Substructural Logics and Residuated Lattices — an Introduction
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
LOGIC BIBLIOGRAPHY up to 2008
LOGIC BIBLIOGRAPHY up to 2008 by L. Geldsetzer © Copyright reserved Download only for personal use permitted Heinrich Heine Universität Düsseldorf 2008 II Contents 1. Introductions 1 2. Dictionaries 3 3. Course Material 4 4. Handbooks 5 5. Readers 5 6. Bibliographies 6 7. Journals 7 8. History of Logic and Foundations of Mathematics 9 a. Gerneral 9 b. Antiquity 10 c. Chinese Antiquity 11 d. Scholastics 12 e. Islamic Medieval Scholastics 12 f. Modern Times 13 g. Contemporary 13 9. Classics of Logics 15 a. Antiquity 15 b. Medieval Scholastics 17 c. Modern and Recent Times 18 d. Indian Logic, History and Classics 25 10. Topics of Logic 27 1. Analogy and Metaphor, Likelihood 27 2. Argumentation, Argument 27 3. Axiom, Axiomatics 28 4. Belief, Believing 28 5. Calculus 29 8. Commensurability, see also: Incommensurability 31 9. Computability and Decidability 31 10. Concept, Term 31 11. Construction, Constructivity 34 12. Contradiction, Inconsistence, Antinomics 35 13. Copula 35 14. Counterfactuals, Fiction, see also : Modality 35 15. Decision 35 16. Deduction 36 17. Definition 36 18. Diagram, see also: Knowledge Representation 37 19. Dialectic 37 20. Dialethism, Dialetheism, see also: Contradiction and Paracon- sistent Logic 38 21. Discovery 38 22. Dogma 39 23. Entailment, Implication 39 24. Evidence 39 25. Falsity 40 26. Fallacy 40 27. Falsification 40 III 28. Family Resemblance 41 2 9. Formalism 41 3 0. Function 42 31. Functors, Junct ors, Logical Constants or Connectives 42 32. Holism 43 33. Hypothetical Propositions, Hypotheses 44 34. Idealiz ation 44 35. Id entity 44 36. Incommensurability 45 37. Incompleteness 45 38. -
Finitely-Valued Propositional Dynamic Logic
Finitely-valued Propositional Dynamic Logic Igor Sedl´ar∗ The Czech Academy of Sciences, Institute of Computer Science Pod Vod´arenskou vˇeˇz´ı271/2 Prague, The Czech Republic Abstract We study a many-valued generalization of Propositional Dynamic Logic where formulas in states and accessibility relations between states of a Kripke model are evaluated in a finite FL-algebra. One natural interpretation of this framework is related to reasoning about costs of performing structured actions. We prove that PDL over any finite FL-algebra is decidable. We also establish a general completeness result for a class of PDLs based on commutative integral FL-algebras with canonical constants. Keywords: FL-algebras, Many-valued modal logic, Propositional Dynamic Logic, Residuated lattices, Substructural logics, Weighted structures. 1 Introduction Propositional dynamic logic, PDL, is a well-known modal logic formalizing reasoning about structured actions, e.g. computer programs or actions performed by physical agents, and their correctness properties [10, 17]. PDL is subject to two limiting design features. First, being based on classical propositional logic, it formalizes actions that modify values of Boolean variables. A more general setting, one where variables take values from an ar- bitrary set (integers, characters, trees etc.), is offered by variants of first-order Dynamic Logic, DL [16, 17]; these variants, however, are mostly undecidable. Second, PDL can express the fact that one action is guaranteed to attain a certain goal while another action is not, but it is not able to express that one action is a more efficient way of attaining the goal than another action. In other words, accessibility between states mediated by actions arXiv:2012.12133v1 [cs.LO] 22 Dec 2020 is modelled as a crisp rather than a graded relation; the former approach is a convenient idealization, but the latter one is more realistic and often also practically required. -
The Structure of Residuated Lattices
The Structure of Residuated Lattices Kevin Blount and Constantine Tsinakis May 23, 2002 Abstract A residuated lattice is an ordered algebraic structure L = hL, ∧, ∨, · , e, \ , / i such that hL, ∧, ∨i is a lattice, hL, ·, ei is a monoid, and \ and / are binary operations for which the equivalences a · b ≤ c ⇐⇒ a ≤ c/b ⇐⇒ b ≤ a\c hold for all a, b, c ∈ L. It is helpful to think of the last two operations as left and right division and thus the equivalences can be seen as “di- viding” on the right by b and “dividing” on the left by a. The class of all residuated lattices is denoted by RL. The study of such objects originated in the context of the theory of ring ideals in the 1930’s. The collection of all two-sided ideals of a ring forms a lattice upon which one can impose a natural monoid structure making this object into a residuated lattice. Such ideas were investi- gated by Morgan Ward and R. P. Dilworth in a series of important papers [15], [16],[45], [46], [47] and [48] and also by Krull in [33]. Since that time, there has been substantial research regarding some specific classes of residuated structures, see for example [1], [9], [26] and [38], but we believe that this is the first time that a general structural the- ory has been established for the class RL as a whole. In particular, we develop the notion of a normal subalgebra and show that RL is an “ideal variety” in the sense that it is an equational class in which con- gruences correspond to “normal” subalgebras in the same way that ring congruences correspond to ring ideals. -
Relevant and Substructural Logics
Relevant and Substructural Logics GREG RESTALL∗ PHILOSOPHY DEPARTMENT, MACQUARIE UNIVERSITY [email protected] June 23, 2001 http://www.phil.mq.edu.au/staff/grestall/ Abstract: This is a history of relevant and substructural logics, written for the Hand- book of the History and Philosophy of Logic, edited by Dov Gabbay and John Woods.1 1 Introduction Logics tend to be viewed of in one of two ways — with an eye to proofs, or with an eye to models.2 Relevant and substructural logics are no different: you can focus on notions of proof, inference rules and structural features of deduction in these logics, or you can focus on interpretations of the language in other structures. This essay is structured around the bifurcation between proofs and mod- els: The first section discusses Proof Theory of relevant and substructural log- ics, and the second covers the Model Theory of these logics. This order is a natural one for a history of relevant and substructural logics, because much of the initial work — especially in the Anderson–Belnap tradition of relevant logics — started by developing proof theory. The model theory of relevant logic came some time later. As we will see, Dunn's algebraic models [76, 77] Urquhart's operational semantics [267, 268] and Routley and Meyer's rela- tional semantics [239, 240, 241] arrived decades after the initial burst of ac- tivity from Alan Anderson and Nuel Belnap. The same goes for work on the Lambek calculus: although inspired by a very particular application in lin- guistic typing, it was developed first proof-theoretically, and only later did model theory come to the fore. -
Commutative Residuated Lattices
Commutative Residuated Lattices James B. Hart, Lori Rafter, and Constantine Tsinakis September 21, 2000 Abstract A commutative residuated lattice, is an ordered algebraic struc- ture L = (L, ·, ∧, ∨, →, e), where (L, ·, e) is a commutative monoid, (L, ∧, ∨) is a lattice, and the operation → satisfies the equiva- lences a · b ≤ c ⇐⇒ a ≤ b → c ⇐⇒ b ≤ c → a for a, b, c ∈ L. The class of all commutative residuated lattices, denoted by CRL, is a finitely based variety of algebras. Histor- ically speaking, our study draws primary inspiration from the work of M. Ward and R. P. Dilworth appearing in a series of important papers [9] [10], [19], [20], [21] and [22]. In the en- suing decades special examples of commutative, residuated lat- tices have received considerable attention, but we believe that this is the first time that a comprehensive theory on the struc- ture of residuated lattices has been presented from the viewpoint of universal algebra. In particular, we show that CRL is an ”ideal variety” in the sense that its congruences correspond to order- convex subalgebras. As a consequence of the general theory, we present an equational basis for the subvariety CRLc generated by all commutative, residuated chains. We conclude the paper by proving that the congruence lattice of each member of CRLc is an 2000 Mathematics Subject Classification Primary 06B05; Secondary 06A15, 06B10, 06B20, 06D20, 06F05, 06F07, 06F20 1 algebraic, distributive lattice whose meet-prime elements form a root-system (dual tree). This result, together with the main results in [12] and [18], will be used in a future publication to an- alyze the structure of finite members of CRLc. -
From Axioms to Rules — a Coalition of Fuzzy, Linear and Substructural Logics
From Axioms to Rules — A Coalition of Fuzzy, Linear and Substructural Logics Kazushige Terui National Institute of Informatics, Tokyo Laboratoire d’Informatique de Paris Nord (Joint work with Agata Ciabattoni and Nikolaos Galatos) Genova, 21/02/08 – p.1/?? Parties in Nonclassical Logics Modal Logics Default Logic Intermediate Logics (Padova) Basic Logic Paraconsistent Logic Linear Logic Fuzzy Logics Substructural Logics Genova, 21/02/08 – p.2/?? Parties in Nonclassical Logics Modal Logics Default Logic Intermediate Logics (Padova) Basic Logic Paraconsistent Logic Linear Logic Fuzzy Logics Substructural Logics Our aim: Fruitful coalition of the 3 parties Genova, 21/02/08 – p.2/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Linear Logic: Cut Elimination Genova, 21/02/08 – p.3/?? Basic Requirements Substractural Logics: Algebraization ´µ Ä Î ´Äµ Fuzzy Logics: Standard Completeness ´µ Ä Ã ´Äµ ¼½ Linear Logic: Cut Elimination A logic without cut elimination is like a car without engine (J.-Y. Girard) Genova, 21/02/08 – p.3/?? Outcome We classify axioms in Substructural and Fuzzy Logics according to the Substructural Hierarchy, which is defined based on Polarity (Linear Logic). Genova, 21/02/08 – p.4/?? Outcome We classify axioms in Substructural and Fuzzy Logics according to the Substructural Hierarchy, which is defined based on Polarity (Linear Logic). Give an automatic procedure to transform axioms up to level ¼ È È ¿ ( , in the absense of Weakening) into Hyperstructural ¿ Rules in Hypersequent Calculus (Fuzzy Logics). -
Arxiv:1609.05261V1 [Math.LO]
BL-RINGS OLIVIER A, HEUBO-KWEGNA, CELESTIN LELE, JEAN B. NGANOU Abstract. The main goal of this article is to introduce BL-rings, i.e., com- mutative rings whose lattices of ideals can be equipped with a structure of BL-algebra. We obtain a description of such rings, and study the connec- tions between the new class and well known classes such as multiplications rings, Baer rings, Dedekind rings. Key words: Multiplication ring, Baer ring, subdirectly irreducible ring, BL- ring. 1. Introduction Given any ring (commutative or not, with or without unity) R generated by idempotents, the semiring of ideals of R under the usual operations form a residuated lattice A(R). In recent articles, several authors have investigated classes of rings for which the residuated lattice A(R) an algebra of a well- known subvariety of residuated lattices. For instance, rings R for which A(R) is an MV-algebra, also calledLukasiewicz rings are investigated in [2], rings R for which A(R) is a G¨odel algebra, also called G¨odel rings are investigated in [3], and very recently rings R for which A(R) is an pseudo MV-algebra, also called GeneralizedLukasiewicz rings are investigated in [11]. In the same spirit, the goal of the present article is we introduce and in- vestigate the class of commutative rings R for which A(R) is a BL-algebra, arXiv:1609.05261v1 [math.LO] 17 Sep 2016 also referred to as BL-rings. Among other things, we show that this class is properly contained in the class of multiplication rings as treated in [9], and contains properly each of the classes of Dedekind domains,Lukas iewicz rings, discrete valuation rings, Noetherian multiplication rings. -
Bunched Hypersequent Calculi for Distributive Substructural Logics
EPiC Series in Computing Volume 46, 2017, Pages 417{434 LPAR-21. 21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning Bunched Hypersequent Calculi for Distributive Substructural Logics Agata Ciabattoni and Revantha Ramanayake Technische Universit¨atWien, Austria fagata,[email protected]∗ Abstract We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut- elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large class of logics extending the dis- tributive commutative Full Lambek calculus DFLe and Bunched Implication logic BI. The methodology is then used to formulate new logics equipped with a cutfree calculus in the vicinity of Boolean BI. 1 Introduction The wide applicability of logical methods and their use in new subject areas has resulted in an explosion of new logics. The usefulness of these logics often depends on the availability of an analytic proof calculus (formal proof system), as this provides a natural starting point for investi- gating metalogical properties such as decidability, complexity, interpolation and conservativity, for developing automated deduction procedures, and for establishing semantic properties like standard completeness [26]. A calculus is analytic when every derivation (formal proof) in the calculus has the property that every formula occurring in the derivation is a subformula of the formula that is ultimately proved (i.e. the subformula property). The use of an analytic proof calculus tremendously restricts the set of possible derivations of a given statement to deriva- tions with a discernible structure (in certain cases this set may even be finite). -
Lecture Notes on Constructive Logic: Overview
Lecture Notes on Constructive Logic: Overview 15-317: Constructive Logic Frank Pfenning Lecture 1 August 29, 2017 1 Introduction According to Wikipedia, logic is the study of the principles of valid infer- ences and demonstration. From the breadth of this definition it is immedi- ately clear that logic constitutes an important area in the disciplines of phi- losophy and mathematics. Logical tools and methods also play an essential role in the design, specification, and verification of computer hardware and software. It is these applications of logic in computer science which will be the focus of this course. In order to gain a proper understanding of logic and its relevance to computer science, we will need to draw heavily on the much older logical traditions in philosophy and mathematics. We will dis- cuss some of the relevant history of logic and pointers to further reading throughout these notes. In this introduction, we give only a brief overview of the goal, contents, and approach of this class. 2 Topics The course is divided into four parts: I. Proofs as Evidence for Truth II. Proofs as Programs III. Proof Search as Computation IV. Substructural and Modal Logics LECTURE NOTES AUGUST 29, 2017 L1.2 Constructive Logic: Overview Proofs are central in all parts of the course, and give it its constructive na- ture. In each part, we will exhibit connections between proofs and forms of computations studied in computer science. These connections will take quite different forms, which shows the richness of logic as a foundational discipline at the nexus between philosophy, mathematics, and computer science. -
Applications of Non-Classical Logic Andrew Tedder University of Connecticut - Storrs, [email protected]
University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-8-2018 Applications of Non-Classical Logic Andrew Tedder University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Tedder, Andrew, "Applications of Non-Classical Logic" (2018). Doctoral Dissertations. 1930. https://opencommons.uconn.edu/dissertations/1930 Applications of Non-Classical Logic Andrew Tedder University of Connecticut, 2018 ABSTRACT This dissertation is composed of three projects applying non-classical logic to problems in history of philosophy and philosophy of logic. The main component concerns Descartes’ Creation Doctrine (CD) – the doctrine that while truths concerning the essences of objects (eternal truths) are necessary, God had vol- untary control over their creation, and thus could have made them false. First, I show a flaw in a standard argument for two interpretations of CD. This argument, stated in terms of non-normal modal logics, involves a set of premises which lead to a conclusion which Descartes explicitly rejects. Following this, I develop a multimodal account of CD, ac- cording to which Descartes is committed to two kinds of modality, and that the apparent contradiction resulting from CD is the result of an ambiguity. Finally, I begin to develop two modal logics capturing the key ideas in the multi-modal interpretation, and provide some metatheoretic results concerning these logics which shore up some of my interpretive claims. The second component is a project concerning the Channel Theoretic interpretation of the ternary relation semantics of relevant and substructural logics. Following Barwise, I de- velop a representation of Channel Composition, and prove that extending the implication- conjunction fragment of B by composite channels is conservative. -
Some Properties of Residuated Lattices
Some properties of residuated lattices Radim Bˇelohl´avek, Ostrava Abstract We investigate some (universal algebraic) prop- erties of residuated lattices — algebras which play the role of structures of truth values of various systems of fuzzy logic. Keywords: residuated lattice, fuzzy logic, variety, congru- ence 1991 Mathematics Subject Classification: 03B52, 06F05, 08A30, 08A40, 08B05 The interest in fuzzy logic has been rapidly growing recently (see [14], also [6, 19]). Several new algebras playing the role of the structures of truth values have been introduced and axiomatized (i.e. a system of logical axioms complete w.r.t. semantics defined over the class of corresponding algebras has been found). The aim of this paper is to investigate some (universal algebraic) properties of algebraic structures of fuzzy logic. We investigate, among others, some congruence properties which have shown to be important in universal algebra. Whenever possible, we apply some general condition known from universal algebra (we use Mal’cev-type con- ditions). Doing so, we obtain instances of the universal algebraic conditions for the algebraic structures of fuzzy logic in question. This approach, in a sense, makes visible the “very reason” of why a structure obeys a property. The most general structure considered here is that of a residuated lattice. Residuated lattices were introduced in [9] (it should be, however, noted that the motivation was by far not logical) and reinvigorated in the context of fuzzy logic in [12]. The following definition stems from [16]: Definition 1 A residuated lattice is an algebra L = hL, ∧, ∨, ⊗, →, 0, 1i such that (i) hL, ∧, ∨, 0, 1i is a lattice (the corresponding order will be denoted by ≤) with the least element 0 and the greatest element 1, (ii) hL, ⊗, 1i is a commutative monoid (i.e. -
Density Revisited
Soft Computing manuscript No. (will be inserted by the editor) Density Revisited George Metcalfe · Constantine Tsinakis Dedicated to the memory of Franco Montagna. totallyReceived: date / Accepted: date Abstract In this (part survey) paper, we revisit algebraic and proof-theoretic methods developed by Franco Montagna and his co-authors for proving that the chains (totally ordered members) of certain varieties of semilinear residuated lattices embed into dense chains of these varieties, a key step in establishing standard completeness results for fuzzy logics. Such “densifiable” varieties are precisely the varieties that are generated as quasivarieties by their dense chains. By showing that all dense chains satisfy a certain e-cyclicity equation, we give a short proof that the variety of all semilinear residuated lattices is not densifiable (first proved by Wang and Zhao). We then adapt the Jenei{Montagna standard completeness proof for monoidal t-norm logic to show that any variety of integral semilinear residuated lattices axiomatized by additional lattice-ordered monoid equations is densifiable. We also generalize known results to show that certain varieties of cancellative semilinear residuated lattices are densifiable. Finally, we revisit the Metcalfe{Montagna proof-theoretic approach, which establishes densifiability of a variety via the elimination of a density rule for a suitable hypersequent calculus, focussing on the case of commutative semilinear residuated lattices. Keywords Many-Valued Logics · Fuzzy Logics · Standard Completeness · Residuated Lattices · Semilinearity · Density Rule 1 Introduction Proving the completeness of an axiom system with respect to an intended semantics is a familiar problem in the study of logical systems. For classical propositional logic, | downloaded: 29.9.2021 the Lindenbaum-Tarski construction can be used to show that derivability of a formula α is equivalent to the validity of the equation α ≈ 1 in the class BA of all Boolean algebras.