The Capacity of Aquatic Macrophytes for Phytoremediation and Their Disposal with Specific Reference to Water Hyacinth

Total Page:16

File Type:pdf, Size:1020Kb

The Capacity of Aquatic Macrophytes for Phytoremediation and Their Disposal with Specific Reference to Water Hyacinth Environ Sci Pollut Res (2016) 23:10630–10643 DOI 10.1007/s11356-016-6329-6 REVIEW ARTICLE The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth Solomon W. Newete1 & Marcus J. Byrne1,2 Received: 23 September 2015 /Accepted: 19 February 2016 /Published online: 27 February 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract The actual amount of fresh water readily accessible Keywords Tailings dam . Macrophytes . Decomposition . for use is <1 % of the total amount of water on earth, and is Pollution . Phytoremediation . Safe disposal expected to shrink further due to the projected growth of the population by a third in 2050. Worse yet are the major issues of water pollution, including mining and industrial waste Introduction which account for the bulk of contamination sources. The use of aquatic macrophytes as a cost-effective and eco- Water is the source of life and has no substitute. Considering friendly tool for phytoremediation is well documented. that our planet is 70 % covered by water, it is a shock to realize However, little is known about the fate of those plants after that the actual amount of fresh water readily accessible for phytoremediation. This paper reviews the options for safe dis- human use in the world is <1 % (Postel et al. 1996). posal of waste plant biomass after phytoremediation. Among Currently a third of the world’s population lives under water the few mentioned in the literature are briquetting, incinera- stress and the future is bleak as the figure is expected to double tion and biogasification. The economic viability of such pro- by 2025 at the current rate of water consumption (Arnell cesses and the safety of their economic products for domestic 1999). Furthermore, water scarcity is also likely to increase use are however, not yet established. Over half of the nations due to the impacts of climate change (Arnell 2004). It is there- in the world are involved in mining of precious metals, and fore, imperative that we pay the utmost attention to manage- tailings dams are the widespread legacy of such activities. ment and conservation of our renewable surface waters which Thus, the disposal of polluted plant biomass onto mine storage will remain the main source of domestic and agricultural water facilities such as tailing dams could be an interim solution. supplies, particularly in developing countries. While deter- There, the material can act as mulch for the establishment of mining the sources of water pollution and preventing them stabilizing vegetation and suppress dust. Plant decomposition from reaching our water stores has to be the focal point of might liberate its contaminants, but in a site where contain- any solution, cleaning water by conventional means (chemi- ment is a priority. cal, physical and biological) or by phytoremediation is inevi- tably becoming more important. Conventional methods are however, often less cost-effective and less eco-friendly than Responsible editor: Elena Maestri phytoremediation where plants are used to remove contami- nants from soil or water (Ahluwalia and Goyal 2007). * Solomon W. Newete [email protected] Nevertheless, despite increased public interest in the method, particularly in the last three decades (Henry 2000), its practical use is curtailed by a number of factors, among which is the 1 School of Animal, Plant and Environmental Sciences, University of fate of the phytoremediating plants after use which about little the Witwatersrand, Johannesburg 2050, South Africa is known. This review investigates the use of aquatic macro- 2 Centre for Invasion Biology, School of Animal, Plant and phytes in phytoremediation and options for their safe disposal Environmental Sciences, University of Witwatersrand, after the process of phytoremediation. Special reference to Johannesburg 2050, South Africa water hyacinth, Eichhornia crassipes (Mart.) Solms- Environ Sci Pollut Res (2016) 23:10630–10643 10631 Laubach is made because of its wide distribution and reputa- quality as a result of acid mine drainage from abandoned coal tion as an invasive weed, in contrast to its ability to remove mines (Sheer et al. 1982). Acid mine drainage directly con- pollutants from water. taminates a total of 700 km of streams and rivers and more than 2300 ha of lakes and reservoirs in the USA (Cohen Sources of water pollution 2006). Similarly, the rapidly declining surface and ground water quality as a result of effluents and decants from aban- While water pollution also occurs through natural physical doned mines in Gauteng and the North West Provinces (South weathering of geological structures and leaching by runoff, Africa) has raised alarms over the last five years (van Eeden et the water pollution that results from a number of anthropogen- al. 2009). The gold mines in the West Rand and Far West rand ic activities such as mining, industrial and agricultural prac- near Johannesburg, alone discharge an estimated 50 tonnes of tices is unprecedented and remains a major issue of concern uranium annually into the receiving surface water courses (Sood et al. 2012). Disposal of untreated sewage and effluents (Coetzee et al. 2006). into surface water is still the norm in many countries (Ismail While water scarcity problems continue to rise as a factor and Beddri 2009). Globally, an estimated 80 % of used water of increasing world population and unpredicted impacts of is neither collected nor treated and is simply discharged into global climate change, industrial and mining waste effluents our waterways (Corcoran et al. 2010). The water bodies in the remain the main concern of governments and environmental- state of Lagos in Nigeria are used as waste water reservoirs by ists in water related issues. Thus, while increasing our water the nearby medium and large scale industries (Anetekhai et al. use efficiency and reducing our domestic and economic foot- 2007). Both organic and inorganic contaminants of water from prints on water resources is of immense importance and a such activities put all aquatic life and human health at risk and matter of urgency, implementing an effective remediation particularly threaten developing countries, where between 75 technology in the abatement of water pollutants could make and 90 % of their populations are exposed to unsafe drinking an important contribution to water security. water (Sood et al. 2012). The common contaminants include heavy metals, radionuclides, nitrates, phosphates, inorganic Conventional methods of remediation acids and organic chemicals (Arthur et al. 2005). The water pollutants of major concern are the heavy metals such as lead, A wide range of traditional methods for treating industrial and arsenic, cadmium, mercury, chromium, and thallium, due to mine wastewaters are used to remove both organic and inor- their non-biodegradability and persistence in the environment. ganic contaminants before their discharge into receiving wa- These share a high level of toxicity to aquatic organisms (e.g. tercourses. Ion exchange, reverse osmosis and electro-dialysis copper) and carcinogenic or neurotoxic effects to humans (e.g. are used to remove nitrates from contaminated waters lead and mercury) even at low concentrations (Sood et al. (Shrimali and Singh 2001). The same methods are also used 2012). in removal of heavy metals from water in addition to other Mining is by far the biggest source of heavy metal contam- methods such as chemical precipitation, coagulation-floccula- inants of the environment for many countries involved in such tion, floatation, ultrafiltration, activated carbon adsorption, activities and particularly in developing countries (Kalin et al. and solvent extraction (Kurniawan et al. 2006). The effective- 2006). The issue of acid mine drainage (AMD) is at the centre ness of each of these remediation methods however, depends of ecological problems associated with mining and it affects on a number of factors, among which are the type and the about 70 % of the world’s mining sites (Global Capital concentration of the pollutants in the target solution. Heavy Magazine 2008). AMD is formed when metal sulphides (e.g. metals such as zinc, cadmium and manganese can be pyrites) from mining solid wastes rocks are exposed to water completely removed by chemical precipitation using lime and oxygen which results in dissolved metals and H2SO4 that treatments (Charerntanyarak 1999). The same method howev- cause a low pH (<4) in the tailings environment. er, does not achieve complete removal of lead, or mercury Consequently this leads to leaching and increased metal mo- contaminant from water unless pre- or follow-up treatments bility from mine tailings (Dudka and Adriano 1997). The (e.g. reducing the solution with soda ash or sodium sulphide) AMD crisis in the province of Gauteng (South Africa) has are implemented (Dean et al. 1972). been one such issue of environmental pollution over the last Like many other techniques the traditional remediation decade with AMD flooding the western basins of the methods have some limitations. Complete removal of con- Witwatersrand (McCarthy 2010). In Papua New Guinea, con- taminants is not achievable by most methods (Dean et al. taminated mine wastes from the Ok Tedi, Porgera and 1972) and the massive amount of sludge and other residues Tolukuma mines are discharged directly into local rivers generated in the process of mine effluent treatment raises (Christmann and Stolojan 2001). The upper North Branch of the issue of their safe disposal
Recommended publications
  • Phytoextraction and Phytostabilisation Approaches of Heavy Metal Remediation in Acid Mine Drainage with Case Studies: a Review - 6129
    Mang – Ntushelo: Phytoextraction and phytostabilisation approaches of heavy metal remediation in acid mine drainage with case studies: a review - 6129 - PHYTOEXTRACTION AND PHYTOSTABILISATION APPROACHES OF HEAVY METAL REMEDIATION IN ACID MINE DRAINAGE WITH CASE STUDIES: A REVIEW MANG, K. C. – NTUSHELO, K.* Department of Agriculture and Animal Health, University of South Africa, South Africa (e-mail: [email protected]; phone: +27-(0)-748-366-063) *Corresponding author e-mail: [email protected]; phone: +27-(0)-789-027-944 (Received 5th Aug 2018; accepted 5th Oct 2018) Abstract. This review discusses phytoextraction and phytostabilisation of acid mine drainage (AMD) alongside with their benefits and limitations with case studies. Furthermore, plants associated with these two approaches of phytoremediation and impact of AMD on aquatic macrophytes used for phytoremediation were also reviewed. Both phytoextraction and phytostabilisation approaches are promising technologies in remediating AMD. However, their limitation of low metal removal and the lack of knowledge of minimum amendments required for their effective remediation call for the proposal, herein made, to combine aquatic macrophytes, as well as include plants from a wide range of families capable of phytoextraction and phytostabilisation in the remediation of AMD. Keywords: aquatic macrophytes, conventional treatment, hyperaccumulators, phytoremediation Introduction The activities of the mine cause the production of acidic water that flows down to nearby water bodies causing long term impairment to biodiversity and waterways. The acidic water produced by the mines is termed acid mine drainage (AMD). Acid mine drainage also known as acid rock drainage is a process that occurs as a result of the contact between oxygenated water and mineral pyrite which leads to the oxidation of the pyrite and the production of acids (Evangelou, 1995; Blowes et al., 2003).
    [Show full text]
  • Aquatic Macrophyte Spirodela Polyrrhiza As a Phytoremediation Tool in Polluted Wetland Water from Eloor, Ernakulam District, Kerala
    IOSR Journal Of Environmental Science, Toxicology And Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume 5, Issue 1 (Jul. - Aug. 2013), PP 51-58 www.Iosrjournals.Org Aquatic macrophyte Spirodela polyrrhiza as a phytoremediation tool in polluted wetland water from Eloor, Ernakulam District, Kerala. Anil Loveson, Rajathy Sivalingam and Syamkumar R. School of Environmental Studies, Cochin University Of Science and Technology Abstract: This study involved a laboratory experiment on the efficiency of the plant duckweed Spirodela polyrrhiza in improving the quality of two polluted wetlands of Eloor industrial area, Ernakulam, Kerala. The efficiency was tested by measuring some of physicochemical characteristics of the control and plant treatments after each eight days. All the parameters show considerable rate of reduction. In wetland I, The highest rates of reduction after 8 days of treatment were for heavy metals, accounting 95%, 79%, and 66% for Lead, Copper and Zinc, respectively, followed by 53% for Chromium, 45% for Mercury, 26% for Cobalt, 20% for manganese and 7% for Nickel. Other factors like pH, BOD, COD, Nitrate, Phosphate , sulphate, TDS, TSS and Turbidity reduced by 12%, 37%, 49%, 100%, 36%, 16%, 53%,85% and 52% respectively. In wetland II also heavy metals were removed with Cd(100%), Fe(98%), Pb(91%), Cu(74%) Zn(62%) and Hg(53%) removed more efficiently. The results showed that this aquatic plant can be successfully used for wastewater pollutants removal. Other physiochemical parameters like pH, BOD, COD, Nitrate, Phosphate , sulphate, TDS, TSS and Turbidity reduced by 14%, 40%, 60%, 100%, 38%, 65%, 73%, 85%, and 51% after 8 days of treatment.
    [Show full text]
  • Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: a Review
    International Journal of Environmental Research and Public Health Review Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review Omena Bernard Ojuederie and Olubukola Oluranti Babalola * ID Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +27-786551839 Received: 15 September 2017; Accepted: 30 November 2017; Published: 4 December 2017 Abstract: Environmental pollution from hazardous waste materials, organic pollutants and heavy metals, has adversely affected the natural ecosystem to the detriment of man. These pollutants arise from anthropogenic sources as well as natural disasters such as hurricanes and volcanic eruptions. Toxic metals could accumulate in agricultural soils and get into the food chain, thereby becoming a major threat to food security. Conventional and physical methods are expensive and not effective in areas with low metal toxicity. Bioremediation is therefore an eco-friendly and efficient method of reclaiming environments contaminated with heavy metals by making use of the inherent biological mechanisms of microorganisms and plants to eradicate hazardous contaminants. This review discusses the toxic effects of heavy metal pollution and the mechanisms used by microbes and plants for environmental remediation. It also emphasized the importance of modern biotechnological techniques and approaches in improving the ability of microbial enzymes to effectively degrade heavy metals at a faster rate, highlighting recent advances in microbial bioremediation and phytoremediation for the removal of heavy metals from the environment as well as future prospects and limitations. However, strict adherence to biosafety regulations must be followed in the use of biotechnological methods to ensure safety of the environment.
    [Show full text]
  • Phytoremediation of Industrial Wastewater Potentiality by Typha Domingensis
    Int. J. Environ. Sci. Tech., 8 (3), 639-648, Summer 2011 ISSN 1735-1472 A. K. Hegazy et al. © IRSEN, CEERS, IAU Case Report Phytoremediation of industrial wastewater potentiality by Typha domingensis 1A. K. Hegazy; 2*N. T. Abdel-Ghani; 3G. A. El-Chaghaby 1 Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia 2Department of Chemistry, Faculty of Science, Cairo University, Egypt 3Agriculture Research Center, Giza, Egypt Received 26 October 2010; revised 23 December 2010; accepted 20 February 2011; available online 1 June 2011 ABSTRACT: Phytoremediation is increasingly receiving attention as a cost effective technique that uses plants to remediate contaminants from wastewater, soil and sediments. In this study, the ability of Typha domingensis to uptake heavy metals as well as its potential application for phytoremediation was assessed. Pollutant elements concentrations were measured in samples of wastewater, sediments and Typha domingensis collected from industrial wastewater ponds, El-Sadat city, Egypt. This study specifically focused on the capacity of Typha domingensis to absorb and accumulate aluminum, iron, zinc and lead. Results indicated thatTypha domingensis was capable of accumulating the heavy metal ions preferentially from wastewater than from sediments. The accumulation of metals in plant organs attained the highest values in roots, rhizomes and old leaves. Rhizofiltration was found to be the best mechanism to explain Typha domingensis phytoremediation capability. Keywords: Aluminium; Bioconcentration factor; El-Sadat city; Iron; Lead; Rhizofiltration; Translocation factor; Zinc INTRODUCTION The industrial sector is an important consumer of activities. The industry sector includes many important both natural resources and a contributor to activities which are: iron (Fe3+) and steel, yarn and environmental pollution.
    [Show full text]
  • A Citizen's Guide to Phytoremediation
    A Citizen’s Guide to Phytoremediation What Is Phytoremediation? as bacteria) that live in the soil break down the sorbed contaminants to less harmful chemicals. Phytoremediation uses plants to clean up contaminated (See A Citizen’s Guide to Bioremediation [EPA environments. Plants can help clean up many types of 542-F-12-003].) contaminants including metals, pesticides, explosives, and oil. However, they work best where contaminant Phytoremediation often is used to slow the movement levels are low because high concentrations may limit of contaminated groundwater. Trees act like a pump, plant growth and take too long to clean up. Plants drawing the groundwater up through their roots to keep also help prevent wind, rain, and groundwater flow it from moving. This method of phytoremediation is from carrying contaminants away from the site to called “hydraulic control.” It reduces the movement of surrounding areas or deeper underground. contaminated groundwater toward clean areas offsite. Constructed wetlands are another form of How Does It Work? phytoremediation. A wetland may be created at a site to treat acid mine drainage that flows through it or as a final Certain plants are able to remove or break down treatment step for water discharged from other treatment harmful chemicals from the ground when their roots systems. Water treated with constructed wetlands take in water and nutrients from the contaminated soil, generally has very low concentrations of contaminants sediment, or groundwater. Plants can help clean up that need to be removed before it may be discharged contaminants as deep as their roots can reach using into a lake or stream.
    [Show full text]
  • Phytoremediation of Persistent Organic Pollutants: Mechanistic Studies and Field Application
    Phytoremediation of Persistent Organic Pollutants: Mechanistic studies and Field Application Jason C. White Head, Department of Analytical Chemistry The Connecticut Agricultural Experiment Station Persistent Organic Pollutants (POPs) in Soil • They persist for decades • Global distribution • Likely mutagenic, estrogenic, carcinogenic effects • Bioaccumulation, biomagnification • Other remediation strategies are ineffective due to high degree of sequestration; plants should not facilitate EPA Dirty Dozen their remediation Aldrin Chlordane DDT/DDE Dieldrin Dioxins Endrin Furans Heptachlor Lindane Mirex PCBs Toxaphene p,p'-DDE (ng/g) 1000 1500 2000 2500 3000 500 0 Soil Roots of translocation and Uptake Shoots S. squash Pumpkin Rye Clover Mustard Zucchini W. squash weathered Soil Roots species plant selected Shoots Soil Roots Shoots pepo Cucurbita Soil Roots Stems Leaf ovifera Fruit p,p’ Soil Roots Stems ssp -DDE by Leaf Cucurbita pepo Fruit Soil Roots Stems Leaf Fruit ssp Soil Roots pepo Stems Leaf Fruit Phytoextraction (% removal) of weathered by plant species. Numbers in green indicate mass ratio 2.25 of root to soil (values are 10 1.50 % Phytoextracted0.75 p,p' 0.00 system p,p' system -DDE in root -DDE in shoot 52 Rye 15 Vetch 37 Pigeonpea 0.65 Peanut 1.8 -4 Cucumber ) p,p’ 91 Mustard -DDE 0.88 9.0 W. Squash 32 Clover 9.7 Canola 40 Lupin Pumpkin UptakeUptake andand translocationtranslocation ofof chlordanechlordane fromfrom soilsoil byby selectedselected plantplant speciesspecies Soil Zucchini 24000 Cucumber Tomato Spinach Corn 21000 7500 5000 Chlordane (ng/g) 2500 0 Soil Roots Stems Leaves Fruit DDX in the xylem sap of 3 cucurbits 20.0 Zucchini DDE DDT Squash 15.0 Cucumber 10.0 DDD 5.0 1.5 1.0 0.5 Xylem sap ConcentrationXylem (ng/mL) 0.0 35 Zucchini 30 Cucumber Squash 25 20 15 10 DDE Flow (ng/h) 5 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 Root mass (g, dry weight) CAES Research on the C.
    [Show full text]
  • An Environmentally Sound Technology for Pollution Prevention, Control and Remediation in Developing Countries
    Educational Research and Review Vol. 2 (7), pp. 151-156, July 2007 Available online at http://www.academicjournals.org/ERR ISSN 1990-3839 © 2007 Academic Journals Review Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries Erakhrumen, Andrew Agbontalor Department of Forest Resources Management, University of Ibadan, Ibadan, Nigeria. E-mail: [email protected]. Accepted 30 May, 2007 The problem of environmental pollution has assumed an unprecedented proportion in many parts of the world especially in Nigeria and its Niger-Delta region in particular. This region is bedeviled with this problem perhaps owing to interplay of demographic and socio-economic forces coupled with the various activities that revolve round the exploration for and exploitation of large deposit of crude oil discovered there. Many methods and processes of preventing, removing and or correcting the negative effects of pollutants released into the environments exist but their application in this country for this purpose has either been poorly implemented or not at all, a situation that is worsening owing probably to claims of lack of virile regulatory bodies and overwhelming dependence of government on crude oil for income. Studies have shown that the livelihood of local inhabitants largely depend on renewable natural resources which is environment dependent, thus, it is imperative that the environment should be sustainably managed in order to continue serving this function through comparatively cheaper means, one of which phytoremediation is. The objective of this review is to discuss phytoremediation studies using in-situ techniques and their potentials as a remediation technique that utilizes the age- long inherent abilities of living plants to remove pollutants from the environment but which is yet to become a commercially available technology in many parts of the world including Nigeria.
    [Show full text]
  • Automated Imaging of Duckweed Growth and Development 2 3 Kevin L
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.453240; this version posted July 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Automated imaging of duckweed growth and development 2 3 Kevin L. Cox Jr.1,2, Jordan Manchego3, Blake C. Meyers1,4, Kirk J. Czymmek1 *, Alex Harkess3,5 * 4 5 1 Donald Danforth Plant Science Center, St. Louis, MO 63132 6 2 Howard Hughes Medical Institute, Chevy Chase, MD 20815 7 3 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806 8 4 Department of Biology, University of Missouri, Columbia, MO 65211 9 5 Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849 10 11 *Correspondence: Alex Harkess ([email protected]) or Kirk J. Czymmek 12 ([email protected]) 13 14 ORCID IDs: 15 K.L. Cox: 0000-0003-2524-8988 16 J. Manchego: XXXX-XXXX-XXXX-XXXX 17 B.C. Meyers: 0000-0003-3436-6097 18 K.J. Czymmek: 0000-0002-5471-7395 19 A. Harkess: 0000-0002-2035-0871 20 21 Keywords: Lemna, time-lapse, PlantCV, microscopy bioRxiv preprint doi: https://doi.org/10.1101/2021.07.21.453240; this version posted July 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.
    [Show full text]
  • Efficiency of Five Selected Aquatic Plants in Phytoremediation
    applied sciences Article Efficiency of Five Selected Aquatic Plants in Phytoremediation of Aquaculture Wastewater Nurul Umairah Mohd Nizam 1, Marlia Mohd Hanafiah 1,2,*, Izzati Mohd Noor 1 and Hazwani Izzati Abd Karim 1 1 Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; [email protected] (N.U.M.N.); [email protected] (I.M.N.); [email protected] (H.I.A.K.) 2 Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-89215865 Received: 29 February 2020; Accepted: 19 March 2020; Published: 14 April 2020 Featured Application: Authors are encouraged to provide a concise description of the specific application or a potential application of the work. This section is not mandatory. Abstract: The lack of clean water sources, due to the presence of pollutants in water, is a major issue in many countries, including Malaysia. To overcome this problem, various methods have been introduced, including phytoremediation treatment. Therefore, this phytoremediation study examined the ability of five aquatic plants—Centella asiatica, Ipomoea aquatica, Salvinia molesta, Eichhornia crassipes, and Pistia stratiotes—to remove three pollutants—total suspended solids (TSS), ammoniacal nitrogen (NH3-N), and phosphate—from aquaculture wastewater. Using wastewater samples, each containing 50 g of one of the plants, the pollutant levels were measured every two days for 14 days. The results showed a drastic decline in the concentration of pollutants, where C. asiatica was able to remove 98% of NH3-N, 90% of TSS, and 64% of phosphate, while I.
    [Show full text]
  • Improving Indoor Air Quality by Phytoremediation Technology Bahni Ray, Assistant Professor, Department of Mechanical Engineering, IIT Delhi
    Improving indoor air quality by phytoremediation technology Bahni Ray, Assistant Professor, Department of Mechanical Engineering, IIT Delhi People spend most of their time indoors where the air is often more polluted than outside because there are additional sources of pollutants and room ventilation system plays a major role. Especially now during the pandemic lockdown situation the time spend in indoor have drastically increased. According to WHO, exposure to smoke from cooking fires causes 3.8 million premature deaths every year. Burning fuels such as dung, wood and coal in inefficient stoves or open hearths produces a variety of health-damaging pollutants, including particulate matter (PM), methane, carbon monoxide, polyaromatic hydrocarbons (PAH) and volatile organic compounds (VOC) which include a range of organic compounds that quickly vaporise at room temperature, such as ethyl acetate and benzene. From the late nineties scientist has explored the Phytoremediation can be employed in abating use of plants as bio-filter to reduce indoor air particulate matters (PMs), volatile organic pollution. Specific plants have the potential to compounds (VOCs), inorganic compounds, reduce pollutants in air, remove carbon dioxide persistent organic pollutants (POPs), and through photosynthesis and help reduce heavy metals (HM). For their life processes greenhouse gases in the atmosphere. This plants require intensive gas exchange, during technology is named as air phytoremediation which air contaminants are accumulated on leaf which has many advantages over the traditional surfaces or absorbed into the tissues. Special leaf indoor air pollution treatment methods like features and structures such as leaf folding, water scrubbing, electrostatic precipitators, hairs, trichomes and wax layers have specific HEPA filters.
    [Show full text]
  • Phytoremediation As Tool for Prevention of Contaminant Flow to Hydrological Systems
    RURAL AND ENVIRONMENTAL ENGINEERING, LANDSCAPE ARCHITECTURE DOI: 10.22616/rrd.24.2018.029 PHYTOREMEDIATION AS TOOL FOR PREVENTION OF CONTAMINANT FLOW TO HYDROLOGICAL SYSTEMS Kristine Valujeva1, Juris Burlakovs2, Inga Grinfelde1, Jovita Pilecka1, Yahya Jani2, William Hogland2 1Latvia University of Life Science and Technologies, Latvia 2Linnaeus University, Sweden [email protected] Abstract Management of remediation projects in contaminated sites has become an increasingly global challenge and nowadays takes intensive international environmentally sound cooperation intended to relieve negative consequences of landscape pollution. This paper aims to deal with the phytoremediation approach for protection of environment and preventing the streaming of contaminant flows to hydrological systems. Phytoremediation is a cost-effective environmentally friendly clean-up technology, which uses plants and microorganisms in rhizosphere for soil and groundwater treatment. Phytoremediation is enhancing degradation of organic pollutants and improving stabilization of inorganic contaminants where plants can be used to treat soil and water polluted with hydrocarbons, chlorinated substances, pesticides, metals, explosives, radionuclides as well as to reduce the excess of nutrients. Selection of species for this type of treatment processes is based on evapotranspiration potential and ability to bioaccumulate contaminants. The project entitled “Phytoremediation Park for treatment and recreation at glassworks contaminated sites” (PHYTECO) aimed at cross-sector
    [Show full text]
  • Microplastic-Toxic Chemical Interaction: a Review Study on Quantified Levels, Mechanism and Implication
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 August 2019 doi:10.20944/preprints201908.0260.v1 Peer-reviewed version available at SN Applied Sciences 2019; doi:10.1007/s42452-019-1352-0 Microplastic-Toxic Chemical Interaction: a Review Study on Quantified Levels, Mechanism and Implication Verla Andrew Wirnkor1, Enyoh Christian Ebere1*, Verla Evelyn Ngozi2, Nwarnorh Kieran Oharley3. 1. Group Research in Analytical Chemistry, Environment and Climate Change (GRACE&CC), Department of Chemistry, Imo State University (IMSU), PMB 2000 Owerri, Imo State, Nigeria 2. Department of Environmental Technology, Federal University of Technology, Owerri, Imo State Nigeria 3. Department of Chemistry, Imo State University (IMSU), PMB 2000 Owerri, Imo State, Nigeria *Corresponding Author: [email protected]; [email protected] Abstract Current problem facing researchers globally is microplastics as well as toxic chemical pollution of the ecosystem. Microplastics carry toxic chemicals in the ecosystem.serving as a vector for transport. In this study, a review of the literature has been conducted with the following objectives: (1) to summarise the concentrations of toxic chemicals such heavy metals and hydrophobic organic contaminants sorped on microplastics; (2) to evaluate their spatial distribution regarding adsorbed contaminant (3) to discuss plausible mechanism by which microplastics adsorp or desorp toxic chemicals in the environment; (4) to discuss implications of their occurrence in air, water and soil media; and (5) to discuss the impact of ingested microplastics to human health. Microplastics are ubiquitous environmental contaminant. Concentrations of sorped toxic chemical varied with location which represents a local problem; industrialized areas (especially areas experiencing crude oil related activities or have history of crude oil pollution) have higher concentrations than less industrialized areas.
    [Show full text]