Can Our Chestnut Survive Another Invasion?
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
CHESTNUT (CASTANEA Spp.) CULTIVAR EVALUATION for COMMERCIAL CHESTNUT PRODUCTION
CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE By Ana Maria Metaxas Approved: James Hill Craddock Jennifer Boyd Professor of Biological Sciences Assistant Professor of Biological and Environmental Sciences (Director of Thesis) (Committee Member) Gregory Reighard Jeffery Elwell Professor of Horticulture Dean, College of Arts and Sciences (Committee Member) A. Jerald Ainsworth Dean of the Graduate School CHESTNUT (CASTANEA spp.) CULTIVAR EVALUATION FOR COMMERCIAL CHESTNUT PRODUCTION IN HAMILTON COUNTY, TENNESSEE by Ana Maria Metaxas A Thesis Submitted to the Faculty of the University of Tennessee at Chattanooga in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science May 2013 ii ABSTRACT Chestnut cultivars were evaluated for their commercial applicability under the environmental conditions in Hamilton County, TN at 35°13ꞌ 45ꞌꞌ N 85° 00ꞌ 03.97ꞌꞌ W elevation 230 meters. In 2003 and 2004, 534 trees were planted, representing 64 different cultivars, varieties, and species. Twenty trees from each of 20 different cultivars were planted as five-tree plots in a randomized complete block design in four blocks of 100 trees each, amounting to 400 trees. The remaining 44 chestnut cultivars, varieties, and species served as a germplasm collection. These were planted in guard rows surrounding the four blocks in completely randomized, single-tree plots. In the analysis, we investigated our collection predominantly with the aim to: 1) discover the degree of acclimation of grower- recommended cultivars to southeastern Tennessee climatic conditions and 2) ascertain the cultivars’ ability to survive in the area with Cryphonectria parasitica and other chestnut diseases and pests present. -
Leafy and Crown Gall
Is it Crown Gall or Leafy Gall? Melodie L. Putnam and Marilyn Miller Humphrey Gifford, an early English poet said, “I cannot say the crow is white, But needs must call a spade a spade.” To call a thing by its simplest and best understood name is what is meant by calling a spade a spade. We have found confusion around the plant disease typified by leafy galls and shoot proliferation, and we want to call a spade a spade. The bacterium Rhodococcus fascians causes fasciation, leafy galls and shoot proliferation on plants. These symptoms have been attributed variously to crown gall bacteria (Agrobacterium tumefaciens), virus infection, herbicide damage, or eriophyid mite infestation. There is also confusion about what to call the Figure 1. Fasciation (flattened growth) of a pumpkin symptoms caused by R. fascians. Shoot stem, which may be due to disease, a genetic proliferation and leafy galls are sometimes condition, or injury. called “fasciation,” a term also used to refer to tissues that grow into a flattened ribbon- like manner (Figure 1). The root for the word fasciation come from the Latin, fascia, to fuse, and refers to a joining of tissues. We will reserve the term fasciation for the ribbon like growth of stems and other organs. The terms “leafy gall” and “shoot proliferation” are unfamiliar to many people, but are a good description of what is seen on affected plants. A leafy gall is a mass of buds or short shoots tightly packed together and fused at the base. These may appear beneath the soil or near the soil line at the base of the stem (Figure 2). -
Chestnut Gall Wasp ( Dryocosmus Kuriphilus )
New Disease Reports (2011) 23, 35. [doi:10.5197/j.2044-0588.2011.023.035] Chestnut gall wasp (Dryocosmus kuriphilus) infestations: new opportunities for the chestnut blight fungus Cryphonectria parasitica? S. Prospero* and B. Forster Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland *E-mail: [email protected] Received: 08 Mar 2011. Published: 30 Jun 2011. Keywords: invasive organisms, interactions, Castanea sativa The invasive chestnut gall wasp Dryocosmus kuriphilus (Cynipidae) is one eventually spreading into the adjacent twig, inducing the formation of of the most important insect pests on Castanea species worldwide (EPPO, cankers. More detailed information on the incidence of chestnut blight on 2005). In 2009, D. kuriphilus was found for the first time in southern twigs with galls would be helpful for better estimating the ecological Switzerland, most likely an invasion from nearby Italy (Forster et al., effects of the interaction between these two invasive organisms. 2009). In summer 2010, in a five hectare chestnut orchard near Stabio, a twig dieback was observed in the crown of trees heavily infested with last Acknowledgements season's D. kuriphilus galls (Fig. 1). This orchard showed one of the The authors would like to thank Esther Jung for conducting the laboratory heaviest gall infestations in Switzerland. In spring 2010, more than 40% of analyses and Daniel Rigling and Ursula Heiniger for critically reading the the buds were infested with galls. An inspection after leaf fall revealed that manuscript. young twigs (i.e. twigs formed in the current year or in the previous year) with galls were more likely to have symptoms of chestnut blight, caused References by the fungus Cryphonectria parasitica (Diaporthales, Ascomycota). -
Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil. -
The American Chestnut
Historic, Archive Document Do not assume content reflects current scientific knowledge, policies, or practices. United States Department of Agriculture the American National Agricultural Library Chestnut: A Bibliography. State University of New York Geneseo Bibliographies and Literature of Agriculture Number 103 949140 United States Department of Agriculture The American National Agricultural Library Chestnut: J Agricultural Library A Bibliography State University Of New York A bibliography of references to Castanea dentata and other Geneseo chestnut species, and on Chestnut Blight and its causal pathogen of the fungal genus Endothia or Cryphonectria. By Bibliographies and Literature of Agriculture Herman S. Forest Number 103 State University of New York September 1 990 Geneseo Richard J. Cook Rochester, NY and Charles N. Bebee National Agricultural Library National Agricultural Library Beltsville, Maryland 1990 National Agricultural Library Cataloging Record: Forest, Herman S. The American chestnut : a bibliography of references to Castanea dentata and other chestnut species, and on chestnut blight and its causal pathogen of the fungal genus Endothia or Cryphonectria. (Bibliographies and literature of agriculture ; no. 103) 1. American chestnut — Bibliography. 2. Endothia parasitica — Bibliography. I. Cook, Richard J. II. Bebee, Charles N. III. Title. aZ5076.AlU54 no. 103 CONTENTS Dedication and Acknowledgments iv Preface v Key to References, Base List 1 Base Reference List 6 List Two, Key to References • 87 References, List Two 91 iii ACKNOWLEDGMENTS We owe thanks to Jean Quinn Wade, who started with Dick Cook's collection of file cards and all manner of disorderly references given her over a 10-year period. Out of these she standardized, organized, and typed the preliminary edition of this bibliography (1986). -
The Structure of Cynipid Oak Galls: Patterns in the Evolution of an Extended Phenotype
The structure of cynipid oak galls: patterns in the evolution of an extended phenotype Graham N. Stone1* and James M. Cook2 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK ([email protected]) 2Department of Biology, Imperial College, Silwood Park, Ascot, Berkshire SL5 7PY, UK Galls are highly specialized plant tissues whose development is induced by another organism. The most complex and diverse galls are those induced on oak trees by gallwasps (Hymenoptera: Cynipidae: Cyni- pini), each species inducing a characteristic gall structure. Debate continues over the possible adaptive signi¢cance of gall structural traits; some protect the gall inducer from attack by natural enemies, although the adaptive signi¢cance of others remains undemonstrated. Several gall traits are shared by groups of oak gallwasp species. It remains unknown whether shared traits represent (i) limited divergence from a shared ancestral gall form, or (ii) multiple cases of independent evolution. Here we map gall character states onto a molecular phylogeny of the oak cynipid genus Andricus, and demonstrate three features of the evolution of gall structure: (i) closely related species generally induce galls of similar structure; (ii) despite this general pattern, closely related species can induce markedly di¡erent galls; and (iii) several gall traits (the presence of many larval chambers in a single gall structure, surface resins, surface spines and internal air spaces) of demonstrated or suggested adaptive value to the gallwasp have evolved repeatedly. We discuss these results in the light of existing hypotheses on the adaptive signi¢cance of gall structure. Keywords: galls; Cynipidae; enemy-free space; extended phenotype; Andricus layers of woody or spongy tissue, complex air spaces within 1. -
National Oak Gall Wasp Survey
ational Oak Gall Wasp Survey – mapping with parabiologists in Finland Bess Hardwick Table of Contents 1. Introduction ................................................................................................................. 2 1.1. Parabiologists in data collecting ............................................................................. 2 1.2. Oak cynipid gall wasps .......................................................................................... 3 1.3. Motivations and objectives .................................................................................... 4 2. Material and methods ................................................................................................ 5 2.1. The volunteers ........................................................................................................ 5 2.2. Sampling ................................................................................................................. 6 2.3. Processing of samples ............................................................................................ 7 2.4. Data selection ........................................................................................................ 7 2.5. Statistical analyses ................................................................................................. 9 3. Results ....................................................................................................................... 10 3.1. Sampling success ................................................................................................. -
Butlleti 71.P65
Butll. Inst. Cat. Hist. Nat., 71: 83-95. 2003 ISSN: 1133-6889 GEA, FLORA ET FAUNA The life cycle of Andricus hispanicus (Hartig, 1856) n. stat., a sibling species of A. kollari (Hartig, 1843) (Hymenoptera: Cynipidae) Juli Pujade-Villar*, Roger Folliot** & David Bellido* Rebut: 28.07.03 Acceptat: 01.12.03 Abstract and so we consider A. mayeti and A. niger to be junior synonyms of A. hispanicus. Finally, possible causes of the speciation of A. kollari and The marble gallwasp, Andricus kollari, common A. hispanicus are discussed. and widespread in the Western Palaeartic, is known for the conspicuous globular galls caused by the asexual generations on the buds of several KEY WORDS: Cynipidae, Andricus, A. kollari, A. oak species. The sexual form known hitherto, hispanicus, biological cycle, sibling species, formerly named Andricus circulans, makes small sexual form, speciation, distribution, morphology, gregarious galls on the buds of Turkey oak, A. mayeti, A. burgundus. Quercus cerris; this oak, however, is absent from the Iberian Peninsula, where on the other hand the cork oak, Q. suber, is present. Recent genetic studies show the presence of two different Resum populations or races with distribution patterns si- milar to those of Q. cerris and Q. suber. We present new biological and morphological Cicle biològic d’Andricus hispanicus (Hartig, evidence supporting the presence of a sibling 1856) una espècie bessona d’A. kollari (Hartig, species of A. kollari in the western part of its 1843) (Hymenoptera: Cynipidae) range (the Iberian Peninsula, southern France and North Africa), Andricus hispanicus n. stat.. Biological and morphological differences separating these Andricus kollari és una espècie molt comuna dis- two species from other closely related ones are tribuida a l’oest del paleartic coneguda per la given and the new sexual form is described for the gal·la globular i relativament gran de la generació first time. -
Identifying Certain Factors That Give Hunting Arrows Improved Performance in Windy Conditions and Increased Energy Downrange
(Opposite) Variables such as arrow diameter and fletching size play a huge role in downrange arrow performance. (Below) Easton’s AXIS arrows are a top choice for bowhunters looking to maximize wind drift and energy downrange since they are ultra-small in diameter and weigh about 9 to 10 grains per inch of shaft length. This allows for a total arrow weight well beyond 400 grains. Identifying certain factors that give hunting arrows improved performance in windy conditions and increased energy downrange. By Joe Bell Ample front-of-center weight is crucial for top accuracy when an arrow is subjected to a strong crosswind. The more front heavy the arrow is, the greater its steering capability becomes. This lessens point-aim errors and increases accuracy. he crawl was one of the Eventually, I made it to 45 yards— the arrow to strike. I became ecstatic. longest I’ve ever made on a as close as it was going to get. I felt The caribou ran over the rise and big-game animal. For hours I confident making the shot. I nocked disappeared. My guide and I later had been laying and slithering an arrow, came to my knees, and found the bull lying stone dead in a around in the spongy tundra waited. Several of the cows soon got patch of spruce. Tgrass, doing my best to get inside nervous and rose from their beds, and While soaking in my success, I bowrange of a nice woodland bailed over a small rise. I knew it was a began to reflect, and quickly realized caribou. -
Genomes of the Hymenoptera Michael G
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Ecology, Evolution and Organismal Biology Ecology, Evolution and Organismal Biology Publications 2-2018 Genomes of the Hymenoptera Michael G. Branstetter U.S. Department of Agriculture Anna K. Childers U.S. Department of Agriculture Diana Cox-Foster U.S. Department of Agriculture Keith R. Hopper U.S. Department of Agriculture Karen M. Kapheim Utah State University See next page for additional authors Follow this and additional works at: https://lib.dr.iastate.edu/eeob_ag_pubs Part of the Behavior and Ethology Commons, Entomology Commons, and the Genetics and Genomics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ eeob_ag_pubs/269. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Ecology, Evolution and Organismal Biology at Iowa State University Digital Repository. It has been accepted for inclusion in Ecology, Evolution and Organismal Biology Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Genomes of the Hymenoptera Abstract Hymenoptera is the second-most sequenced arthropod order, with 52 publically archived genomes (71 with ants, reviewed elsewhere), however these genomes do not capture the breadth of this very diverse order (Figure 1, Table 1). These sequenced genomes represent only 15 of the 97 extant families. Although at least 55 other genomes are in progress in an additional 11 families (see Table 2), stinging wasps represent 35 (67%) of the available and 42 (76%) of the in progress genomes. -
Cooper Fitness Center – Dallas Pilates Professionals
Cooper Fitness Center – Dallas Pilates Professionals Michelle Hoffman Sarah Paxton Michelle played competitive sports—soccer, volleyball, Sarah’s professional career has spanned many industries. and tennis—until her late 20s. She also lifted weights A professional dancer for five years, her experience and kick-boxed. Twelve years ago, Michelle found in includes work with Norwegian Cruise Lines as well as Pilates a workout regimen that would allow her to keep being a founding co-director of a modern dance company. her inherent strength but add flexibility and openness as Sarah has developed and managed fitness programs for well. She gave up an overseas marketing career to make several well-known facilities in the Dallas/Fort Worth Pilates her profession and trained extensively in the United States and metroplex including The Spa at The Crescent. She currently trains groups Australia: New York Method, Stott Pilates, Body Control Pilates, and and individuals in diverse forms of fitness. Her love of Pilates helps Michael Miller Pilates. She holds certifications from Exercise Science Sarah keep a balance between career and her two children. Alliance and Michael Miller and is working to gain certification through Karen Sanzo at Pilates Unlimited. Carla Sottovia, Ph.D. Carla is the assistant fitness director and senior Viviana Lubertino personal trainer at Cooper Fitness Center as well as an Viviana is a graduate professional ballet dancer from the enthusiastic Pilates instructor. In 2005 she was selected renowned Superior Institute of Art of the Teatro Colon Personal Trainer of the Year by IDEA (International in Buenos Aires. She has been a principal ballerina in Health and Fitness Association). -
Invasion by the Chestnut Gall Wasp in Italy Causes Significant Yield Loss In
Agricultural and Forest Entomology (2014), 16,75–79 DOI: 10.1111/afe.12036 Invasion by the chestnut gall wasp in Italy causes significant yield loss in Castanea sativa nut production ∗ ∗ ∗ Andrea Battisti , Isadora Benvegnu` †, Fernanda Colombari and Robert A. Haack‡ ∗Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, 35020, Legnaro, Italy, †Veneto Agricoltura, Agripolis, 35020, Legnaro, Italy, and ‡USDA Forest Service, Northern Research Station, 1407 South Harrison Road, East Lansing, MI, 48823, U.S.A. Abstract 1 The Asian chestnut gall wasp Dryocosmus kuriphilus Yasumatsu (Hymenoptera Cynipidae) is an invasive species in chestnut forests and orchards in many parts of the world. 2 Nuts produced by the European chestnut (Castanea sativa Miller) are important in human food and culture, and as a component in food webs in forest ecosystems. 3 Severe infestations are reported to reduce nut yield, although precise data are lacking because of large natural year-to-year variability in yield. 4 The recent colonization of chestnut orchards in north-eastern Italy, where nut yield has been continuously and precisely recorded for several years, offered an opportunity to calculate the impact of gall wasp infestation level on yield. 5 The nut yield of C. sativa chestnut trees was negatively related to the gall wasp infestation level, with losses as high as 80% being reported when the number of current-year galls was above six galls per 50-cm twig. 6 Yield losses can be explained by direct and indirect factors related to gall formation, and a fuller understanding of the mechanisms involved could identify possible mitigation measures.