Sternal Keel Affects Swimming Speed in Giant Water Scavenger Beetles (Coleoptera: Hydrophilidae: Hydrophilini)

Total Page:16

File Type:pdf, Size:1020Kb

Sternal Keel Affects Swimming Speed in Giant Water Scavenger Beetles (Coleoptera: Hydrophilidae: Hydrophilini) Canadian Journal of Zoology Evidence of morphological adaptation to life underwater: Sternal keel affects swimming speed in giant water scavenger beetles (Coleoptera: Hydrophilidae: Hydrophilini) Journal: Canadian Journal of Zoology Manuscript ID cjz-2020-0247.R1 Manuscript Type: Article Date Submitted by the 23-Dec-2020 Author: Complete List of Authors: Matsushima, Ryosuke; University of Tsukuba Is your manuscript invited for consideration in a Special Not applicableDraft (regular submission) Issue?: Aquatic beetles, gas gill, motion analysis, oscillatory movement, Keyword: submergence, water scavenger beetles, Hydrophilus acuminatus © The Author(s) or their Institution(s) Page 1 of 22 Canadian Journal of Zoology Evidence of morphological adaptation to life underwater: Sternal keel affects swimming speed in giant water scavenger beetles (Coleoptera: Hydrophilidae: Hydrophilini) Ryosuke MATSUSHIMA1 1Laboratory of Conservation Ecology, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan Draft Correspondence: Ryosuke Matsushima, Laboratory of Conservation Ecology, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan E-mail: [email protected] ORCID: https://orcid.org/0000-0001-5131-4147 1 © The Author(s) or their Institution(s) Canadian Journal of Zoology Page 2 of 22 Abstract Fundamentally, insects evolved on land and secondarily inhabited aquatic environments multiple times. To live underwater, aquatic insects have acquired enormously variable morphological, developmental, physiological, and ecological traits, such as gas exchange systems and swimming-related characteristics. Giant water scavenger beetles of the tribe Hydrophilini (Coleoptera: Hydrophilidae) are characterised by the presence of sternal keel, which often extends posteriorly. Despite being a conspicuous morphological trait, its function remains unclear. Here, I verified two hypotheses: keel affects (1) submergence time following air replacement as well as (2) speed and oscillatory movement during forward swimmingDraft in Hydrophilus acuminatus Motschulsky, 1854. Submergence time was affected by body mass rather than keel removal; in other words, larger individuals replaced their gas gills more frequently. Keel removal reduced swimming speed by 12.5%. These observations support hypothesis (2) and are also consistent with previous speculations that sternal keel is a key adaptation to swim, but the results showed that the degree of oscillation was closely related to body mass but not keel removal. Further studies are warranted to elucidate precise factors through which the presence of keel increases swimming speed. Such studies would provide clues into understanding the associations amongst body size, swimming methods, and morphological traits. Keywords: Aquatic beetles; gas gill; Hydrophilus acuminatus; motion analysis; oscillatory movement; submergence; water scavenger beetles 2 © The Author(s) or their Institution(s) Page 3 of 22 Canadian Journal of Zoology INTRODUCTION Fundamentally, insects evolved on land, and some orders, including Diptera, Hemiptera, and Coleoptera, secondarily inhabited aquatic environments multiple times (e.g. Andersen 1995; Jäch and Balke 2008). To live underwater, these insects have acquired enormously variable morphological, developmental, physiological, and ecological traits (Lancaster and Downes 2013; Bilton et al. 2019). One of the most specialised traits in aquatic insects is gas exchange system. For instance, most adult diving beetles (Dytiscidae) and water boatmen (Corixidae) use gas gills: they hold air bubblesDraft under elytra and hemielytra or trap them using a layer of hydrophobic hair (Rahn and Paganelli 1968). The water bug Aphelocheirus sp. (Aphelochiridae) possess plastron gills, which can fully satisfy body’s oxygen demand by diffusion of oxygen from water into the gas store (Thorpe 1950; Flynn and Bush 2008; Seymour et al. 2015). Moreover, swimming-related traits of aquatic insects, such as body shape and limb structure, are evidently modified in various ways. For instance, adult dytiscids and gyrinids show dorso-ventrally flattened or streamlined bodies and oar-like legs possessing swimming hair. These specialised morphological traits help energy-efficient swimming by minimising drag as well as increasing stability and manoeuvrability (Nachtigall 1961; Ribera and Foster 1997). Water scavenger beetles (Coleoptera: Hydrophilidae) comprise over 3000 described species that show nearly global distribution (Short and Fikáček 2013). Many of these species are well-known as aquatic beetles inhabiting 3 © The Author(s) or their Institution(s) Canadian Journal of Zoology Page 4 of 22 various environments, including small ponds, stream margins, and wetlands. Some species inhabit both semiaquatic and terrestrial environments. Aquatic hydrophilids hold air bubbles on their ventral thorax and/or abdomen in addition to under wings, namely, gas gill breathers. Under air deficiency, these insects extend their antennae above water and send fresh atmospheric air to the gas store (Lancaster and Downes 2013). However, the air bubbles on the ventral side would make it difficult for them to maintain posture in the water. Indeed, several groups with smaller body sizes (e.g., Amphiops) move through the water with their ventral side above (Angus 1966). As for their swimming method, they follow alternate-leg swimming (legs on either side are paddled alternately), producing a distinct side-to-sideDraft body movement, similar to the members of Haliplidae and Curculionidae (Hughes 1958; Barr and Smith 1980). Majority of hydrophilids bear swimming hair on the tibiae and/or tarsi (Hughes 1958; Short and Fikáček 2013). Overall, the gas exchange system and swimming-related traits of hydrophilids play pivotal roles in enabling life underwater. The tribe Hydrophilini contains some of the largest aquatic insects in the world, with some species exceeding a body length of 50 mm (Short 2010; Short and Fikáček 2013). Importantly, all members of this tribe are characterised by the presence of sternal keel, resulting from the fusion of meso- and metaventral elevations, which often extends posteriorly over the abdominal ventrites as a sharp spine (Hansen 1991; Short and Fikáček 2013). Interestingly, it is similar to the structure at the bottom of a ship—also called the keel. Although the genus Hydrophilomima (Hydrophilidae: Laccobiini) also has the sternal keel, it is not extend to the same extent 4 © The Author(s) or their Institution(s) Page 5 of 22 Canadian Journal of Zoology as in most Hydrophilini, indicating the sternal keel is unique to this tribe of aquatic beetles. However, despite being a conspicuous morphological trait, its function remains unclear. Typically, larger animals show higher oxygen requirements, and increase in oxygen storage capacity allows them to submerge longer (Zeuthen 1953; Verberk et al. 2020). Therefore, members of Hydrophilini, which are amongst the largest aquatic beetles, may exhibit specific traits to meet high oxygen demand. Additionally, since they store air bubbles ventrally, where the keel is located, this structure may affect the ability to hold air bubbles (Watanabe 1982; Dettner 2019). Previously, Barr and Smith (1980) hypothesized that sternal keel damps out wobble, providing a more stable forward trajectory.Draft In the present study, to clarify the functions of sternal keel in Hydrophilini, I examined the effects of keel removal on (1) submergence time following air replacement as well as (2) speed and oscillatory movement during forward swimming. MATERIAL AND METHODS Study animal Hydrophilius acuminatus Motschulsky, 1854 (body length, 33–40 mm) belongs to the family Hydrophilidae and is distributed in China, Japan, Russia, Korea, Myanmar, Indonesia, and Taiwan (Hansen 1999). This species usually inhabits lentic water systems, such as ponds and paddy fields (Satô and Yoshitomi 2018). From late July to early August 2020, six males and six females of adult H. acuminatus were collected from paddy fields in 5 © The Author(s) or their Institution(s) Canadian Journal of Zoology Page 6 of 22 Tsukuba, Ibaraki Prefecture, Japan (36°11′33″N, 140°06′42″E, ca. 52 m above sea level). The individuals were not fed and maintained in plastic containers (31 cm × 16 cm basal width × 22 cm height) with moistened filter paper in the laboratory at approximately 25 °C. Within 12 h of collection, the keel of three males and three females was cut and filed using a nail clipper and a nail file. The ridge on the head side and the spine were cut and filed, and the raised section between the middle and hind legs was filed (Fig. 1a). The experiments were conducted within at least 48 h of collection, after confirming that their activity levels had not decreased. Draft Experiment 1. Submergence time following air replacement One individual with or without keel was placed into a plastic container (19.5 cm × 17.5 cm basal width × 10 cm height) filled with water up to 2.5 cm and containing a plastic net (13 cm × 10 cm) on the bottom (Fig. 1b). Air-replacing behaviour was observed, and submergence time, defined as is the duration from when the insects extended their antennae above water surface and replaced gas gills to when they did so again, was recorded after every air replacement event. Ten consecutive observations were recorded for twelve individuals (with keel: three males and three females, without keel: three males
Recommended publications
  • Coleoptera: Hydrophilidae) Are Specialist Predators of Snails
    Eur. J. Entomol. 112(1): 145–150, 2015 doi: 10.14411/eje.2015.016 ISSN 1210-5759 (print), 1802-8829 (online) Larvae of the water scavenger beetle, Hydrophilus acuminatus (Coleoptera: Hydrophilidae) are specialist predators of snails TOSHIO INODA1, YUTA INODA1 and JUNE KATHYLEEN RULLAN 2 1 Shibamata 5-17-10, Katsushika, Tokyo 125-0052, Japan; e-mail: [email protected] 2 University of the Philippines, Manila, Philippines; e-mail: [email protected] Key words. Coleoptera, Hydrophilidae, Hydrophilus acuminatus, feeding preferences, snail specialist Abstract. Hydrophilus acuminatus larvae are known to feed on aquatic prey. However, there is no quantitative study of their feeding habits. In order to determine the feeding preferences and essential prey of larvae of H. acuminatus, both field and laboratory experi- ments were carried out. Among the five potential species of prey,Austropeplea ollula (Mollusca: Lymnaeidae), Physa acuta (Mollusca: Physidae), Asellus hilgendorfi (Crustacea: Asellidae), Palaemon paucidens (Crustacea: Palaemonidae) and larvae of Propsilocerus akamusi (Insecta: Chironomidae), the first instar larvae of H. acuminatus strongly prefered the Austropeplea and Physa snails in both cafeteria and single-prey species experiments. Larvae that were provided with only snails also successfully developed into second instar larvae, while larvae fed Palaemon, Propsilocerus larvae or Asellus died during the first instar. In addition, the size of adult H. acuminatus reared from first-instar larvae and fed only snails during their entire development was not different from that of adult H. acuminatus collected in the field. This indicates that even though the larvae ofH. acuminatus can feed on several kinds of invertebrates, they strongly prefer snails and without them cannot complete their development.
    [Show full text]
  • Morphology of the Immature Stages of Hydrochara Libera (SHARP) (Coleoptera, Hydrophilidae)
    Elytra, Tokyo, New Series, 2 (2): 285–302 December 31, 2012 Immature Stages otift lHe ydrochara libera 285 Morphology of the Immature Stages of Hydrochara libera (SHARP) (Coleoptera, Hydrophilidae) 1) 2) 3) Yûsuke MINOSHIMA , Yasuyuki IWATA & Masakazu HAYASHI 1) Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo, 060–8589 Japan E-mail: [email protected] 2) Division of Sales and Public Information, Sales Department, Newron Sanitar Co., Ltd., 2633–3 Settaya-machi, Nagaoka-shi, Niigata, 940–1104 Japan E-mail: [email protected] 3) Hoshizaki Green Foundation, Okinoshima 1659–5, Sono-chô, Izumo-shi, Shimane, 691–0076 Japan E-mail: [email protected] Abstract Morphology of the immature stages of Hydrochara libera (SHARP, 1884) is described based on Japanese specimens. We described egg-case, all larval instars, and pupa of the species, and compared them with those of H. affinis (SHARP, 1873), another Japanese species. The mast of the egg-case of H. libera is longer and narrower than that of H. affinis. Larva of H. libera is dis- tinguishable from H. affinis by the following combination of characters: 1) inner face of antenno- mere 1 with a few tooth-like cuticular projections in the first instar; 2) nasale slightly asymmet- rical, weakly (first instar) to moderately (third instar) rounded; 3) lateral projections on the abdominal segments proportionally shorter than in H. affinis (all instars). Pupae of both species may be distinguished by the number of styli on the anterior face of the pronotum: four pairs of long styli and five short styli are present in H affinis, whereas two to three pairs of long styli and six to seven short styli in H.
    [Show full text]
  • Polishjournal of Entomolog Y
    P O L I S H JOU R NAL OF ENTOM O LOG Y POL SKIE PISMO ENTOMOL OGICZ N E VOL. 83: 99-107 Lublin 30 June 2014 DOI: 10.2478/pjen-2014-0007 Contribution to knowledge of the distribution of the rare great silver water beetle Hydrophilus piceus (LINNAEUS, 1758) (Coleoptera, Hydrophilidae) in Greece IOANNIS KARAOUZAS, ARGYRO ANDRIOPOULOU, KONSTANTINOS GRITZALIS Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7km Athens-Sounio Av., 19013 Anavissos, Attica, Greece, e-mail: [email protected] ABSTRACT. This study contributes to the currently poor knowledge of the distribution of Hydrophilus piceus (LINNAEUS, 1758) in Greece, an important and elsewhere threatened and critically endangered aquatic beetle. The large great silver water beetle was recorded in various aquatic habitats in the north-western Peloponnesus, being the southernmost record of the species in Greece. Photographs of the adult of the species are presented, and some notes on its ecology are provided. This work highlights the importance of revising the current status of the species in Greece, protecting its habitat and including it as a target species for conservation efforts. KEY WORDS: Coleoptera, Hydrophilidae, Hydrophilus piceus, distribution, aquatic beetle, Greece. INTRODUCTION The great silver water beetle Hydrophilus piceus (LINNAEUS, 1758) is one of the largest aquatic insects with a wide Palaearctic range extending from southern Scandinavia to the Mediterranean, in northern Africa (known only in Egypt), most of north-eastern Europe and Siberia to northern India (Kashmir) (HANSEN 1999, 2004). Adults often exceed 40 mm in length, are omnivorous but feed primarily on plant material.
    [Show full text]
  • Hydrophilus Harpe Sp. Nov., a Remarkable New Species of Giant Water Scavenger Beetle from Brazil (Coleoptera: Hydrophilidae)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 31.xii.2015 Volume 55(2), pp. 665–671 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:8B73DB50-91A3-4052-9230-93D7FE47BE66 Hydrophilus harpe sp. nov., a remarkable new species of giant water scavenger beetle from Brazil (Coleoptera: Hydrophilidae) Andrew E. Z. SHORT & Charles E. MCINTOSH IV Division of Entomology, Biodiversity Institute, and Department of Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS 66045, USA; e-mail: [email protected] Abstract. A remarkable new species of giant water scavenger beetle, Hydrophilus (Dibolocelus) harpe sp. nov., is described from Northeastern and Southeastern Brazil. Measuring nearly 5 cm in length, it is one of the largest species of Hydro- philidae in the world. It is superfi cially similar to Hydrophilus masculinus (Régim- bart, 1901) but is differentiated from that species by the form of the male protarsal claw and tibial spurs. A lectotype for Hydrophilus masculinus is also designated. Key words. Coleoptera, Hydrophilidae, aquatic beetles, taxonomy, lectotype designation, South America, Neotropical Region Introduction The genus Hydrophilus Geoffroy, 1762, namesake of the family Hydrophilidae, contains some of the largest aquatic beetles in the world. The genus presently contains 48 species distributed in three subgenera: Hydrophilus s. str. that occurs worldwide, Temnopterus So- lier 1834, that contains a pair Afrotropical species, and Dibolocelus Bedel, 1891 with nine species that are primarily Neotropical with one species in the Nearctic Region. SHORT (2010) reviewed and circumscribed the genus, and provided a cladistic analysis of the Hydrophilini based on adult morphology. Despite being relatively common and widespread, the last comprehensive treatment of the genus is more than 100 years old (RÉGIMBART 1901).
    [Show full text]
  • On the Biology and Structure of the Larvae of Hydrophilus Caraboides L
    On the Biology and Structure of the Larvae of Hydrophilus caraboides L. By E. N. Pavlovsky, M.D., D.Sc, Professor of Zoology at the Military Academy of Medicine, Petrograd. With Plate 27 and 16 Text-figures. IN May 1918 I captured in the vicinity of Petrograd some cocoons of a hydrophilus beetle, one of which I kept for breeding purposes. On June 13 there emerged about fifty small larvae very similar to Hydrophilus caraboides. These latter are characterized by the presence of a pair of lateral (pleural) appendages covered with a dense brush of hairs on each of the seven abdominal segments (Text-fig. 13, pla). In my larvae (Text-fig. 1) these pleural hairy appendages were also present, but with the difference that each appendage bore on its summit a long thin hair. This peculiarity caused me to look for other differences between my larvae and the description of the larvae of Hydrophilus caraboides, as given by Schiodte in his paper, ' De metamorphosi eleuthera- torum observationes; bidrag til insekternes undviklingshistorie', 1861. These differences may best be pointed out by a parallel com- parison of the text of Schiodte's diagnosis and the description of the newly emerged larvae as observed by me, as follows : Hydrophilus cara- Hydrophilus caraboides boides Schiodte Caput —a larva at first stage. Head obovatum. irregularly tetragonal, shaped rather like a trapezium turned with its base forward, and with broken sides. 628 E. X. PAVLOVSKY Antennae articulo primo Mrst joint of antennae long, longissimo, tenui, ciliato slender and flat, inner margin (Text-figs. 6, 7, V), secundo with seven very distinct ft tertio tenuibus, pusillis, teeth (Text-fig.
    [Show full text]
  • The Hydrophiloid Beetles of Socotra Island (Coleoptera: Georissidae, Hydrophilidae)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 17.xii.2012 Volume 52 (supplementum 2), pp. 107–130 ISSN 0374-1036 The Hydrophiloid beetles of Socotra Island (Coleoptera: Georissidae, Hydrophilidae) Martin FIKÁČEK1,2), Juan A. DELGADO3) & Elio GENTILI4) 1) Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic; e-mail: mfi [email protected] 2) Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-128 44 Praha 2, Czech Republic 3) Departamento de Zoología, Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain; e-mail: [email protected] 4) Via San Gottardo 37, I-21030 Varese-Rasa, Italy; e-mail: [email protected] Abstract. The hydrophiloid beetles (Georissidae, Hydrophilidae) of Socotra Island (Yemen) are reviewed based mainly on the material collected during the Czech expeditions undertaken between 2000 and 2012. A total of 16 species are recorded, three of which are newly described herein: Georissus (Neogeorissus) maritimus sp. nov., G. (N.) nemo sp. nov. (Georissidae) and Hemisphaera socotrana sp. nov. (Hydrophilidae). Seven species are recorded from Socotra Island for the fi rst time: Georissus (Neogeorissus) sp., Berosus corrugatus Régimbart, 1906, Laccobius eximius Kuwert, 1890, L. minor (Wollaston, 1867), L. praecipuus Kuwert, 1890, Enochrus nitidulus (Kuwert, 1888), and Sternolophus unicolor Laporte de Cas- telnau, 1840. The previously published Socotran record of Sternolophus decens Zaitzev, 1909 is considered as misidentifi cation. The Socotran hydrophiloid fauna is found to consist mostly of widely distributed African, Arabian/Near Eastern, Oriental and cosmopolitan species. The three newly described species may be considered as endemic to Socotra, but two of them seem to have close relatives in Africa and southern India.
    [Show full text]
  • Coleoptera: Hydrophilidae) 51 (Suppl.) 2011 Yûsuke Minoshima • Masakazu Hayashi
    AACTACTA EENTOMOLOGICANTOMOLOGICA MUSEI NATIONALIS PRAGAE Larval morphology of the Japanese species of the tribes Acidocerini, Hydrobiusini and Hydrophilini (Coleoptera: Hydrophilidae) 51 (suppl.) 2011 Yûsuke Minoshima • Masakazu Hayashi Hydrochara affinis Acta Entomologica Musei Nationalis Pragae Volume 51 (supplementum) Date of issue: June 30, 2011 Chairman of the editorial board: Josef Jelínek (Czech Republic) Editor-in-chief: Petr Kment (Czech Republic) Associate editors: Martin Fikáček (Czech Republic) Igor Malenovský (Czech Republic) English language editor: Grey T. Gustafson (USA) Advisory board: Jitka Aldhoun (United Kingdom) Zdeněk Laštůvka (Czech Republic) Michael Balke (Germany) Lubomír Masner (Canada) Jan Bezděk (Czech Republic) Wolfram Mey (Germany) David S. Boukal (Czech Republic) Carl W. Schaefer (USA) Freddy Bravo (Brazil) Aleš Smetana (Canada) Vladimir M. Gnezdilov (Russia) Alexey Yu. Solodovnikov (Denmark) Jiří Hájek (Czech Republic) Pavel Štys (Czech Republic) Petr Kočárek (Czech Republic) Sonja Wedmann (Germany) Published biannually by the National Museum, Václavské náměstí 68, CZ-115 79 Praha 1, Czech Republic. Scope of the journal: Acta Entomologica Musei Nationalis Pragae (AEMNP) publishes entomological papers focused on taxonomy, nomenclature, morphology, bionomics and phylogeny as well as catalogues, faunistic papers dealing with large areas and short notes. Manuscripts should be sent to: AEMNP journal offi ce, Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic. E-mails: [email protected], [email protected]. Journal web page: http://www.nm.cz/publikace/acta.php; http://www.aemnp.eu Typeset & design: M. Fikáček. Printed by H.R.G. spol. s r.o., Svitavská 1203, Litomyšl, Czech Republic. Distributed by the Department of Entomology, National Museum, Praha.
    [Show full text]
  • Aquatic Insects and Their Potential to Contribute to the Diet of the Globally Expanding Human Population
    insects Review Aquatic Insects and their Potential to Contribute to the Diet of the Globally Expanding Human Population D. Dudley Williams 1,* and Siân S. Williams 2 1 Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada 2 The Wildlife Trust, The Manor House, Broad Street, Great Cambourne, Cambridge CB23 6DH, UK; [email protected] * Correspondence: [email protected] Academic Editors: Kerry Wilkinson and Heather Bray Received: 28 April 2017; Accepted: 19 July 2017; Published: 21 July 2017 Abstract: Of the 30 extant orders of true insect, 12 are considered to be aquatic, or semiaquatic, in either some or all of their life stages. Out of these, six orders contain species engaged in entomophagy, but very few are being harvested effectively, leading to over-exploitation and local extinction. Examples of existing practices are given, ranging from the extremes of including insects (e.g., dipterans) in the dietary cores of many indigenous peoples to consumption of selected insects, by a wealthy few, as novelty food (e.g., caddisflies). The comparative nutritional worth of aquatic insects to the human diet and to domestic animal feed is examined. Questions are raised as to whether natural populations of aquatic insects can yield sufficient biomass to be of practicable and sustained use, whether some species can be brought into high-yield cultivation, and what are the requirements and limitations involved in achieving this? Keywords: aquatic insects; entomophagy; human diet; animal feed; life histories; environmental requirements 1. Introduction Entomophagy (from the Greek ‘entoma’, meaning ‘insects’ and ‘phagein’, meaning ‘to eat’) is a trait that we Homo sapiens have inherited from our early hominid ancestors.
    [Show full text]
  • Redalyc.Aquatic Coleoptera from Two Protected Areas of the Humid Chaco Eco-Region (Chaco Province, Argentina)
    Revista de la Sociedad Entomológica Argentina ISSN: 0373-5680 [email protected] Sociedad Entomológica Argentina Argentina LIBONATTI, María L.; MICHAT, Mariano C.; TORRES, Patricia L.M. Aquatic Coleoptera from two protected areas of the Humid Chaco eco-region (Chaco Province, Argentina) Revista de la Sociedad Entomológica Argentina, vol. 72, núm. 3-4, 2013, pp. 155-168 Sociedad Entomológica Argentina Buenos Aires, Argentina Available in: http://www.redalyc.org/articulo.oa?id=322030024004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Trabajo Científico Article ISSN 0373-5680 (impresa), ISSN 1851-7471 (en línea) Revista de la Sociedad Entomológica Argentina 72 (3-4): 155-168, 2013 Aquatic Coleoptera from two protected areas of the Humid Chaco eco-region (Chaco Province, Argentina) Libonatti, María L., Mariano C. Michat & Patricia L. M. TORRES IBBEA-CONICET - Laboratorio de Entomología, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ar- gentina; e-mail: [email protected] Los coleópteros acuáticos de dos áreas protegidas de la ecorregión Chaco Húmedo (Provincia del Chaco, Argentina) RESUMEN. Se presenta por primera vez una lista de las especies de coleópteros acuáticos que habitan en el parque nacional Chaco y en el refugio de vida silvestre El Cachapé, dos áreas protegidas pertenecientes a la ecorregión Chaco Húmedo. Se identificaron 122 especies incluidas en 45 géneros y 10 familias. Dos especies se citan por primera vez para la Argentina: Ora atroapicalis Pic y Ora semibrunnea Pic (Scirtidae).
    [Show full text]
  • Diversity of Coleopteran Insects in the Coastal and Noncoastal
    Journal of Entomology and Zoology Studies 2021; 9(1): 824-833 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Diversity of coleopteran insects in the coastal and www.entomoljournal.com JEZS 2021; 9(1): 824-833 noncoastal environment of Midnapore (East), © 2021 JEZS Received: 01-11-2020 West Bengal, India Accepted: 03-12-2020 Debdas Jana Department of Zoology, Debdas Jana, Dipak Kumar Tamili and Susanta Kumar Chakraborty Vidyasagar University, Midnapore, West Bengal, India Abstract Coleoptera is the largest order in the class Insecta, and contains species that can be found on land, air, Dipak Kumar Tamili Egra SSB College, Egra, Purba and water to a considerable extent. The members of this order occur almost throughout the physiographic Midnapore, West Bengal, India zones of India. Coleopteran insects of coastal areas Midnapore (East) district were sampled from November 2008 to October 2011. Altogether 28 Coleopteran insect species belonging to 26 genera and 9 Susanta Kumar Chakraborty families have been documented from eight different study sites having contrasting ecological characters Department of Zoology, in the coastal areas of Midnapore (East) district of West Bengal, India. The present study has attempted Vidyasagar University, to record the diversity and distribution of Coleopteran insects. Some site specific species have been Midnapore,West Bengal, India described in our study. Keywords: coastal area, coleoptera, diversity, distribution, Midnapore (East), site-specific species Introduction The diversity of life on earth has never been, and never will be static. Global biodiversity has fluctuated through geologic time as evolution has added new species and extinction has taken them away [1]. Biological systems are constantly changing in response to environmental stimuli culminating in species richness [2].
    [Show full text]
  • A Preliminary Investigation of the Arthropod Fauna of Quitobaquito Springs Area, Organ Pipe Cactus National Monument, Arizona
    COOPERATIVE NATIONAL PARK RESOURCES STUDIES UNIT UNIVERSITY OF ARIZONA 125 Biological Sciences (East) Bldg. 43 Tucson, Arizona 85721 R. Roy Johnson, Unit Leader National Park Senior Research Scientist TECHNICAL REPORT NO. 23 A PRELIMINARY INVESTIGATION OF THE ARTHROPOD FAUNA OF QUITOBAQUITO SPRINGS AREA, ORGAN PIPE CACTUS NATIONAL MONUMENT, ARIZONA KENNETH J. KINGSLEY, RICHARD A. BAILOWITZ, and ROBERT L. SMITH July 1987 NATIONAL PARK SERVICE/UNIVERSITY OF ARIZONA National Park Service Project Funds CONTRIBUTION NUMBER CPSU/UA 057/01 TABLE OF CONTENTS Introduction......................................................................................................................................1 Methods............................................................................................................................................1 Results ............................................................................................................................................2 Discussion......................................................................................................................................20 Literature Cited ..............................................................................................................................22 Acknowledgements........................................................................................................................23 LIST OF TABLES Table 1. Insects Collected at Quitobaquito Springs ...................................................................3
    [Show full text]
  • Species Accounts -- Animals
    SoCal Biodiversity - Animals Arboreal Salamander Amphibian SoCal Biodiversity - Animals Arboreal Salamander Amphibian Arroyo Toad Arboreal Salamander Arboreal Salamander (Aneides lugubris) Management Status Heritage Status Rank: G5N5S4 Federal: None State: None Other: Species identified as a local viability concern (Stephenson and Calcarone 1999) General Distribution Arboreal salamander occurs in yellow pine and black oak forests in the Sierra Nevada, and in coastal live oak woodlands from northern California to Baja California. The species also occurs in the foothills of the Sierra Nevada from El Dorado County to Madera County and on South Farallon, Santa Catalina, Los Coronados, and Ano Nuevo islands off the coast of California (Petranka 1998, Stebbins 1951, Stebbins 1985). Arboreal salamander occurs from sea level to an elevation of about 5,000 feet (1,520 meters) (Stebbins 1985). Distribution in the Planning Area Arboreal salamander reportedly occurs in the foothills and lower elevations of every mountain range on National Forest System lands, although it is seldom seen (Stephenson and Calcarone 1999). There are records of occurrence for this species on the Los Padres National Forest near upper San Juan Creek and on the Cleveland National Forest near Soldier Creek (USDA Forest Service file information), San Gabriel foothills east to Day Canyon, and in the San Jacinto Mountains (Goodward pers. comm.). Systematics There are four species in the genus Aneides in the western United States, three of which occur in California (Stebbins 1985). Of these three, only arboreal salamander ranges into southern California. Most of the Aneides salamanders climb (Stebbins 1985). Arboreal salamander consists of two chromosomally differentiated groups that intergrade in south and east-central Mendocino County, about 56 miles (90 kilometers) north of the San Francisco Bay region (Sessions and Kezer 1987).
    [Show full text]