From Point Cloud to Building Information Model Capturing and Processing Survey Data Towards Automation for High Quality 3D Models to Aid a BIM Process

Total Page:16

File Type:pdf, Size:1020Kb

From Point Cloud to Building Information Model Capturing and Processing Survey Data Towards Automation for High Quality 3D Models to Aid a BIM Process UCL CIVIL, ENVIRONMENTAL AND GEOMATIC ENGINEERING From Point Cloud to Building Information Model Capturing and Processing Survey Data Towards Automation for High Quality 3D Models to Aid a BIM Process Charles Patrick Hugo Thomson 2016 Thesis submitted for the Philosophy Doctorate (PhD) Supervisors Dr. Jan Boehm & Dr. Claire Ellul Preface Preface Declaration ‘I, Charles Patrick Hugo Thomson confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis.’ Signed: Charles Thomson Date: 28/04/2016 Page | 2 Preface Abstract Building Information Modelling has, more than any previous initiative, established itself as the process by which operational change can occur, driven by a desire to eradicate the inefficiencies in time and value and requiring a change of approach to the whole lifecycle of construction from design through construction to operation and eventual demolition. BIM should provide a common digital platform which allows different stakeholders to supply and retrieve information thereby reducing waste through enhanced decision making. Through the provision of measurement and representative digital geometry for construction and management purposes, surveying is very much a part of BIM. Given that all professions that are involved with construction have to consider the way in which they handle data to fit with the BIM process, it stands to reason that Geomatic or Land Surveyors play a key part. This is further encouraged by the fact that 3D laser scanning has been adopted as the primary measurement technique for geometry capture for BIM. Also it is supported by a laser scanning work stream from the UK Government backed BIM Task Group. Against this backdrop, the research in this thesis investigates the 3D modelling aspects of BIM, from initial geometry capture in the real world, to the generation and storage of the virtual world model, while keeping the workflow and outputs compatible with the BIM process. The focus will be made on a key part of the workflow for capturing as-built conditions: the geometry creation from point clouds. This area is considered a bottleneck in the BIM process for existing assets not helped by their often poor or non-existent documentation. Automated modelling is seen as desirable commercially with the goal of reducing time, and therefore cost, and making laser scanning a more viable proposition for a range of tasks in the lifecycle. Page | 3 Preface Acknowledgements With a piece of work of this length and scope, that takes place over such a period of time, there are of course many people whose contribution the author wishes to recognise. First and foremost are both of my supervisors Dr Jan Boehm and Dr Claire Ellul. Their guidance, support and advice (both academic and otherwise) throughout the research process have made it a comfortable and engaging environment to work in, for which I am truly grateful. On the practical side, Dietmar Backes deserves thanks for his inception and securing of funding for the GreenBIM project as well as his help in securing indoor mobile mapping instruments for the trials in the early work. I also enjoyed our early shared brainstorming and conversations generally on BIM which helped solidify my own thinking on the subject. I would also like to thank Stuart McLeod at Gleeds for allowing the initial case studies of the manual workflow presented in Chapter 4 to be carried out, especially by arranging access to the Berners Hotel project. My friends from across the CEGE department, but especially the 3DIMPact research group, deserve recognition for their support, interest and diversions from research that made it a pleasure to work amongst them. Lastly, I would like to thank my parents who have helped and supported me the most over the course of this doctorate and none of this would have been possible without them. Page | 4 Preface Contents Preface ................................................................................................... 1 Declaration ............................................................................................ 2 Abstract ................................................................................................ 3 Acknowledgements ................................................................................. 4 Contents................................................................................................ 5 List of Figures ........................................................................................ 9 List of Tables........................................................................................ 16 Glossary of Abbreviations ...................................................................... 18 1 Introduction ................................................................................... 20 1.1 Motivation .................................................................................. 21 1.2 Research Objectives .................................................................... 24 1.3 Methodology ............................................................................... 25 1.4 Scope and Thesis Structure .......................................................... 27 1.5 Thesis Contributions .................................................................... 30 1.5.1 Publications .......................................................................... 30 2 Background .................................................................................... 32 2.1 Overview .................................................................................... 32 2.2 Geometry Capture Technology ...................................................... 33 2.2.1 Terrestrial Laser Scanning ...................................................... 35 2.2.2 Point Clouds ......................................................................... 38 2.2.3 Registration .......................................................................... 39 2.2.4 Improving Geometry Capture Efficiency ................................... 42 2.2.5 Indoor Mobile Mapping ........................................................... 42 2.3 3D Geometry Modelling ................................................................ 45 2.3.1 Digital Geometry ................................................................... 45 2.3.2 3D Survey Data .................................................................... 47 2.3.3 Manual Geometry Modelling of Buildings ................................... 48 Page | 5 Preface 2.4 Automated Point Cloud Modelling Approaches .................................. 51 2.4.1 Commercial Approaches ......................................................... 51 2.4.2 Academic Approaches ............................................................. 54 2.5 Measurement and Modelling Standards ........................................... 71 2.5.1 Quality Checking of Geometry ................................................. 74 2.6 Discussion and Research Questions ................................................ 75 2.6.1 Research Questions ................................................................ 79 2.7 Chapter Summary ........................................................................ 80 3 Building Information Modelling ...................................................... 82 3.1 Overview .................................................................................... 82 3.2 A History of BIM .......................................................................... 84 3.2.1 The Birth of the Term ............................................................. 84 3.2.2 Defining BIM ......................................................................... 85 3.2.3 The Evolution to BIM .............................................................. 88 3.2.4 International Adoption ............................................................ 93 3.2.5 The UK Perspective ................................................................ 95 3.3 Research ................................................................................... 101 3.4 Discussion ................................................................................. 102 3.5 Chapter Summary ...................................................................... 104 4 Case Study: Manual BIM Geometry Creation from Point Clouds ... 106 4.1 Overview .................................................................................. 106 4.2 Gleeds Case Study ..................................................................... 107 4.2.1 Office Case Study ................................................................ 108 4.2.2 Berners Hotel Case Study ..................................................... 120 4.3 UCL Chadwick Green BIM Case Study ........................................... 124 4.3.1 Data Capture and Processing ................................................. 124 4.3.2 Geometry Modelling ............................................................. 127 4.3.3 Environmental Data ............................................................. 129 4.3.4 Results ............................................................................... 131 4.4 Discussion ................................................................................. 133 Page | 6 Preface 4.5 Chapter Summary ..................................................................... 136 5 Improving Geometric Data Capture .............................................
Recommended publications
  • Automatic Generation of a 3D City Model
    UNIVERSITY OF CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA COMPUTER ENGINEERING DEGREE DEGREE FINAL PROJECT Automatic generation of a 3D city model David Murcia Pacheco June, 2017 AUTOMATIC GENERATION OF A 3D CITY MODEL Escuela Superior de Informática UNIVERSITY OF CASTILLA-LA MANCHA ESCUELA SUPERIOR DE INFORMÁTICA Information Technology and Systems SPECIFIC TECHNOLOGY OF COMPUTER ENGINEERING DEGREE FINAL PROJECT Automatic generation of a 3D city model Author: David Murcia Pacheco Director: Dr. Félix Jesús Villanueva Molina June, 2017 David Murcia Pacheco Ciudad Real – Spain E-mail: [email protected] Phone No.:+34 625 922 076 c 2017 David Murcia Pacheco Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". i TRIBUNAL: Presidente: Vocal: Secretario: FECHA DE DEFENSA: CALIFICACIÓN: PRESIDENTE VOCAL SECRETARIO Fdo.: Fdo.: Fdo.: ii Abstract HIS document collects all information related to the Degree Final Project (DFP) of Com- T puter Engineering Degree of the student David Murcia Pacheco, tutorized by Dr. Félix Jesús Villanueva Molina. This work has been developed during 2016 and 2017 in the Escuela Superior de Informática (ESI), in Ciudad Real, Spain. It is based in one of the proposed sub- jects by the faculty of this university for this year, called "Generación automática del modelo en 3D de una ciudad".
    [Show full text]
  • Benchmarks on WWW Performance
    The Scalability of X3D4 PointProperties: Benchmarks on WWW Performance Yanshen Sun Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Computer Science and Application Nicholas F. Polys, Chair Doug A. Bowman Peter Sforza Aug 14, 2020 Blacksburg, Virginia Keywords: Point Cloud, WebGL, X3DOM, x3d Copyright 2020, Yanshen Sun The Scalability of X3D4 PointProperties: Benchmarks on WWW Performance Yanshen Sun (ABSTRACT) With the development of remote sensing devices, it becomes more and more convenient for individual researchers to acquire high-resolution point cloud data by themselves. There have been plenty of online tools for the researchers to exhibit their work. However, the drawback of existing tools is that they are not flexible enough for the users to create 3D scenes of a mixture of point-based and triangle-based models. X3DOM is a WebGL-based library built on Extensible 3D (X3D) standard, which enables users to create 3D scenes with only a little computer graphics knowledge. Before X3D 4.0 Specification, little attention has been paid to point cloud rendering in X3DOM. PointProperties, an appearance node newly added in X3D 4.0, provides point size attenuation and texture-color mixing effects to point geometries. In this work, we propose an X3DOM implementation of PointProperties. This implementation fulfills not only the features specified in X3D 4.0 documentation, but other shading effects comparable to the effects of triangle-based geometries in X3DOM, as well as other state-of-the-art point cloud visualization tools.
    [Show full text]
  • Making a Game Character Move
    Piia Brusi MAKING A GAME CHARACTER MOVE Animation and motion capture for video games Bachelor’s thesis Degree programme in Game Design 2021 Author (authors) Degree title Time Piia Brusi Bachelor of Culture May 2021 and Arts Thesis title 69 pages Making a game character move Animation and motion capture for video games Commissioned by South Eastern Finland University of Applied Sciences Supervisor Marko Siitonen Abstract The purpose of this thesis was to serve as an introduction and overview of video game animation; how the interactive nature of games differentiates game animation from cinematic animation, what the process of producing game animations is like, what goes into making good game animations and what animation methods and tools are available. The thesis briefly covered other game design principles most relevant to game animators: game design, character design, modelling and rigging and how they relate to game animation. The text mainly focused on animation theory and practices based on commentary and viewpoints provided by industry professionals. Additionally, the thesis described various 3D animation and motion capture systems and software in detail, including how motion capture footage is shot and processed for games. The thesis ended on a step-by-step description of the author’s motion capture cleanup project, where a jog loop was created out of raw motion capture data. As the topic of game animation is vast, the thesis could not cover topics such as facial motion capture and procedural animation in detail. Technologies such as motion matching, machine learning and range imaging were also suggested as topics worth covering in the future.
    [Show full text]
  • Seamless Texture Mapping of 3D Point Clouds
    Seamless Texture Mapping of 3D Point Clouds Dan Goldberg Mentor: Carl Salvaggio Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology Rochester, NY November 25, 2014 Abstract The two similar, quickly growing fields of computer vision and computer graphics give users the ability to immerse themselves in a realistic computer generated environment by combining the ability create a 3D scene from images and the texture mapping process of computer graphics. The output of a popular computer vision algorithm, structure from motion (obtain a 3D point cloud from images) is incomplete from a computer graphics standpoint. The final product should be a textured mesh. The goal of this project is to make the most aesthetically pleasing output scene. In order to achieve this, auxiliary information from the structure from motion process was used to texture map a meshed 3D structure. 1 Introduction The overall goal of this project is to create a textured 3D computer model from images of an object or scene. This problem combines two different yet similar areas of study. Computer graphics and computer vision are two quickly growing fields that take advantage of the ever-expanding abilities of our computer hardware. Computer vision focuses on a computer capturing and understanding the world. Computer graphics con- centrates on accurately representing and displaying scenes to a human user. In the computer vision field, constructing three-dimensional (3D) data sets from images is becoming more common. Microsoft's Photo- synth (Snavely et al., 2006) is one application which brought attention to the 3D scene reconstruction field. Many structure from motion algorithms are being applied to data sets of images in order to obtain a 3D point cloud (Koenderink and van Doorn, 1991; Mohr et al., 1993; Snavely et al., 2006; Crandall et al., 2011; Weng et al., 2012; Yu and Gallup, 2014; Agisoft, 2014).
    [Show full text]
  • A Procedural Interface Wrapper for Houdini Engine in Autodesk Maya
    A PROCEDURAL INTERFACE WRAPPER FOR HOUDINI ENGINE IN AUTODESK MAYA A Thesis by BENJAMIN ROBERT HOUSE Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, André Thomas Committee Members, John Keyser Ergun Akleman Head of Department, Tim McLaughlin May 2019 Major Subject: Visualization Copyright 2019 Benjamin Robert House ABSTRACT Game development studios are facing an ever-growing pressure to deliver quality content in greater quantities, making the automation of as many tasks as possible an important aspect of modern video game development. This has led to the growing popularity of integrating procedural workflows such as those offered by SideFX Software’s Houdini FX into the already established de- velopment pipelines. However, the current limitations of the Houdini Engine plugin for Autodesk Maya often require developers to take extra steps when creating tools to speed up development using Houdini. This hinders the workflow for developers, who have to design their Houdini Digi- tal Asset (HDA) tools around the limitations of the Houdini Engine plugin. Furthermore, because of the implementation of the HDA’s parameter display in Maya’s Attribute Editor when using the Houdini Engine Plugin, artists can easily be overloaded with too much information which can in turn hinder the workflow of any artists who are using the HDA. The limitations of an HDA used in the Houdini Engine Plugin in Maya as a tool that is intended to improve workflow can actually frustrate and confuse the user, ultimately causing more harm than good.
    [Show full text]
  • Mi Army Maya Download Crack
    Mi Army Maya Download Crack Mi Army Maya Download Crack 1 / 2 Copy video URL Copy embed code Report issue · Powered by Streamable. Mi Army For Maya Download Crack ->>> http://urllie.com/wn9ff 42 views.. Miarmy 6.2 for Autodesk Maya | crowd-simulation plugin for Maya https://goo.gl/uWs11s More plugin .... Miarmy for maya. Bored of creating each separate models for warfield or fight. Now it's easy to create army. This plug-in is useful for creating armies reducing the .... 11.6MB Miarmy (named My Army) is a Maya plugin for crowd simulation AI behavioral animation creature physical .. KickassTorrents - Download torrent from .... free software downloadfree software download sitespc software free download full ... Miarmy (named “My Army”) is a Maya plugin for crowd simulation, AI, .... It's fast, fluid, intuitive, and designed to let you do what you want, the way you want. What you will get: Miarmy Express; Installation Guide; Free License .... Used to kill for MOD, MI ARMY, FBM, PB ADDICTS, ALL STAR KIDZ. Godonthefield is offline Miarmy pro maya 2011 torrent download, miarmy for maya .... Plugins Reviews and Download free for CG Softwares ... Basefount released Miarmy 7 with Maya 2019 Support. CGRecord ... Basefount released the new update of its crowd simulation tool for Autodesk Maya - Miarmy 7.. Plugins Reviews and Download free for CG Softwares ... [ #Autodesk #Maya #Basefount #Miarmy #Crowd #Simulation ]. Basefount has released Miarmy 6.5, the latest update to its crowd-simulation system for Maya with .... ... and Software Crack Full Version Title Download Android Games / PC Games and Software Crack Full Version: Miarmy 3.0 for Autodesk Maya Link Download.
    [Show full text]
  • Spatial Reconstruction of Biological Trees from Point Cloud Jayakumaran Ravi Purdue University
    Purdue University Purdue e-Pubs Open Access Theses Theses and Dissertations January 2016 Spatial Reconstruction of Biological Trees from Point Cloud Jayakumaran Ravi Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_theses Recommended Citation Ravi, Jayakumaran, "Spatial Reconstruction of Biological Trees from Point Cloud" (2016). Open Access Theses. 1190. https://docs.lib.purdue.edu/open_access_theses/1190 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. SPATIAL RECONSTRUCTION OF BIOLOGICAL TREES FROM POINT CLOUDS A Thesis Submitted to the Faculty of Purdue University by Jayakumaran Ravi In Partial Fulfillment of the Requirements for the Degree of Master of Science May 2016 Purdue University West Lafayette, Indiana ii Dedicated to my parents and my brother who always motivate me to give my best in whatever I choose to do. iii ACKNOWLEDGMENTS Firstly, I would like to thank Dr. Bedrich Benes - my advisor - for giving me the opportunity to work at the High Performance Computer Graphics (HPCG) lab. He gave me the best possible support during my stay here and was kind enough to overlook my mistakes. These past years have been one of the best learning opportunities of my life. I learnt a great deal from all my former and current lab members who are exceptionally talented and smart. I thank Dr. Peter Hirst for giving me the opportunity to work with his team and for also sending us apples from the farm during harvest season. I thank Biying Shi and Fatemeh Sheibani for going with me to the field and helping me with the tree scanning under various weather conditions.
    [Show full text]
  • Daniel Mccann Graphics Programmer
    Daniel McCann Graphics Programmer https://github.com/mccannd EXPERIENCE SKILLS Bentley Systems, Exton PA​ — ​Software Engineering Intern CPU Languages:​ C++, May 2017 - August 2017 Javascript/Typescript, Transitioned to physically-based materials for an in-development rendering Python, Java engine, backwards-compatible with OpenGL ES 2.0 and the standard used by GPU API: ​OpenGL & Analytical Graphics, Inc.’s Cesium engine. GLSL,Vulkan, CUDA University of Pennsylvania, Philadelphia​ — ​Teaching Assistant, Multiple Classes May 2015 - PRESENT Game Engines:​ Unreal 4, Unity CIS 566, Procedural Graphics, current: responsible for several lectures, homework basecode creation, grading, office hours. Proprietary Graphics CIS 110, Introductory Computer Science, 5 semesters: responsible for grading, Software:​ Substance weekly lectures in Fall and Spring semesters, daily lectures in Summer semester, Designer, Substance office hours. Painter, ZBrush, FNAR 235, Introductory and Advanced 3D Modelling, 3 semesters: responsible for Autodesk Maya, teaching and tutoring 3D software design and artistic skills, and critique. Focus on Photoshop Autodesk Maya, ZBrush, Mental Ray and Arnold Renderers, texturing tools. Shaders, Proceduralism, Strong artistic sense EDUCATION and communication University of Pennsylvania, Philadelphia​ — ​MSE, Computer Graphics + Games Tech. skills. August 2017 - May 2018 Expected Graduation University of Pennsylvania, Philadelphia​ — ​BSE, Digital Media Design August 2013 - May 2017 Relevant Classes: UPenn’s DMD is an interdisciplinary major for programmers interested in - CIS 565 GPU animation, games, and computer graphics in general. programming & architecture PROJECTS - CIS 700 procedural graphics Project Marshmallow​ — ​Fall 2017 A Vulkan implementation of the Siggraph 2017 “Nubis” paper for rendering - CIS 560 physically atmospheric clouds in 60+FPS for games. The clouds are fully procedural, based rendering animated, photoreal, and cast shadows on objects in the scene.
    [Show full text]
  • HP and Autodesk Create Stunning Digital Media and Entertainment with HP Workstations
    HP and Autodesk Create stunning digital media and entertainment with HP Workstations. Does your workstation meet your digital Performance: Advanced compute and visualization power help speed your work, beat deadlines, and meet expectations. At the heart of media challenges? HP Z Workstations are the new Intel® processors with advanced processor performance technologies and NVIDIA Quadro professional It’s no secret that the media and entertainment industry is constantly graphics cards with the NVIDIA CUDA parallel processing architecture; evolving, and the push to deliver better content faster is an everyday delivering real-time previewing and editing of native, high-resolution challenge. To meet those demands, technology matters—a lot. You footage, including multiple layers of 4K video. Intel® Turbo Boost1 need innovative, high-performing, reliable hardware and software tools is designed to enhance the base operating frequency of processor tuned to your applications so your team can create captivating content, cores, providing more processing speed for single and multi-threaded meet tight production schedules, and stay on budget. HP offers an applications. The HP Z Workstation cooling design enhances this expansive portfolio of integrated workstation hardware and software performance. solutions designed to maximize the creative capabilities of Autodesk® software. Together, HP and Autodesk help you create stunning digital Reliability: HP product testing includes application performance, media. graphics and comprehensive ISV certification for maximum productivity. All HP Workstations come with a limited 3-year parts, 3-year labor and The HP Difference 3-year onsite service (3/3/3) standard warranty that is extendable up to 5 years.2 You can be confident in your HP and Autodesk solution.
    [Show full text]
  • Building and Using a Character in 3D Space Shasta Bailey
    East Tennessee State University Digital Commons @ East Tennessee State University Undergraduate Honors Theses Student Works 5-2014 Building and Using a Character in 3D Space Shasta Bailey Follow this and additional works at: https://dc.etsu.edu/honors Part of the Game Design Commons, Interdisciplinary Arts and Media Commons, and the Other Arts and Humanities Commons Recommended Citation Bailey, Shasta, "Building and Using a Character in 3D Space" (2014). Undergraduate Honors Theses. Paper 214. https://dc.etsu.edu/ honors/214 This Honors Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Undergraduate Honors Theses by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Contents Introduction: ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 3 The Project Outline: ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 4 The Design: ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 4 3D Modeling: ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 7 UV Mapping: ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ 11 Texturing: ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙
    [Show full text]
  • Modifing Thingiverse Model in Blender
    Modifing Thingiverse Model In Blender Godard usually approbating proportionately or lixiviate cooingly when artier Wyn niello lastingly and forwardly. Euclidean Raoul still frivolling: antiphonic and indoor Ansell mildew quite fatly but redipped her exotoxin eligibly. Exhilarating and uncarted Manuel often discomforts some Roosevelt intimately or twaddles parabolically. Why not built into inventor using thingiverse blender sculpt the model window Logo simple metal, blender to thingiverse all your scene of the combined and. Your blender is in blender to empower the! This model then merging some models with blender also the thingiverse me who as! Cam can also fits a thingiverse in your model which are interchangeably used software? Stl files software is thingiverse blender resize designs directly from the toolbar from scratch to mark parts of the optics will be to! Another method for linux blender, in thingiverse and reusable components may. Svg export new geometrics works, after hours and drop or another one of hobbyist projects its huge user community gallery to the day? You blender model is thingiverse all models working choice for modeling meaning you can be. However in blender by using the product. Open in blender resize it original shape modeling software for a problem indeed delete this software for a copy. Stl file blender and thingiverse all the stl files using a screenshot? Another one modifing thingiverse model in blender is likely that. If we are in thingiverse object you to modeling are. Stl for not choose another source. The model in handy later. The correct dimensions then press esc to animation and exporting into many brands and exported file with the.
    [Show full text]
  • Objekttracking Für Dynamisches Videoprojektions Mapping
    Bachelorthesis Iwer Petersen Using object tracking for dynamic video projection mapping Fakultät Technik und Informatik Faculty of Engineering and Computer Science Studiendepartment Informatik Department of Computer Science Iwer Petersen Using object tracking for dynamic video projection mapping Bachelorthesis submitted within the scope of the Bachelor examination in the degree programme Bachelor of Science Technical Computer Science at the Department of Computer Science of the Faculty of Engineering and Computer Science of the Hamburg University of Applied Science Mentoring examiner: Prof. Dr. Ing. Birgit Wendholt Second expert: Prof. Dr.-Ing. Andreas Meisel Submitted at: January 31, 2013 Iwer Petersen Title of the paper Using object tracking for dynamic video projection mapping Keywords video projection mapping, object tracking, point cloud, 3D Abstract This document presents a way to realize video projection mapping onto moving objects. Therefore a visual 3D tracking method is used to determine the position and orientation of a known object. Via a calibrated projector-camera system, the real object then is augmented with a virtual texture. Iwer Petersen Thema der Arbeit Objekttracking für dynamisches Videoprojektions Mapping Stichworte Video Projektions Mapping, Objektverfolgung, Punktwolke, 3D Kurzzusammenfassung Dieses Dokument präsentiert einen Weg um Video Projektions Mapping auf sich bewegende Objekte zu realisieren. Dafür wird ein visuelles 3D Trackingverfahren verwendet um die Position und Lage eines bekannten Objekts zu bestimmen. Über ein kalibriertes Projektor- Kamera System wird das reale Objekt dann mit einer virtuellen Textur erweitert. Contents 1 Introduction1 1.1 Motivation . .1 1.2 Structure . .3 2 Related Work4 2.1 Corresponding projects . .4 2.1.1 Spatial Augmented Reality . .4 2.1.2 2D Mapping onto people .
    [Show full text]