Design Patterns for Games
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
1 Design Pattern for Open Class (DRAFT) 2 Abstract Factory
1 Design Pattern for Open Class (DRAFT) Tanaka Akira <[email protected]> A design pattern describes a software architecture which is reusable and exten- sible. [GoF] is the book containing 23 design patterns for OOP languages like C++ and Java. [GoF] describes several trade offs of the patterns. In C++ and Java, a class is defined by only one module. However, there are languages which can define a class by two or more modules: Cecil, MultiJava, AspectJ, MixJuice, CLOS, Ruby, etc. Such class is called "open class" because it is extensible by modules implemented later [Chambers]. For languages with open class, more extensible and/or simpler design patterns exists. We studied design patterns with open class for each GoF design patterns. In this paper, we describe two patterns: the Abstract Factory pattern and the Visitor pattern. 2 Abstract Factory The Abstract Factory pattern is a design pattern for separating class names from the code which generates the object group of related classes for making them configurable. Following figure is the class diagram of the Abstract Factory pattern. Since the example described in [GoF] uses only one concrete factory for each binaries, the required concrete factory is selected statically. The example builds two binaries for Motif and Presentation Manager from a single source code. Two concrete factories are exist for Motif and Presentation Manager. When a binary is built, it is selected which concrete factory is linked. Such static selection can be implemented with the fewer number of classes by open class as following modules. • The module which defines Window and ScrollBar class and their methods which is independent to window systems. -
Tree Visitors in Clojure Update the Java Visitor Pattern with Functional Zippers
Tree visitors in Clojure Update the Java Visitor pattern with functional zippers Skill Level: Intermediate Alex Miller ([email protected]) Senior Engineer Revelytix 20 Sep 2011 JVM language explorer Alex Miller has recently discovered the benefits of implementing the Visitor pattern using Clojure, a functional Lisp variant for the Java Virtual Machine. In this article, he revisits the Visitor pattern, first demonstrating its use in traversing tree data in Java programs, then rewriting it with the addition of Clojure's functional zippers. I’ve used trees of domain objects in my Java applications for many years. More recently, I’ve been using them in Clojure. In each case, I've found that the Visitor pattern is a reliable tool for manipulating trees of data. But there are differences in how the pattern works in a functional versus object-oriented language, and in the results it yields. About Clojure Clojure is a dynamic and functional programming language variant of Lisp, written specifically for the JVM. Learn more about Clojure on developerWorks: •"The Clojure programming language" •"Clojure and concurrency" •"Solving the Expression Problem with Clojure 1.2" •"Using CouchDB with Clojure" In this article, I revisit domain trees and the Visitor pattern for the Java language, Tree visitors in Clojure Trademarks © Copyright IBM Corporation 2011 Page 1 of 27 developerWorks® ibm.com/developerWorks then walk through several visitor implementations using Clojure. Being a functional language, Clojure brings new tricks to data query and manipulation. In particular, I've found that integrating functional zippers into the Visitor pattern yields efficiency benefits, which I explore. -
Facet: a Pattern for Dynamic Interfaces
Facet: A pattern for dynamic interfaces Author: Eric Crahen SUNY at Buffalo CSE Department Amherst, NY 14260 201 Bell Hall 716-645-3180 <[email protected]> Context: Wherever it is desirable to create a context sensitive interface in order to modify or control the apparent behavior if an object. Problem: How can I modify the behavior of an existing object so that different behaviors are shown under different circumstances; and yet still maintain a clean separation between the policy (when each behavior is available) and implementation of each behavior allowing them to be developed independently of one another? Forces: Interfaces provide an essential level of abstraction to object oriented programming. Generally, objects are able define aspects of their function very well using interfaces. At times, this may not be enough. When dealing with two or more classes whose responsibilities are distinctly separate, but whose behavior is closely related, classes can begin to resist modularization. For example, adding security to an application means inserting code that performs security checks into numerous locations in existing classes. Clearly, these responsibilities are distinct; the original classes being responsible for the tasks they were designed to perform, and the security classes being responsible for providing access control. However, making those original classes secure means intermingling code that deals with security. When the classes dealing with security are changed many classes are going to be impacted. One method of adding new behavior to an existing class might be to simply create a subclass and embed that new behavior. In the security example, this would mean creating a subclass for each class that needs to be secure and adding calls to the security code. -
Object-Oriented Desgin Visitor Pattern George Blankenship 1
Object-Oriented Desgin Visitor Pattern CSCI 253 Object Oriented Design: Visitor Pattern George Blankenship Visitor Pattern George Blankenship 1 Overview Creational Patterns Structural Patterns Behavioral Patterns Singleton Composite Chain of Respons. Abstract factory Façade Command Factory Method Proxy Interpreter Prototype Flyweight Iterator Builder Mediator Adapter Memento Bridge Observer Decorator State Strategy Template Method Visitor Pattern George Blankenship Visitor 2 The Elements of a Design Pattern • A pattern name • The problem that the pattern solves – Including conditions for the pattern to be applicable • The solution to the problem brought by the pattern – The elements (classes-objects) involved, their roles, responsibilities, relationships and collaborations – Not a particular concrete design or implementation • The consequences of applying the pattern – Time and space trade off – Language and implementation issues – Effects on flexibility, extensibility, portability Visitor Pattern George Blankenship 3 George Blankenship 1 Object-Oriented Desgin Visitor Pattern The Visitor Pattern: The Problem Represents an operation to be performed on the elements of an object structure. Visitor lets you define a new operation without changing the classes of the elements on which it operates • many distinct and unrelated operations need to be performed on objects in an object structure an you want to avoid “polluting” their classes with these operations • the classes defining the object structure rarely change but you often want to define new operations over the structure Visitor Pattern George Blankenship 4 Visitor Example • The root of the structure accepts a visitor: root.accept( visitor ) • The root and every child object in the structure have a an accept method: void accept( visitor ) { visitor.visit( this ); for each child of mine child.accept( visitor ) next } • In short order our visitor gets a visit() call from each object in the collection. -
Designpatternsphp Documentation Release 1.0
DesignPatternsPHP Documentation Release 1.0 Dominik Liebler and contributors Jul 18, 2021 Contents 1 Patterns 3 1.1 Creational................................................3 1.1.1 Abstract Factory........................................3 1.1.2 Builder.............................................8 1.1.3 Factory Method......................................... 13 1.1.4 Pool............................................... 18 1.1.5 Prototype............................................ 21 1.1.6 Simple Factory......................................... 24 1.1.7 Singleton............................................ 26 1.1.8 Static Factory.......................................... 28 1.2 Structural................................................. 30 1.2.1 Adapter / Wrapper....................................... 31 1.2.2 Bridge.............................................. 35 1.2.3 Composite............................................ 39 1.2.4 Data Mapper.......................................... 42 1.2.5 Decorator............................................ 46 1.2.6 Dependency Injection...................................... 50 1.2.7 Facade.............................................. 53 1.2.8 Fluent Interface......................................... 56 1.2.9 Flyweight............................................ 59 1.2.10 Proxy.............................................. 62 1.2.11 Registry............................................. 66 1.3 Behavioral................................................ 69 1.3.1 Chain Of Responsibilities................................... -
Permissions, Visitor Pattern
Selected Topics in Object Oriented Programming Lecture 3: More OOP principles Leonid Barenboim Permissions Permissions define the areas within a program from which a feature (field/ method) can be accessed: private – only within the same class. protected - only within the class and its subclasses. public – from everywhere. Permission in java Java use somewhat different rules: private – only within the same class. package – only within the same package. protected – within the same package and within the subclasses outside the package. public – from everywhere. Selecting the right permission The principle of encapsulation suggests the following rules: All non-static fields should be private Service methods should be public Helper methods should be private/protected Permission rules in specific languages Smalltalk – all fields are private all methods are public Scripting languages (e.g., python) - No permissions! - Everything is public! The Visitor Pattern Reminder: Polymorphism Reminder: Polymorphism Animal animal; animal = new Dog; Animal * animal.say(); \\ “Woof” animal = new Cat; + say() * animal.say(); \\ “Miau” Cat Dog + say() + say() System.out.println(“Miau”) System.out.println(“Woof”) What happens if a method accepts an argument? boolean b; Animal * Animal cat = new Cat(); Animal mouse = new + say() * Mouse(); + eats(mouse: Mouse) : bool * b = cat.eats(mouse); + eats(cat: Cat) : bool * //compilation error Cat Mouse + say() + say() +eats(mouse : Mouse) : bool +eats(mouse : Mouse) : bool +eats(cat : Cat) : bool +eats(cat : Cat) : bool No support for polymorphism of arguments • Java (and many other languages) supports only polymorphism of the receiver (the variable on which the method is invoked). • Polymorphism of the receiver is performed using single dispatch. • Polymorphism of arguments is performed using multiple-level dispatch, which is resource consuming. -
Design Patterns in Ocaml
Design Patterns in OCaml Antonio Vicente [email protected] Earl Wagner [email protected] Abstract The GOF Design Patterns book is an important piece of any professional programmer's library. These patterns are generally considered to be an indication of good design and development practices. By giving an implementation of these patterns in OCaml we expected to better understand the importance of OCaml's advanced language features and provide other developers with an implementation of these familiar concepts in order to reduce the effort required to learn this language. As in the case of Smalltalk and Scheme+GLOS, OCaml's higher order features allows for simple elegant implementation of some of the patterns while others were much harder due to the OCaml's restrictive type system. 1 Contents 1 Background and Motivation 3 2 Results and Evaluation 3 3 Lessons Learned and Conclusions 4 4 Creational Patterns 5 4.1 Abstract Factory . 5 4.2 Builder . 6 4.3 Factory Method . 6 4.4 Prototype . 7 4.5 Singleton . 8 5 Structural Patterns 8 5.1 Adapter . 8 5.2 Bridge . 8 5.3 Composite . 8 5.4 Decorator . 9 5.5 Facade . 10 5.6 Flyweight . 10 5.7 Proxy . 10 6 Behavior Patterns 11 6.1 Chain of Responsibility . 11 6.2 Command . 12 6.3 Interpreter . 13 6.4 Iterator . 13 6.5 Mediator . 13 6.6 Memento . 13 6.7 Observer . 13 6.8 State . 14 6.9 Strategy . 15 6.10 Template Method . 15 6.11 Visitor . 15 7 References 18 2 1 Background and Motivation Throughout this course we have seen many examples of methodologies and tools that can be used to reduce the burden of working in a software project. -
On the Interaction of Object-Oriented Design Patterns and Programming
On the Interaction of Object-Oriented Design Patterns and Programming Languages Gerald Baumgartner∗ Konstantin L¨aufer∗∗ Vincent F. Russo∗∗∗ ∗ Department of Computer and Information Science The Ohio State University 395 Dreese Lab., 2015 Neil Ave. Columbus, OH 43210–1277, USA [email protected] ∗∗ Department of Mathematical and Computer Sciences Loyola University Chicago 6525 N. Sheridan Rd. Chicago, IL 60626, USA [email protected] ∗∗∗ Lycos, Inc. 400–2 Totten Pond Rd. Waltham, MA 02154, USA [email protected] February 29, 1996 Abstract Design patterns are distilled from many real systems to catalog common programming practice. However, some object-oriented design patterns are distorted or overly complicated because of the lack of supporting programming language constructs or mechanisms. For this paper, we have analyzed several published design patterns looking for idiomatic ways of working around constraints of the implemen- tation language. From this analysis, we lay a groundwork of general-purpose language constructs and mechanisms that, if provided by a statically typed, object-oriented language, would better support the arXiv:1905.13674v1 [cs.PL] 31 May 2019 implementation of design patterns and, transitively, benefit the construction of many real systems. In particular, our catalog of language constructs includes subtyping separate from inheritance, lexically scoped closure objects independent of classes, and multimethod dispatch. The proposed constructs and mechanisms are not radically new, but rather are adopted from a variety of languages and programming language research and combined in a new, orthogonal manner. We argue that by describing design pat- terns in terms of the proposed constructs and mechanisms, pattern descriptions become simpler and, therefore, accessible to a larger number of language communities. -
A Survey of Design Pattern Based Web Applications
JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering ©JOT, 2009 Vol. 8, No. 2, March-April 2009 A Survey of Design Pattern Based Web Applications Sridaran R, Campus Head, ICFAI National College, Vellore-632 006 India. Padmavathi G, Professor and Head, Department of Computer Science, Avinashilingam University for Women, Coimbatore-641 043, India. Iyakutti K, Senior Professor, School of Physics, Madurai Kamaraj University, Madurai-625 019, India. Abstract Pattern-based web applications have become popular since they promote reusability and consistency. In few cases, patterns do not produce the desired effect because of lack of experience in applying them. This situation forces one to think of a suitable re- engineering solution for such applications. The objectives of the paper are three fold. It provides a survey of different pattern-based web applications that will be useful for the application designers. It highlights some of the web applications where patterns have been inappropriately handled. A few re-engineering initiatives for such cases are also analyzed. Key Words: Patterns, Web Applications, Re-engineering, Hypermedia, Semantic web, Partitioning. 1 INTRODUCTION Web application designers need to address many challenges during development in order to comply the quality of service requirements including speed, scalability and security. In recent years numerous non-web based applications have been re-written as web based because of the ever growing business needs. These migration activities are much more complicated and time consuming than a new software development. Most of these challenges are with data handling, organizing, or structuring of the web applications. -
Design Pattern Implementation in Java and Aspectj
Design Pattern Implementation in Java and AspectJ Jan Hannemann Gregor Kiczales University of British Columbia University of British Columbia 201-2366 Main Mall 201-2366 Main Mall Vancouver B.C. V6T 1Z4 Vancouver B.C. V6T 1Z4 jan [at] cs.ubc.ca gregor [at] cs.ubc.ca ABSTRACT successor in the chain. The event handling mechanism crosscuts the Handlers. AspectJ implementations of the GoF design patterns show modularity improvements in 17 of 23 cases. These improvements When the GoF patterns were first identified, the sample are manifested in terms of better code locality, reusability, implementations were geared to the current state of the art in composability, and (un)pluggability. object-oriented languages. Other work [19, 22] has shown that implementation language affects pattern implementation, so it seems The degree of improvement in implementation modularity varies, natural to explore the effect of aspect-oriented programming with the greatest improvement coming when the pattern solution techniques [11] on the implementation of the GoF patterns. structure involves crosscutting of some form, including one object As an initial experiment we chose to develop and compare Java playing multiple roles, many objects playing one role, or an object [27] and AspectJ [25] implementations of the 23 GoF patterns. playing roles in multiple pattern instances. AspectJ is a seamless aspect-oriented extension to Java, which means that programming in AspectJ is effectively programming in Categories and Subject Descriptors Java plus aspects. D.2.11 [Software Engineering]: Software Architectures – By focusing on the GoF patterns, we are keeping the purpose, patterns, information hiding, and languages; D.3.3 intent, and applicability of 23 well-known patterns, and only allowing [Programming Languages]: Language Constructs and Features – the solution structure and solution implementation to change. -
Skin Vs. Guts: Introducing Design Patterns in the MIS Curriculum Elizabeth Towell and John Towell Carroll College, Waukesha, WI, USA
Journal of Information Technology Education Volume 1 No. 4, 2002 Skin vs. Guts: Introducing Design Patterns in the MIS Curriculum Elizabeth Towell and John Towell Carroll College, Waukesha, WI, USA [email protected] [email protected] Executive Summary Significant evidence suggests that there is increasing demand for information technology oriented stu- dents who have exposure to Object-Oriented (OO) methodologies and who have knowledge of the Uni- fied Modeling Language (UML). Object-oriented development has moved into the mainstream as the value of reusable program modules is becoming more evident. Building blocks such as software com- ponents and application frameworks allow organizations to bring products to market faster and to adapt to changes more quickly. When only one analysis and design course is required, the study of object-oriented analysis and design is often minimal or left out of the Management Information Systems curriculum. This paper argues for an increased emphasis on object-oriented techniques in the introductory Systems Analysis and Design course. Specifically, it provides guidance for faculty who are considering adding object-orientation to a systems analysis and design course where existing content leaves little time for new topics. In particular, the authors recommend the introduction of two successful, generalized design patterns in the context of adaptation of a software development framework. Where time is limited, coverage of such recurring software problems cannot be comprehensive so it is proposed that students explore two design patterns in depth as opposed to a cursory review of more patterns. Students must first learn or review the OO vocabulary including terms such as classes, inheritance, and aggregation so that the ap- propriate term can be used to discuss the UML relationships among the object model components. -
Object-Oriented Design Patterns
Object-Oriented Design Patterns David Janzen EECS 816 Object-Oriented Software Development University of Kansas Outline • Introduction – Design Patterns Overview – Strategy as an Early Example – Motivation for Creating and Using Design Patterns – History of Design Patterns • Gang of Four (GoF) Patterns – Creational Patterns – Structural Patterns – Behavioral Patterns Copyright © 2006 by David S. 2 Janzen. All rights reserved. What are Design Patterns? • In its simplest form, a pattern is a solution to a recurring problem in a given context • Patterns are not created, but discovered or identified • Some patterns will be familiar? – If you’ve been designing and programming for long, you’ve probably seen some of the patterns we will discuss – If you use Java Foundation Classes (Swing), Copyright © 2006 by David S. 3 you have certaJiannzleyn. Aulls rieghdts rsesoervmed.e design patterns Design Patterns Definition1 • Each pattern is a three-part rule, which expresses a relation between – a certain context, – a certain system of forces which occurs repeatedly in that context, and – a certain software configuration which allows these forces to resolve themselves 1. Dick Gabriel, http://hillside.net/patterns/definition.html Copyright © 2006 by David S. 4 Janzen. All rights reserved. A Good Pattern1 • Solves a problem: – Patterns capture solutions, not just abstract principles or strategies. • Is a proven concept: – Patterns capture solutions with a track record, not theories or speculation 1. James O. Coplien, http://hillside.net/patterns/definition.html Copyright © 2006 by David S. 5 Janzen. All rights reserved. A Good Pattern • The solution isn't obvious: – Many problem-solving techniques (such as software design paradigms or methods) try to derive solutions from first principles.