonious parsimonious explanation explanation is that is similar that similar molecular molecular and cellular and cellular eventsevents are involved are involved in the in pa thethogenesis pathogenesis and progression and progression of both of bothforms forms of the of disease. the disease. The firstThe genetic first genetic mutations mutations associated associated with with FAD FAD were were in the in theamyloid amyloid precursor precursor pro- protein tein (APP)(APP) [7]. [7]. This This gene gene encodes encodes a asingle-pass single-pass membrane membrane protein protein that that is isinitially initially cleaved cleaved by by β-secretase,β-secretase, a membrane-tethered a membrane-tethered aspartyl aspartyl protease protease in the in pepsin the pepsin family, family, to release to release the the large largeAPP ectodomain APP ectodomain [11] (Figure [11] (Figure 1). The1). remnant The remnant C-terminal C-terminal fragment fragment (APP (APP CTF- CTF-β) is β) is then proteolyzedthen proteolyzed within within its transmembrane its transmembrane domain domain (TMD) (TMD) by γ-secretase by γ-secretase to produce to produce Aβ, Aβ, β β whichwhich is then is secreted then secreted from fromthe cell the [12]. cell Most [12]. A Mostβ is 40 A residuesis 40 residues in length in length(Aβ40), (A but40), a but β smalla portion small portion is the ismuch the muchmore moreaggregation-prone aggregation-prone 42-residue 42-residue form form(Aβ42). (A Although42). Although β β β γ Aβ42A is a42 minor is a minor Aβ variant A variant produced produced through through APP CTF- APPβ CTF- processingprocessing by γ-secretase, by -secretase, it is it is the major form deposited in the characteristic cerebral plaques of AD [13]. the major form deposited in the characteristic cerebral plaques of AD [13]. Figure 1. Amyloid precursor protein (APP) processing by β- and γ-secretases. The single-pass membrane protein APP is proteolyzed just outside the transmembrane domain (TMD) by β-secretase. FigureThe 1. Amyloid remaining precursor membrane-bound protein (APP) C-terminal processing fragment by β-(APP and γ CTF--secretases.β) is then The cleaved single-pass within the TMD membrane protein APP is proteolyzed just outside the transmembrane domain (TMD) by β-secre- to produce the amyloid β-peptide (Aβ) and the APP intracellular domain (AICD). tase. The remaining membrane-bound C-terminal fragment (APP CTF-β) is then cleaved within the TMD toThe produce 27 known the amyloid APP β mutations-peptide (A associatedβ) and the APP with intracellular FAD [14], domain each devastating (AICD). different families, are all missense mutations in and around the small Aβ region of the large APP. The 27 known APP mutations associated with FAD [14], each devastating different These mutations either alter Aβ production or increase the aggregation tendency of the families,peptide are all [15 missense]. A double mutations mutation in and just around outside the the smallN-terminus Aβ region of theof the Aβ largeregion APP. in APP Theseincreases mutations proteolysis either alter by βA-secretase,β production leading or increase to elevated the APPaggregation CTF-β and tendency therefore of the elevated peptideAβ [15].overall. A double Mutations mutation in the just TMD outside near γ the-secretase N-terminus cleavage of the sites Aβ elevate region A inβ42/A APPβ in-40, and creasesmutations proteolysis within by β the-secretase, Aβ region leading itself to make elevated the peptide APP CTF- moreβ and prone therefore to aggregation. elevated Aβ overall.FAD Mutations mutations in the were TMD then near discovered γ-secretase in cleavage presenilin-1 sites (PSEN1)elevate A [β842/A] andβ40, presenilin-2 and mutations(PSEN2) within [9], the genes Aβ encoding region itself multi-pass make the membrane peptide more proteins prone that to at aggregation. the time had no known FADfunction. mutations These missensewere then mutations—now discovered in pr withesenilin-1 over 200 (PSEN1) known [8] [14 ],and all presenilin-2 but a dozen or so (PSEN2)in PSEN1—are [9], genes encoding located multi-pass throughout membra the sequencene proteins of the that protein at the but time mostly had no within known its nine function.TMDs These [16, 17missense]. Presenilin mutations—now FAD mutations with were over soon 200 foundknown to [14], increase all but A βa 42/Adozenβ 40or [so18 –20], in PSEN1—arefurther strengthening located throughout the idea the that sequence this ratio of isthe critical protein to but pathogenesis. mostly within Moreover, its nine these TMDsfindings [16,17]. indicatedPresenilin thatFAD presenilins mutations canwere modulate soon foundγ-secretase to increase cleavage Aβ42/A ofβ40 APP [18–20], substrate, furtheras strengthening the FAD mutations the idea altered that thethis preference ratio is critical for cleavage to pathogenesis.
Recommended publications
  • Expression of Membrane Proteins in Escherichia Coli
    From Biogenesis to Over- expression of Membrane Proteins in Escherichia coli Samuel Wagner Stockholm University © Samuel Wagner, Stockholm 2008 ISBN 978-91-7155-594-6, Pages i-81 Printed in Sweden by Universitetsservice AB, Stockholm 2008 Distributor: Department of Biochemistry and Biophysics, Stockholm University To Claudia. Abstract In both pro- and eukaryotes 20-30% of all genes encode α-helical transmem- brane domain proteins, which act in various and often essential capacities. Notably, membrane proteins play key roles in disease and they constitute more than half of all known drug targets. The natural abundance of membrane proteins is in general too low to con- veniently isolate sufficient material for functional and structural studies. Therefore, most membrane proteins have to be obtained through overexpres- sion. Escherichia coli is one of the most successful hosts for overexpression of recombinant proteins, and T7 RNA polymerase-based expression is the major approach to produce recombinant proteins in E. coli. While the pro- duction of soluble proteins is comparably straightforward, overexpression of membrane proteins remains a challenging task. The yield of membrane lo- calized recombinant membrane protein is usually low and inclusion body formation is a serious problem. Furthermore, membrane protein overexpres- sion is often toxic to the host cell. Although several reasons can be postu- lated, the basis of these difficulties is not completely understood. It is gener- ally believed, that the complex requirements of membrane protein biogenesis significantly contribute to the difficulty of membrane protein overexpres- sion. Therefore, an understanding of membrane protein biogenesis is a pre- requisite for understanding membrane protein overexpression and for de- signing rational strategies to improve overexpression yields.
    [Show full text]
  • Role of Regulated Proteolysis in the Communication of Bacteria with the Environment
    fmolb-07-586497 October 11, 2020 Time: 10:35 # 1 REVIEW published: 15 October 2020 doi: 10.3389/fmolb.2020.586497 Role of Regulated Proteolysis in the Communication of Bacteria With the Environment Sarah Wettstadt and María A. Llamas* Department of Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, Granada, Spain For bacteria to flourish in different niches, they need to sense signals from the environment and translate these into appropriate responses. Most bacterial signal transduction systems involve proteins that trigger the required response through the modification of gene transcription. These proteins are often produced in an inactive state that prevents their interaction with the RNA polymerase and/or the DNA in the absence of the inducing signal. Among other mechanisms, regulated proteolysis is becoming increasingly recognized as a key process in the modulation of the activity of these signal response proteins. Regulated proteolysis can either produce complete degradation or specific cleavage of the target protein, thus modifying its function. Because proteolysis is a fast process, the modulation of signaling proteins activity by this Edited by: process allows for an immediate response to a given signal, which facilitates adaptation Chew Chieng Yeo, to the surrounding environment and bacterial survival. Moreover, regulated proteolysis Sultan Zainal Abidin University, Malaysia is a fundamental process for the transmission of extracellular signals to the cytosol Reviewed by: through the bacterial membranes. By a proteolytic mechanism known as regulated Iain Lamont, intramembrane proteolysis (RIP) transmembrane proteins are cleaved within the plane of University of Otago, New Zealand the membrane to liberate a cytosolic domain or protein able to modify gene transcription.
    [Show full text]
  • Dysfunctional Γ-Secretase in Familial Alzheimer's Disease
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Neurochem Manuscript Author Res. Author Manuscript Author manuscript; available in PMC 2019 July 01. Published in final edited form as: Neurochem Res. 2019 January ; 44(1): 5–11. doi:10.1007/s11064-018-2511-1. Dysfunctional γ-secretase in familial Alzheimer’s disease Michael S. Wolfe Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045 USA. Abstract Genetics strongly implicate the amyloid β-peptide (Aβ) in the pathogenesis of Alzheimer’s disease. Dominant missense mutation in the presenilins and the amyloid precursor protein (APP) cause early-onset familial Alzheimer’s disease (FAD). As presenilin is the catalytic component of the γ-secretase protease complex that produces Aβ from APP, mutation of the enzyme or substrate that produce Aβ leads to FAD. However, the mechanism by which presenilin mutations cause FAD has been controversial, with gain of function and loss of function offered as binary choices. This overview will instead present the case that presenilins are dysfunctional in FAD. γ-Secretase is a multi-functional enzyme that proteolyzes the APP transmembrane domain in a complex and processive manner. Reduction in a specific function—the carboxypeptidase trimming of initially formed long Aβ peptides containing most of the transmembrane domain to shorter secreted forms —is an emerging common feature of FAD-mutant γ-secretase complexes. Keywords amyloid; protease; genetics; biochemistry Introduction The deposition of extracellular amyloid plaques and neurofibrillary tangles in the brain are cardinal pathological features of Alzheimer’s disease (AD) (Goedert and Spillantini, 2006). The former are composed primarily of the amyloid β-peptide (Aβ), while the latter are comprised of filaments of the otherwise microtubule-associated protein tau.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Reduced Reelin Expression Accelerates Amyloid-ßplaque
    9228 • The Journal of Neuroscience, July 7, 2010 • 30(27):9228–9240 Neurobiology of Disease Reduced Reelin Expression Accelerates Amyloid-␤ Plaque Formation and Tau Pathology in Transgenic Alzheimer’s Disease Mice Samira Kocherhans,1* Amrita Madhusudan,1* Jana Doehner,1* Karin S. Breu,1 Roger M. Nitsch,2 Jean-Marc Fritschy,1 and Irene Knuesel1 1Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland, and 2Division of Psychiatry Research, University of Zurich, CH-8008 Zurich, Switzerland In addition to the fundamental role of the extracellular glycoprotein Reelin in neuronal development and adult synaptic plasticity, alterations in Reelin-mediated signaling have been suggested to contribute to neuronal dysfunction associated with Alzheimer’s disease (AD). In vitro data revealed a biochemical link between Reelin-mediated signaling, Tau phosphorylation, and amyloid precursor protein (APP) processing. To directly address the role of Reelin in amyloid-␤ plaque and Tau pathology in vivo, we crossed heterozygous Reelin knock-out mice (reeler) with transgenic AD mice to investigate the temporal and spatial AD-like neuropathology. We demonstrate that a reduction in Reelin expression results in enhanced amyloidogenic APP processing, as indicated by the precocious production of amyloid-␤ peptides, the significant increase in number and size of amyloid-␤ plaques, as well as age-related aggravation of plaque pathology in double mutant compared with single AD mutant mice of both sexes. Numerous amyloid-␤ plaques accumulate in the hippocampal formation and neocortex of double mutants, precisely in layers with strongest Reelin expression and highest accumulation of Reelin plaques in aged wild-type mice. Moreover, concentric accumulations of phosphorylated Tau-positive neurons around amyloid-␤ plaques were evident in 15-month-old double versus single mutant mice.
    [Show full text]
  • Evaluating the Potential Therapeutic Role of Angiotensin Converting
    Evaluating the Potential Therapeutic Role of Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers for Alzheimer’s Disease using a Drosophila Model by Sarah Gomes A thesis submitted in conformity with the requirements for the degree of Master of Science Institute of Medical Science University of Toronto © Copyright by Sarah Gomes 2017 Evaluating the Potential Therapeutic Role of Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor Blockers for Alzheimer’s Disease using a Drosophila Model Sarah Gomes Master of Science Institute of Medical Science University of Toronto 2017 Abstract Presenilins (PS) play a role in familial Alzheimer’s disease (AD) and Notch signalling. In a genetic screen looking for modifiers of APP but not Notch, we identified Drosophila orthologs of Angiotensin Converting Enzyme (ACE). Interestingly, ACE polymorphisms are associated with AD and Apo-E, the best characterized risk factor for late-onset AD. Moreover, ACE inhibitors (ACE-I) delayed the onset of cognitive impairment and neurodegeneration in mice and humans. However, it remains unclear why ACE-I are beneficial in AD. Here, we explore the link between PS and ACE in a Drosophila model using genetics and pharmacology. We found that ACE disruption does not affect Notch related phenotypes. Moreover, we found that ACE-I and Angiotensin Receptor Blockers are beneficial in an AD Drosophila model. Since inhibition of ACE has no detrimental effects on Notch and modulates AD related phenotypes, it could provide an important therapeutic target for AD. ii Acknowledgments I would like to begin by thanking my supervisor, Gabrielle Boulianne, for her support and guidance. She has not only taught me how to think like a scientist, but also how to create a work- life balance.
    [Show full text]
  • Invariant Chain Complexes and Clusters As Platforms for MIF Signaling
    cells Review Invariant Chain Complexes and Clusters as Platforms for MIF Signaling Robert Lindner Institute of Neuroanatomy and Cell Biology, Hannover Medical School, 30625 Hannover, Germany; [email protected]; Tel.: +49-511-532-2918 Academic Editor: Ritva Tikkanen Received: 8 December 2016; Accepted: 7 February 2017; Published: 10 February 2017 Abstract: Invariant chain (Ii/CD74) has been identified as a surface receptor for migration inhibitory factor (MIF). Most cells that express Ii also synthesize major histocompatibility complex class II (MHC II) molecules, which depend on Ii as a chaperone and a targeting factor. The assembly of nonameric complexes consisting of one Ii trimer and three MHC II molecules (each of which is a heterodimer) has been regarded as a prerequisite for efficient delivery to the cell surface. Due to rapid endocytosis, however, only low levels of Ii-MHC II complexes are displayed on the cell surface of professional antigen presenting cells and very little free Ii trimers. The association of Ii and MHC II has been reported to block the interaction with MIF, thus questioning the role of surface Ii as a receptor for MIF on MHC II-expressing cells. Recent work offers a potential solution to this conundrum: Many Ii-complexes at the cell surface appear to be under-saturated with MHC II, leaving unoccupied Ii subunits as potential binding sites for MIF. Some of this work also sheds light on novel aspects of signal transduction by Ii-bound MIF in B-lymphocytes: membrane raft association of Ii-MHC II complexes enables MIF to target Ii-MHC II to antigen-clustered B-cell-receptors (BCR) and to foster BCR-driven signaling and intracellular trafficking.
    [Show full text]
  • Ubiquitinations in the Notch Signaling Pathway
    Int. J. Mol. Sci. 2013, 14, 6359-6381; doi:10.3390/ijms14036359 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Review Ubiquitinations in the Notch Signaling Pathway Julien Moretti 1 and Christel Brou 2,* 1 Immunology Institute, Department of Medicine, Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA; E-Mail: [email protected] 2 Institut Pasteur and CNRS URA 2582, Signalisation Moléculaire et Activation Cellulaire, 25 rue du Docteur Roux, 75724 Paris cedex 15, France * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-1-40-61-30-41 Fax: +33-1-40-61-30-40. Received: 1 February 2013; in revised form: 11 March 2013 / Accepted: 14 March 2013 / Published: 19 March 2013 Abstract: The very conserved Notch pathway is used iteratively during development and adulthood to regulate cell fates. Notch activation relies on interactions between neighboring cells, through the binding of Notch receptors to their ligands, both transmembrane molecules. This inter-cellular contact initiates a cascade of events eventually transforming the cell surface receptor into a nuclear factor acting on the transcription of specific target genes. This review highlights how the various processes undergone by Notch receptors and ligands that regulate the pathway are linked to ubiquitination events. Keywords: Notch; ubiquitination; deubiquitinating enzyme; signal transduction; trafficking 1. Introduction Development and maintenance of organs and tissues requires constant interaction and communication between cells. One of the major signaling pathways involved in cell-cell communication is the Notch pathway. This pathway is highly conserved in animals as distantly related as C.
    [Show full text]
  • Regulated Signaling and Alzheimer's Disease
    Chapter 4 γ-Secretase — Regulated Signaling and Alzheimer's Disease Kohzo Nakayama, Hisashi Nagase, Chang-Sung Koh and Takeshi Ohkawara Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54230 1. Introduction Alzheimer’s disease (AD) is an incurable and progressive neurodegenerative disorder and the most common form of dementia that occurs with aging. The main hallmarks of this disease are the extracellular deposition of amyloid plaques and the intracellular aggregation of tangles in the brain [1, 2]. Although the causes of both the onset and progression of AD are still uncertain, much evidence, including results of genetic analysis, indicates that amyloid precursor protein (APP) itself and its proteolytic processing are responsible for AD. Indeed, familial forms of AD (FAD) have mutations [3] or a duplication of the APP gene [4] or mutations in the presenilin1 or 2 (PS1 or PS2) genes [5-7] that code for a catalytic component of the γ-secretase complex [8]. Although APP plays a central role in AD [1, 2], the physiological function of this membrane protein is not clear [9]. On the other hand, γ-secretase was first identified as a protease that cleaves APP within the transmembrane domain and produces amyloid-β (Aβ) peptides [10], which are the main constituent of amyloid plaques and are thought to be involved in AD pathogenesis. However, similar to the physiological functions of APP, those of γ-secretase are also still unclear [11, 12]. The signaling hypothesis suggests that the primary function of γ-secretase is to regulate signal‐ ing of type 1 membrane proteins (the amino terminus is extracellular, and the carboxy terminus is cytoplasmic); this was proposed by analogy of Notch signaling [13-15].
    [Show full text]
  • CSF-Apoer2 Fragments As a Read-Out of Reelin Signaling Distinct Patterns
    Clinica Chimica Acta 490 (2019) 6–11 Contents lists available at ScienceDirect Clinica Chimica Acta journal homepage: www.elsevier.com/locate/cca CSF-ApoER2 fragments as a read-out of reelin signaling: Distinct patterns in T sporadic and autosomal-dominant Alzheimer disease Inmaculada Lopez-Fonta,b,1, Guillermo Iborra-Lazaroa,b,1, Raquel Sánchez-Vallec, ⁎ ⁎ José-Luis Molinuevoc, Inmaculada Cuchillo-Ibañeza,b, , Javier Sáez-Valeroa,b, a Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 Sant Joan d'Alacant, Spain b Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Spain c Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clinic, 08036 Barcelona, Spain ARTICLE INFO ABSTRACT Keywords: Reelin is a glycoprotein associated with synaptic plasticity and neurotransmission. The malfunctioning of reelin Reelin signaling in the brain is likely to contribute to the pathogenesis of Alzheimer's disease (AD). Reelin binding to ApoER2 Apolipoprotein E receptor 2 (ApoER2) activates downstream signaling and induces the proteolytic cleavage of Proteolytic fragment ApoER2, resulting in the generation of soluble fragments. To evaluate the efficiency of reelin signaling in AD,we CSF have quantified the levels of reelin and soluble ectodomain fragments of ApoER2 (ectoApoER2) inthecere- Autosomal-dominant AD brospinal fluid (CSF). CSF from sporadic AD patients (sAD; n = 14, age 54–83 years) had lower levels of ecto- Sporadic AD ApoER2 (~31% reduction; p = .005) compared to those in the age-matched controls (n = 10, age 61–80), and a higher reelin/ecto-ApoER2 ratio. In contrast, autosomal dominant AD patients, carriers of PSEN1 mutations (ADAD; n = 7, age 31–49 years) had higher ecto-ApoER2 levels (~109% increment; p = .001) and a lower reelin/ecto-ApoER2 ratio than the non-mutation carriers from the same families (n = 7, age 25–47 years).
    [Show full text]
  • Inhibition of Γ-Secretase Leads to an Increase in Presenilin-1
    Mol Neurobiol DOI 10.1007/s12035-017-0705-1 Inhibition of γ-Secretase Leads to an Increase in Presenilin-1 Aitana Sogorb-Esteve1,2 & María-Salud García-Ayllón1,2,3 & Marta Llansola4 & Vicente Felipo 4 & Kaj Blennow5,6 & Javier Sáez-Valero1,2 Received: 30 May 2017 /Accepted: 1 August 2017 # The Author(s) 2017. This article is an open access publication Abstract γ-Secretase inhibitors (GSIs) are potential ther- terminal fragment (CTF) of APP, C99, also triggered an apeutic agents for Alzheimer’s disease (AD); however, increase in PS1. Similar increases in PS1 were evident in trials have proven disappointing. We addressed the possi- primary neurons treated repeatedly (4 days) with DAPT or bility that γ-secretase inhibition can provoke a rebound with the GSI BMS-708163 (avagacestat). Likewise, rats effect, elevating the levels of the catalytic γ-secretase examined after 21 days administered with avagacestat subunit, presenilin-1 (PS1). Acute treatment of SH- (40 mg/kg/day) had more brain PS1. Sustained γ- SY5Y cells with the GSI LY-374973 (N-[N-(3,5- secretase inhibition did not exert a long-term effect on difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl es- PS1 activity, evident through the decrease in CTFs of ter, DAPT) augments PS1, in parallel with increases in APP and ApoER2. Prolonged avagacestat treatment of other γ-secretase subunits nicastrin, presenilin enhancer rats produced a subtle impairment in anxiety-like behav- 2, and anterior pharynx-defective 1, yet with no increase ior. The rebound increase in PS1 in response to GSIs must in messenger RNA expression. Over-expression of the C- be taken into consideration for future drug development.
    [Show full text]
  • The Role of Proteases in Plant Development
    The Role of Proteases in Plant Development Maribel García-Lorenzo Department of Chemistry, Umeå University Umeå 2007 i Department of Chemistry Umeå University SE - 901 87 Umeå, Sweden Copyright © 2007 by Maribel García-Lorenzo ISBN: 978-91-7264-422-9 Printed in Sweden by VMC-KBC Umeå University, Umeå 2007 ii Organization Document name UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Chemistry SE - 901 87 Umeå, Sweden Date of issue October 2007 Author Maribel García-Lorenzo Title The Role of Proteases in Plant Development. Abstract Proteases play key roles in plants, maintaining strict protein quality control and degrading specific sets of proteins in response to diverse environmental and developmental stimuli. Similarities and differences between the proteases expressed in different species may give valuable insights into their physiological roles and evolution. Systematic comparative analysis of the available sequenced genomes of two model organisms led to the identification of an increasing number of protease genes, giving insights about protein sequences that are conserved in the different species, and thus are likely to have common functions in them and the acquisition of new genes, elucidate issues concerning non-functionalization, neofunctionalization and subfunctionalization. The involvement of proteases in senescence and PCD was investigated. While PCD in woody tissues shows the importance of vacuole proteases in the process, the senescence in leaves demonstrate to be a slower and more ordered mechanism starting in the chloroplast where the proteases there localized become important. The light-harvesting complex of Photosystem II is very susceptible to protease attack during leaf senescence. We were able to show that a metallo-protease belonging to the FtsH family is involved on the process in vitro.
    [Show full text]