5 Linear Transformations
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
MATH 2030: MATRICES Introduction to Linear Transformations We Have
MATH 2030: MATRICES Introduction to Linear Transformations We have seen that we may describe matrices as symbol with simple algebraic properties like matrix multiplication, addition and scalar addition. In the particular case of matrix-vector multiplication, i.e., Ax = b where A is an m × n matrix and x; b are n×1 matrices (column vectors) we may represent this as a transformation on the space of column vectors, that is a function F (x) = b , where x is the independent variable and b the dependent variable. In this section we will give a more rigorous description of this idea and provide examples of such matrix transformations, which will lead to the idea of a linear transformation. To begin we look at a matrix-vector multiplication to give an idea of what sort of functions we are working with 21 0 3 1 A = 2 −1 ; v = : 4 5 −1 3 4 then matrix-vector multiplication yields 2 1 3 Av = 4 3 5 −1 We have taken a 2 × 1 matrix and produced a 3 × 1 matrix. More generally for any x we may describe this transformation as a matrix equation y 21 0 3 2 x 3 x 2 −1 = 2x − y : 4 5 y 4 5 3 4 3x + 4y From this product we have found a formula describing how A transforms an arbi- 2 3 trary vector in R into a new vector in R . Expressing this as a transformation TA we have 2 x 3 x T = 2x − y : A y 4 5 3x + 4y From this example we can define some helpful terminology. -
Enhancing Self-Reflection and Mathematics Achievement of At-Risk Urban Technical College Students
Psychological Test and Assessment Modeling, Volume 53, 2011 (1), 108-127 Enhancing self-reflection and mathematics achievement of at-risk urban technical college students Barry J. Zimmerman1, Adam Moylan2, John Hudesman3, Niesha White3, & Bert Flugman3 Abstract A classroom-based intervention study sought to help struggling learners respond to their academic grades in math as sources of self-regulated learning (SRL) rather than as indices of personal limita- tion. Technical college students (N = 496) in developmental (remedial) math or introductory col- lege-level math courses were randomly assigned to receive SRL instruction or conventional in- struction (control) in their respective courses. SRL instruction was hypothesized to improve stu- dents’ math achievement by showing them how to self-reflect (i.e., self-assess and adapt to aca- demic quiz outcomes) more effectively. The results indicated that students receiving self-reflection training outperformed students in the control group on instructor-developed examinations and were better calibrated in their task-specific self-efficacy beliefs before solving problems and in their self- evaluative judgments after solving problems. Self-reflection training also increased students’ pass- rate on a national gateway examination in mathematics by 25% in comparison to that of control students. Key words: self-regulation, self-reflection, math instruction 1 Correspondence concerning this article should be addressed to: Barry Zimmerman, PhD, Graduate Center of the City University of New York and Center for Advanced Study in Education, 365 Fifth Ave- nue, New York, NY 10016, USA; email: [email protected] 2 Now affiliated with the University of California, San Francisco, School of Medicine 3 Graduate Center of the City University of New York and Center for Advanced Study in Education Enhancing self-reflection and math achievement 109 Across America, faculty and policy makers at two-year and technical colleges have been deeply troubled by the low academic achievement and high attrition rate of at-risk stu- dents. -
Vectors, Matrices and Coordinate Transformations
S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0. -
Reflection Invariant and Symmetry Detection
1 Reflection Invariant and Symmetry Detection Erbo Li and Hua Li Abstract—Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moments(DMs) to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the DMs, and discrimination of reflection symmetry can be achieved by application of the reflection invariants in 2D and 3D. Rotation symmetry can also be determined based on that. Also, if none of reflection invariants is equal to zero, then there is no symmetry. And the experiments in 2D and 3D show that all the reflection lines or planes can be deterministically found using DMs up to order six. This result can be used to simplify the efforts of symmetry detection in research areas,such as protein structure, model retrieval, reverse engineering, and machine vision etc. Index Terms—symmetry detection, shape analysis, object recognition, directional moment, moment invariant, isometry, congruent, reflection, chirality, rotation F 1 INTRODUCTION Kazhdan et al. [1] developed a continuous measure and dis- The essence of geometric symmetry is self-evident, which cussed the properties of the reflective symmetry descriptor, can be found everywhere in nature and social lives, as which was expanded to 3D by [2] and was augmented in shown in Figure 1. It is true that we are living in a spatial distribution of the objects asymmetry by [3] . For symmetric world. Pursuing the explanation of symmetry symmetry discrimination [4] defined a symmetry distance will provide better understanding to the surrounding world of shapes. -
Support Graph Preconditioners for Sparse Linear Systems
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Texas A&M University SUPPORT GRAPH PRECONDITIONERS FOR SPARSE LINEAR SYSTEMS A Thesis by RADHIKA GUPTA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2004 Major Subject: Computer Science SUPPORT GRAPH PRECONDITIONERS FOR SPARSE LINEAR SYSTEMS A Thesis by RADHIKA GUPTA Submitted to Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved as to style and content by: Vivek Sarin Paul Nelson (Chair of Committee) (Member) N. K. Anand Valerie E. Taylor (Member) (Head of Department) December 2004 Major Subject: Computer Science iii ABSTRACT Support Graph Preconditioners for Sparse Linear Systems. (December 2004) Radhika Gupta, B.E., Indian Institute of Technology, Bombay; M.S., Georgia Institute of Technology, Atlanta Chair of Advisory Committee: Dr. Vivek Sarin Elliptic partial differential equations that are used to model physical phenomena give rise to large sparse linear systems. Such systems can be symmetric positive definite and can be solved by the preconditioned conjugate gradients method. In this thesis, we develop support graph preconditioners for symmetric positive definite matrices that arise from the finite element discretization of elliptic partial differential equations. An object oriented code is developed for the construction, integration and application of these preconditioners. Experimental results show that the advantages of support graph preconditioners are retained in the proposed extension to the finite element matrices. iv To my parents v ACKNOWLEDGMENTS I would like to express sincere thanks to my advisor, Dr. -
MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam
MA 242 LINEAR ALGEBRA C1, Solutions to Second Midterm Exam Prof. Nikola Popovic, November 9, 2006, 09:30am - 10:50am Problem 1 (15 points). Let the matrix A be given by 1 −2 −1 2 −1 5 6 3 : 5 −4 5 4 5 (a) Find the inverse A−1 of A, if it exists. (b) Based on your answer in (a), determine whether the columns of A span R3. (Justify your answer!) Solution. (a) To check whether A is invertible, we row reduce the augmented matrix [A I3]: 1 −2 −1 1 0 0 1 −2 −1 1 0 0 2 −1 5 6 0 1 0 3 ∼ : : : ∼ 2 0 3 5 1 1 0 3 : 5 −4 5 0 0 1 0 0 0 −7 −2 1 4 5 4 5 Since the last row in the echelon form of A contains only zeros, A is not row equivalent to I3. Hence, A is not invertible, and A−1 does not exist. (b) Since A is not invertible by (a), the Invertible Matrix Theorem says that the columns of A cannot span R3. Problem 2 (15 points). Let the vectors b1; : : : ; b4 be defined by 3 2 −1 0 0 5 1 0 −1 1 0 1 1 0 0 1 b1 = ; b2 = ; b3 = ; and b4 = : −2 −5 3 0 B C B C B C B C B 4 C B 7 C B 0 C B −3 C @ A @ A @ A @ A (a) Determine if the set B = fb1; b2; b3; b4g is linearly independent by computing the determi- nant of the matrix B = [b1 b2 b3 b4]. -
Isometries and the Plane
Chapter 1 Isometries of the Plane \For geometry, you know, is the gate of science, and the gate is so low and small that one can only enter it as a little child. (W. K. Clifford) The focus of this first chapter is the 2-dimensional real plane R2, in which a point P can be described by its coordinates: 2 P 2 R ;P = (x; y); x 2 R; y 2 R: Alternatively, we can describe P as a complex number by writing P = (x; y) = x + iy 2 C: 2 The plane R comes with a usual distance. If P1 = (x1; y1);P2 = (x2; y2) 2 R2 are two points in the plane, then p 2 2 d(P1;P2) = (x2 − x1) + (y2 − y1) : Note that this is consistent withp the complex notation. For P = x + iy 2 C, p 2 2 recall that jP j = x + y = P P , thus for two complex points P1 = x1 + iy1;P2 = x2 + iy2 2 C, we have q d(P1;P2) = jP2 − P1j = (P2 − P1)(P2 − P1) p 2 2 = j(x2 − x1) + i(y2 − y1)j = (x2 − x1) + (y2 − y1) ; where ( ) denotes the complex conjugation, i.e. x + iy = x − iy. We are now interested in planar transformations (that is, maps from R2 to R2) that preserve distances. 1 2 CHAPTER 1. ISOMETRIES OF THE PLANE Points in the Plane • A point P in the plane is a pair of real numbers P=(x,y). d(0,P)2 = x2+y2. • A point P=(x,y) in the plane can be seen as a complex number x+iy. -
Wronskian Solutions to the Kdv Equation Via B\" Acklund
Wronskian solutions to the KdV equation via B¨acklund transformation Qi-fei Xuan∗, Mei-ying Ou, Da-jun Zhang† Department of Mathematics, Shanghai University, Shanghai 200444, P.R. China October 27, 2018 Abstract In the paper we discuss the B¨acklund transformation of the KdV equation between solitons and solitons, between negatons and negatons, between positons and positons, between rational solution and rational solution, and between complexitons and complexitons. We investigate the conditions that Wronskian entries satisfy for the bilinear B¨acklund transformation of the KdV equation. By choosing suitable Wronskian entries and the parameter in the bilinear B¨acklund transformation, we obtain transformations between many kinds of solutions. Keywords: the KdV equation, Wronskian solution, bilinear form, B¨acklund transformation 1 Introduction The Wronskian can be considered as a bridge connecting with many classical methods in soliton theory. This is not only because soliton solutions in Wronskian form can be obtained from the Darboux transformation[1], Sato theory[2, 3] and Wronskian technique[4]-[10], but also because the exponential polynomial for N-solitons derived from Hirota method[11, 12] and the matrix form given by the Inverse Scattering Transform[13, 14] can be transformed into a Wronskian by extracting some exponential factors. The special structure of a Wronskian contributes simple arXiv:0706.3487v1 [nlin.SI] 24 Jun 2007 forms of its derivatives, and this admits solution verification by direct substituting Wronskians into a bilinear soliton equation or a bilinear B¨acklund transformation(BT). This approach is re- ferred to as Wronskian technique[4]. In the approach a bilinear soliton equation is some algebraic identity provided that Wronskian entry vector satisfies some differential equation set which we call Wronskian condition. -
Rotation Matrix - Wikipedia, the Free Encyclopedia Page 1 of 22
Rotation matrix - Wikipedia, the free encyclopedia Page 1 of 22 Rotation matrix From Wikipedia, the free encyclopedia In linear algebra, a rotation matrix is a matrix that is used to perform a rotation in Euclidean space. For example the matrix rotates points in the xy -Cartesian plane counterclockwise through an angle θ about the origin of the Cartesian coordinate system. To perform the rotation, the position of each point must be represented by a column vector v, containing the coordinates of the point. A rotated vector is obtained by using the matrix multiplication Rv (see below for details). In two and three dimensions, rotation matrices are among the simplest algebraic descriptions of rotations, and are used extensively for computations in geometry, physics, and computer graphics. Though most applications involve rotations in two or three dimensions, rotation matrices can be defined for n-dimensional space. Rotation matrices are always square, with real entries. Algebraically, a rotation matrix in n-dimensions is a n × n special orthogonal matrix, i.e. an orthogonal matrix whose determinant is 1: . The set of all rotation matrices forms a group, known as the rotation group or the special orthogonal group. It is a subset of the orthogonal group, which includes reflections and consists of all orthogonal matrices with determinant 1 or -1, and of the special linear group, which includes all volume-preserving transformations and consists of matrices with determinant 1. Contents 1 Rotations in two dimensions 1.1 Non-standard orientation -
Lesson 4: Definition of Reflection and Basic Properties
NYS COMMON CORE MATHEMATICS CURRICULUM Lesson 4 8•2 Lesson 4: Definition of Reflection and Basic Properties Student Outcomes . Students know the definition of reflection and perform reflections across a line using a transparency. Students show that reflections share some of the same fundamental properties with translations (e.g., lines map to lines, angle- and distance-preserving motion). Students know that reflections map parallel lines to parallel lines. Students know that for the reflection across a line 퐿 and for every point 푃 not on 퐿, 퐿 is the bisector of the segment joining 푃 to its reflected image 푃′. Classwork Example 1 (5 minutes) The reflection across a line 퐿 is defined by using the following example. MP.6 . Let 퐿 be a vertical line, and let 푃 and 퐴 be two points not on 퐿, as shown below. Also, let 푄 be a point on 퐿. (The black rectangle indicates the border of the paper.) . The following is a description of how the reflection moves the points 푃, 푄, and 퐴 by making use of the transparency. Trace the line 퐿 and three points onto the transparency exactly, using red. (Be sure to use a transparency that is the same size as the paper.) . Keeping the paper fixed, flip the transparency across the vertical line (interchanging left and right) while keeping the vertical line and point 푄 on top of their black images. The position of the red figures on the transparency now represents the Scaffolding: reflection of the original figure. 푅푒푓푙푒푐푡푖표푛(푃) is the point represented by the There are manipulatives, such red dot to the left of 퐿, 푅푒푓푙푒푐푡푖표푛(퐴) is the red dot to the right of 퐿, and point as MIRA and Georeflector, 푅푒푓푙푒푐푡푖표푛(푄) is point 푄 itself. -
2-D Drawing Geometry Homogeneous Coordinates
2-D Drawing Geometry Homogeneous Coordinates The rotation of a point, straight line or an entire image on the screen, about a point other than origin, is achieved by first moving the image until the point of rotation occupies the origin, then performing rotation, then finally moving the image to its original position. The moving of an image from one place to another in a straight line is called a translation. A translation may be done by adding or subtracting to each point, the amount, by which picture is required to be shifted. Translation of point by the change of coordinate cannot be combined with other transformation by using simple matrix application. Such a combination is essential if we wish to rotate an image about a point other than origin by translation, rotation again translation. To combine these three transformations into a single transformation, homogeneous coordinates are used. In homogeneous coordinate system, two-dimensional coordinate positions (x, y) are represented by triple- coordinates. Homogeneous coordinates are generally used in design and construction applications. Here we perform translations, rotations, scaling to fit the picture into proper position 2D Transformation in Computer Graphics- In Computer graphics, Transformation is a process of modifying and re- positioning the existing graphics. • 2D Transformations take place in a two dimensional plane. • Transformations are helpful in changing the position, size, orientation, shape etc of the object. Transformation Techniques- In computer graphics, various transformation techniques are- 1. Translation 2. Rotation 3. Scaling 4. Reflection 2D Translation in Computer Graphics- In Computer graphics, 2D Translation is a process of moving an object from one position to another in a two dimensional plane. -
In This Handout, We Discuss Orthogonal Maps and Their Significance from A
In this handout, we discuss orthogonal maps and their significance from a geometric standpoint. Preliminary results on the transpose The definition of an orthogonal matrix involves transpose, so we prove some facts about it first. Proposition 1. (a) If A is an ` × m matrix and B is an m × n matrix, then (AB)> = B>A>: (b) If A is an invertible n × n matrix, then A> is invertible and (A>)−1 = (A−1)>: Proof. (a) We compute the (i; j)-entries of both sides for 1 ≤ i ≤ n and 1 ≤ j ≤ `: m m m > X X > > X > > > > [(AB) ]ij = [AB]ji = AjkBki = [A ]kj[B ]ik = [B ]ik[A ]kj = [B A ]ij: k=1 k=1 k=1 (b) It suffices to show that A>(A−1)> = I. By (a), A>(A−1)> = (A−1A)> = I> = I: Orthogonal matrices Definition (Orthogonal matrix). An n × n matrix A is orthogonal if A−1 = A>. We will first show that \being orthogonal" is preserved by various matrix operations. Proposition 2. (a) If A is orthogonal, then so is A−1 = A>. (b) If A and B are orthogonal n × n matrices, then so is AB. Proof. (a) We have (A−1)> = (A>)> = A = (A−1)−1, so A−1 is orthogonal. (b) We have (AB)−1 = B−1A−1 = B>A> = (AB)>, so AB is orthogonal. The collection O(n) of n × n orthogonal matrices is the orthogonal group in dimension n. The above definition is often not how we identify orthogonal matrices, as it requires us to compute an n × n inverse.