Synthetic Methods and Applications of Silicon Nanowire: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Synthetic Methods and Applications of Silicon Nanowire: a Review J. Chosun Natural Sci. Vol. 10, No. 2 (2017) pp. 65 − 73 https://doi.org/10.13160/ricns.2017.10.2.65 Synthetic Methods and Applications of Silicon Nanowire: A Review Md Hasanul Haque and Honglae Sohn† Abstract In this review paper, we will discuss about the methods of synthesizing Si nanowires by Top-down and Bottom-up. Silicon nanowires have a lot of application on various fields such as Li ion batteries, solar cells, chemical and biological sensors. We will address some of the applications of silicon Nanowires. Keywords: Silicon Nanowires, Metal Assisted Chemical Etching, Lithium Battery, Electroless Metal Deposition 1. Introduction growth (OAG), laser ablation, chemical etching, molec- ular beam epitaxy (MBE) are some of commonly used Silicon is a bio-compatible material and has some techniques for synthesizing Si NWs. Here we will benefit than other elements such as low processing cost mainly discuss about metal assisted Chemical etching and high production yields. Silicon nanowires are one (MACE) from top –down and Vapor-Liquid-solid of the most important materials for current semiconduc- growth (VLS) from bottom-up method. tor industry show unique and superior optical, thermal, electronic and chemical properties. Nanowires are 2.1. Metal Assisted Chemical Etching important class of one dimensional material with a Metal assisted Chemical etching (MACE) is the most diameter of less than 100 nm. It results in a large surface economical and simple technique for synthesizing Sili- to volume ratio[1]. Including conductor, semiconductor, con nanowires. Besides, other methods often require and insulator, there exits various types of nanowires. difficult reaction condition like high temperature, com- The properties which nanowires have that are not avail- plex equipment. Moreover these are very expensive and able in bulk or 3D materials. For future nano electronics slow growth of Si NWs. Whereas various parameters the 1D Nanowires can be employed as the building like diameter, length, doping type and doping level can blocks. Due to their ready application in modern indus- be controlled by using MACE[5]. To produce larger sur- try Silicon Nanowires are one of the most essential face to volume ratio structures MACE can be used 1Dsemiconductor. SN are attracting interest being their because it is more adjustable[6]. Etching temperature, surface dependent properties and promising application solution concentration[7], the space between metal par- in the fields of nano electronics[2,3], solar cells, lithium ticles[8] are the important parameters to obtain microm- battery , bio- and chemical sensors[4]. eters on the surface of silicon substrates. Brahiti and co- workers reported the reaction time of noble metal depo- 2. Synthesis Methods of Si NWs sition and etching[9]. The most widely used noble metal (silver, nickel, There are a lot of different approaches for fabricating platinum and gold) can be deposited on Si wafer. Depo- silicon nanowire such as top-down and bottom-up. It is sition of these metals on silicon wafers in HF solution totally depend on target of application. Vapor-liquid- has been broadly studied via various method such as solid growth (VLS), thermal evaporation, oxide-assisted thermal evaporation[10], electroless deposition[11], focused- ion-bean (FIB) assisted deposition[12] or spin-coating of Department of Chemistry, Chosun University, Gwangju, 501-759, Korea particles via other method[13]. † Corresponding author : [email protected] The electroless metal deposition does not need exter- (Received : June 1, 2017, Revised : June 15, 2017, Accepted : June 25, 2017) nal electrical power source. It also describes a galvanic − 65 − 66 Md Hasanul Haque and Honglae Sohn Fig. 1. Metal-assisted chemical etching is tentatively described here. In (a),deposition of silver nanoparticle on Si surface, and forming holes via the oxidation of silicon and by the etching of HF. (b) Generation of Si NWs arrays leads to silver nanoparticle sinking and new Si NWs are formed. (c) Cross-section of synthesized Si NWs. In the process of electro chemical deposition of Ag in AgNO3/HF solution, the electro chemical potential of the system Ag+/Ag lies well below the Si valence band, the reduction Ag ions and the oxidation of Si atoms occurs simultaneously. While the Si atoms are being oxidized, silver ions are able to capture electron from valence band of silicon atom and being reduced. From Ag+ to the valence band of silicon holes were injected[14] and silver ion reduced to elemental silver forming nuclei (Fig. 2A). Moreover Ag nuclei become large with the time. The HF solution will etch it away and into the hole Ag particle sinks when Si Oxide from below the silver nanoparticle. However silver is more electronegative to Si, so it continuously capture elec- trons from silicon atoms and Ag- ions formed will attract more Ag+ from the solution. Between the inter- face of Si and deposited Ag, the charge transfer process usually happened. Furthermore the needed electrons for reduction of metal ions will come from silicon and the nanoparticle is going larger in size along with the depo- sition process. At the bottom of the etched pores Ag+ was reduced forming Ag particles because no new Ag nuclei emerged. So Ag nuclei grew in dendrite structures (Fig. 2B and C). From a HF–containing plating solution, there are a different look between the morphology of Pt and Cu electroless deposited and the morphology of Ag and Au. Fig. 2. Cross-sectional SEM image of p type <111> substrate, etched with HF/AgNO3 for a) 5 min and b, c) 2.2. Vapor-Liquid-Solid (VLS) Growth on Silicon 30 min, reprinted from reference[15]. Nanowires Wagner and his co-workers[16] introduced in details, displacement process that involves the spontaneous oxi- the vapor-liquid-solid (VLS) mechanism Fig. 3. There dation of Si and reduction of metal ion to metal parti- are many ways to synthesize Si NWS. VLS is one of cles. them to synthesize by gold nanoparticle. Silicon tetra- J. Chosun Natural Sci., Vol. 10, No. 2, 2017 Synthetic Methods and Applications of Silicon Nanowire: A Review 67 Fig. 3. Illustration of Synthesizing silicon nanowire using VLS method via CVD method: Step (i) Deposition of gold nanoparticle. Step (ii) Reduction of silane gas to silicon vapor. Step (iii) Diffusion of silicon vapor via gold nanoparticles. Step (iv) By super-saturation with silicon the formation of Si NWs, reprinted from reference[18]. Fig. 4. VLS process for growing nanowires. a) indicates the catalytic gold particles formed by Sub-nanometer sputter deposition of Au and a following coalescence with a combination of a thermal anneal in H atmosphere at 450oC for 300 s and a following plasma treatment. b) Shows nanowires grown on an oxidized silicon substrate and c) a (100) oriented single crystalline silicon substrate on a close-up of growing nanowires, reprinted from reference[19]. chloride (SiCl4) or silane (SiH4) usually used as the ing and such kind of defects are observed. By thermo- source of silicon which will alloy with Au and melted dynamic basis can predict the growth direction[17]. when heated. At the surface of Au nanoparticle, the Silicon constantly will flow and atom of Si continues silane will decompose when the temperature is higher. to diffuse into Au-Si melt. Nucleation if Si develops at At the time, into the liquid Au particle, Si will dissolve. the footprint layer by layer at the Au-Si catalyst .Thus Then Si will accelerate out from the liquid phase to Nanowire is formed. Fig. 4a presents grown of Si NW form the solid nanowire. The eutectic temperature of Si- on an oxidized Si wafer and b) close look of <110> ori- Au binary alloy is about 363oC[16] basically for synthe- ented Si NW lattice grown on crystalline Si (100) wafer. sizing the Si NWs can be 400oC which is not high. The The size of the gold array characterizes of the diameter dimension of gold particles controlled the size of as- of nanowire except the endless need of lithographic grown Si NWs. Moreover partial pressure and tempera- means. ture are also important for growing rate. To grow Givarginov postulated in 1970, that a basic critical nanowires due to various conditions like kinking, bend- diameter for growth because of thermodynamic atten- J. Chosun Natural Sci., Vol. 10, No. 2, 2017 68 Md Hasanul Haque and Honglae Sohn tion[20]. The growth of silicon nanowires can be done on various substrates. It is one of the advantages of VLS method. The crystal growth direction of nanowire occurs on amorphous substrates. The interaction between diameter and crystal direction is openly noticeable[21]. 3. Application of Si NWs With the advantages of chemical and optical proper- ties of their surface, it may be developed for various fields such as devices, sensors, bio-systems, batteries, and solar cells. 3.1. Lithium Ion Battery Silicon has a low discharge potential and the highest theoretical charge capacity (4200 mAhg-1). Si anodes appearance balanced working potential (~0.5 V vs. Li/ Li+)[22]. Whereas graphite anodes (~0.05 V vs. Li) So that it is an attractive anode material for Lithium bat- teries and it is also cheap and abundant. The drastic vol- ume changes of silicon greater than 300% upon Fig. 5. Illustration of a lithium battery containing a lithium insertion and extraction of lithium. This will lead to the metal oxide cathode and Si anode during a) charging and [25] capacity fading and pulverization[24]. It causes to an b) discharging, reprinted from reference . interruption through the anode for flowing current. To solve this problem fabulous efforts have been pursued tion and stress. For example, Christensen and Newman including methods of inorganic to organic, from chem- worked about swelling and stress[27], during lithiation ical to physical.
Recommended publications
  • Cu&Si Core–Shell Nanowire Thin Film As High-Performance Anode
    applied sciences Article Cu&Si Core–Shell Nanowire Thin Film as High-Performance Anode Materials for Lithium Ion Batteries Lifeng Zhang 1, Linchao Zhang 1,*, Zhuoming Xie 1 and Junfeng Yang 1,2,* 1 Key Laboratory of Materials Physics, Institute of Solid State Physics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei 230032, China; [email protected] (L.Z.); [email protected] (Z.X.) 2 Lu’an Branch, Anhui Institute of Innovation for Industrial Technology, Lu’an 237100, China * Correspondence: [email protected] (L.Z.); [email protected] (J.Y.) Abstract: Cu@Si core–shell nanowire thin films with a Cu3Si interface between the Cu and Si were synthesized by slurry casting and subsequent magnetron sputtering and investigated as anode materials for lithium ion batteries. In this constructed core–shell architecture, the Cu nanowires were connected to each other or to the Cu foil, forming a three-dimensional electron-conductive network and as mechanical support for the Si during cycling. Meanwhile, the Cu3Si layer can enhance the interface adhesion strength of the Cu core and Si shell; a large amount of void spaces between the Cu@Si nanowires could accommodate the lithiation-induced volume expansion and facilitate electrolyte impregnation. As a consequence, this electrode exhibits impressive electrochemical properties: the initial discharge capacity and initial coulombic efficiency is 3193 mAh/g and 87%, respectively. After 500 cycles, the discharge capacity is about 948 mAh/g, three times that of graphite, corresponding to an average capacity fading rate of 0.2% per cycle. Keywords: lithium ion battery; anode; silicon; core–shell structure; magnetron sputtering Citation: Zhang, L.; Zhang, L.; Xie, Z.; Yang, J.
    [Show full text]
  • Recent Advances in Vertically Aligned Nanowires for Photonics Applications
    micromachines Review Recent Advances in Vertically Aligned Nanowires for Photonics Applications Sehui Chang, Gil Ju Lee and Young Min Song * School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea; [email protected] (S.C.); [email protected] (G.J.L.) * Correspondence: [email protected]; Tel.: +82-62-715-2655 Received: 29 June 2020; Accepted: 25 July 2020; Published: 26 July 2020 Abstract: Over the past few decades, nanowires have arisen as a centerpiece in various fields of application from electronics to photonics, and, recently, even in bio-devices. Vertically aligned nanowires are a particularly decent example of commercially manufacturable nanostructures with regard to its packing fraction and matured fabrication techniques, which is promising for mass-production and low fabrication cost. Here, we track recent advances in vertically aligned nanowires focused in the area of photonics applications. Begin with the core optical properties in nanowires, this review mainly highlights the photonics applications such as light-emitting diodes, lasers, spectral filters, structural coloration and artificial retina using vertically aligned nanowires with the essential fabrication methods based on top-down and bottom-up approaches. Finally, the remaining challenges will be briefly discussed to provide future directions. Keywords: nanowires; photonics; LED; nanowire laser; spectral filter; coloration; artificial retina 1. Introduction In recent years, nanowires originated from a wide variety of materials have arisen as a centerpiece for optoelectronic applications such as sensors, solar cells, optical filters, displays, light-emitting diodes and photodetectors [1–12]. Tractable but outstanding, optical features of nanowire arrays achieved by modulating its physical properties (e.g., diameter, height and pitch) allow to confine and absorb the incident light considerably, albeit its compact configuration.
    [Show full text]
  • Designing a Nanoelectronic Circuit to Control a Millimeter-Scale Walking Robot
    Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 McLean, Virginia Designing a Nanoelectronic Circuit to Control a Millimeter-scale Walking Robot Alexander J. Gates November 2004 MP 04W0000312 MITRE Nanosystems Group e-mail: [email protected] WWW: http://www.mitre.org/tech/nanotech Sponsor MITRE MSR Program Project No. 51MSR89G Dept. W809 Approved for public release; distribution unlimited. Copyright © 2004 by The MITRE Corporation. All rights reserved. Gates, Alexander Abstract A novel nanoelectronic digital logic circuit was designed to control a millimeter-scale walking robot using a nanowire circuit architecture. This nanoelectronic circuit has a number of benefits, including extremely small size and relatively low power consumption. These make it ideal for controlling microelectromechnical systems (MEMS), such as a millirobot. Simulations were performed using a SPICE circuit simulator, and unique device models were constructed in this research to assess the function and integrity of the nanoelectronic circuit’s output. It was determined that the output signals predicted for the nanocircuit by these simulations meet the requirements of the design, although there was a minor signal stability issue. A proposal is made to ameliorate this potential problem. Based on this proposal and the results of the simulations, the nanoelectronic circuit designed in this research could be used to begin to address the broader issue of further miniaturizing circuit-micromachine systems. i Gates, Alexander I. Introduction The purpose of this paper is to describe the novel nanoelectronic digital logic circuit shown in Figure 1, which has been designed by this author to control a millimeter-scale walking robot.
    [Show full text]
  • Formation of Silicon Nanowires by Chemical Vapour Deposition Technique Using Indium Catalyst
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Malaya Students Repository FORMATION OF SILICON NANOWIRES BY CHEMICAL VAPOUR DEPOSITION TECHNIQUE USING INDIUM CATALYST CHONG SU KONG DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF PHYSICS FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2012 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate: CHONG SU KONG (I.C/Passport No: 850515-01-6097) Registration/Matric No: SGR090004 Name of Degree: MASTER OF SCIENCE (DISSERTATION) Title of Project Paper/Research Report/Dissertation/Thesis (“this Work”): FORMATION OF SILICON NANOWIRES BY CHEMICAL VAPOUR DEPOSITION TECHNIQUE USING INDIUM CATALYST Field of Study: NANOTECHNOLOGY I do solemnly and sincerely declare that: (1) I am the sole author/writer of this Work; (2) This Work is original; (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work; (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.
    [Show full text]
  • A Simulation Study of a Gate-All-Around Nanowire Transistor with a Core–Insulator
    micromachines Article A Simulation Study of a Gate-All-Around Nanowire Transistor with a Core–Insulator Yannan Zhang † , Ke Han † and and Jiawei Li * School of Electronic Engineering, Beijing University of Posts and Telecommunications, Haidian district, Beijing 100876, China; [email protected] (Y.Z.); [email protected] (K.H.) * Correspondence: [email protected] † These authors contributed equally to this work. Received: 27 December 2019; Accepted: 18 February 2020; Published: 21 February 2020 Abstract: Ultra-low power and high-performance logical devices have been the driving force for the continued scaling of complementary metal oxide semiconductor field effect transistors which greatly enable electronic devices such as smart phones to be energy-efficient and portable. In the pursuit of smaller and faster devices, researchers and scientists have worked out a number of ways to further lower the leaking current of MOSFETs (Metal oxide semiconductor field effect transistor). Nanowire structure is now regarded as a promising candidate of future generation of logical devices due to its ultra-low off-state leaking current compares to FinFET. However, the potential of nanowire in terms of off-state current has not been fully discovered. In this article, a novel Core–Insulator Gate-All-Around (CIGAA) nanowire has been proposed, investigated, and simulated comprehensively and systematically based on 3D numerical simulation. Comparisons are carried out between GAA and CIGAA. The new CIGAA structure exhibits low off-state current compares to that of GAA, making it a suitable candidate of future low-power and energy-efficient devices. Keywords: CMOS; core-insulator; gate-all-around; field effect transistor; GAA; nanowire 1.
    [Show full text]
  • Effect of Size and Shape on Electrochemical Performance of Nano-Silicon-Based Lithium Battery
    nanomaterials Article Effect of Size and Shape on Electrochemical Performance of Nano-Silicon-Based Lithium Battery Caroline Keller 1,2, Antoine Desrues 3, Saravanan Karuppiah 1,2, Eléa Martin 1, John P. Alper 2,3, Florent Boismain 3, Claire Villevieille 1 , Nathalie Herlin-Boime 3,Cédric Haon 2 and Pascale Chenevier 1,* 1 CEA, CNRS, IRIG, SYMMES, STEP, University Grenoble Alpes, 38000 Grenoble, France; [email protected] (C.K.); [email protected] (S.K.); [email protected] (E.M.); [email protected] (C.V.) 2 CEA, LITEN, DEHT, University Grenoble Alpes, 38000 Grenoble, France; [email protected] (J.P.A.); [email protected] (C.H.) 3 CEA, CNRS, IRAMIS, NIMBE, LEDNA, University Paris Saclay, 91191 Gif-sur-Yvette, France; [email protected] (A.D.); fl[email protected] (F.B.); [email protected] (N.H.-B.) * Correspondence: [email protected] Abstract: Silicon is a promising material for high-energy anode materials for the next generation of lithium-ion batteries. The gain in specific capacity depends highly on the quality of the Si dispersion and on the size and shape of the nano-silicon. The aim of this study is to investigate the impact of the size/shape of Si on the electrochemical performance of conventional Li-ion batteries. The scalable synthesis processes of both nanoparticles and nanowires in the 10–100 nm size range are discussed. In cycling lithium batteries, the initial specific capacity is significantly higher for nanoparticles than for nanowires. We demonstrate a linear correlation of the first Coulombic efficiency with the specific area of the Si materials.
    [Show full text]
  • Two-Dimensional Modeling of the Self-Limiting Oxidation in Silicon and Tungsten Nanowires
    Theoretical & Applied Mechanics Letters 6 (2016) 195–199 Contents lists available at ScienceDirect Theoretical & Applied Mechanics Letters journal homepage: www.elsevier.com/locate/taml Letter Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires Mingchao Liu a,b, Peng Jin a, Zhiping Xu a, Dorian A.H. Hanaor b, Yixiang Gan b, Changqing Chen a,∗ a Department of Engineering Mechanics, CNMM & AML, Tsinghua University, Beijing 100084, China b School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia h i g h l i g h t s • A new diffusion-controlled kinetic model for nanowire oxidation is developed. • A finite reactive region is included to account for oxidation stress and suboxide formation. • Self-limiting nanowire oxidation and its curvature/temperature dependence are predicted. • Results are consistent with observed oxidation behavior of silicon (Si) and tungsten (W) nanowires. article info a b s t r a c t Article history: Self-limiting oxidation of nanowires has been previously described as a reaction- or diffusion-controlled Received 18 July 2016 process. In this letter, the concept of finite reactive region is introduced into a diffusion-controlled model, Received in revised form based upon which a two-dimensional cylindrical kinetics model is developed for the oxidation of silicon 1 August 2016 nanowires and is extended for tungsten. In the model, diffusivity is affected by the expansive oxidation Accepted 2 August 2016 reaction induced stress. The dependency of the oxidation upon curvature and temperature is modeled. Available online 16 August 2016 *This article belongs to the Solid Mechanics Good agreement between the model predictions and available experimental data is obtained.
    [Show full text]
  • Silicon Nanowire Anode for Lithium-Ion Batteries
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Silicon nanowire anode for lithium-ion batteries: fabrication, characterization and solid electrolyte interphase Wanli Xu Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Chemical Engineering Commons Recommended Citation Xu, Wanli, "Silicon nanowire anode for lithium-ion batteries: fabrication, characterization and solid electrolyte interphase" (2011). LSU Doctoral Dissertations. 219. https://digitalcommons.lsu.edu/gradschool_dissertations/219 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SILICON NANOWIRE ANODE FOR LITHIUM-ION BATTERIES: FABRICATION, CHARACTERIZATION AND SOLID ELECTROLYTE INTERPHASE A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agriculture and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Gordon A. and Mary Cain Department of Chemical Engineering by Wanli Xu B.S., Dalian University of Technology August 2011 DEDICATION To My Loving Parents, Grandparents, And Husband Zhe Nan 谨以此文 献给 我挚爱的父亲母亲 爷爷奶奶 和丈夫南哲 ii ACKNOWLEDGEMENTS First of all, my heartfelt gratitude goes out to my supervisor, Professor John C. Flake, for successful completion of my dissertation. I am so honored to join in his research group as the first graduate student, and worked with him to set up the lab and equipment from scratch. His untiring effort, encouragement, guidance and support helped me greatly in my graduate studies as well as successful completion of this dissertation.
    [Show full text]
  • Robustness Analysis of Controllable-Polarity Silicon Nanowire Devices and Circuits
    Robustness Analysis of Controllable-Polarity Silicon Nanowire Devices and Circuits THÈSE NO 6924 (2016) PRÉSENTÉE LE 8 AVRIL 2016 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS LABORATOIRE DES SYSTÈMES INTÉGRÉS (IC/STI) PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES PAR Hassan GHASEMZADEH MOHAMMADI acceptée sur proposition du jury: Prof. B. Falsafi, président du jury Prof. G. De Micheli, directeur de thèse Prof. M. Sonza Reorda, rapporteur Prof. M. Nicolaidis, rapporteur Prof. D. Atienza Alonso, rapporteur Suisse 2016 To Maryam for her endless love, and to the memory of my father, Ahmad Acknowledgements This thesis was a unique adventure during my study at EPFL. This work could not be done without the help and support of many people. Collaborating, discussing, and working with such great colleagues were invaluable experience during the last 4 years. I would particularly like to thank my supervisor Prof. Giovanni De Micheli for all of his supports, guides and time for constructive discussions. He was a constant source of support and encouragement during the challenges of my research. Working with a knowledgeable person like Prof. Pierre-Emmanuel Gaillardon is always a remarkable experience. I would like to thank him for his tremendous guides and supports. I would also appreciate my examiners, Prof. Babak Falsafi, Prof. David Atienza Alonso, Prof. Matteo Sonza Reorda, and Prof. Michael Nicolaidis, who provided encouraging and beneficial feedbacks. My colleagues at EPFL have a significant role in my project. I wish to thank Dr. Majid Yazdani and Dr. Sara S. Ghoreishizadeh.
    [Show full text]
  • Two-Dimensional Modeling of the Self-Limiting Oxidation in Silicon and Tungsten Nanowires
    Theoretical & Applied Mechanics Letters 6 (2016) 195–199 Contents lists available at ScienceDirect Theoretical & Applied Mechanics Letters journal homepage: www.elsevier.com/locate/taml Letter Two-dimensional modeling of the self-limiting oxidation in silicon and tungsten nanowires Mingchao Liu a,b, Peng Jin a, Zhiping Xu a, Dorian A.H. Hanaor b, Yixiang Gan b, Changqing Chen a,∗ a Department of Engineering Mechanics, CNMM & AML, Tsinghua University, Beijing 100084, China b School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia h i g h l i g h t s • A new diffusion-controlled kinetic model for nanowire oxidation is developed. • A finite reactive region is included to account for oxidation stress and suboxide formation. • Self-limiting nanowire oxidation and its curvature/temperature dependence are predicted. • Results are consistent with observed oxidation behavior of silicon (Si) and tungsten (W) nanowires. article info a b s t r a c t Article history: Self-limiting oxidation of nanowires has been previously described as a reaction- or diffusion-controlled Received 18 July 2016 process. In this letter, the concept of finite reactive region is introduced into a diffusion-controlled model, Received in revised form based upon which a two-dimensional cylindrical kinetics model is developed for the oxidation of silicon 1 August 2016 nanowires and is extended for tungsten. In the model, diffusivity is affected by the expansive oxidation Accepted 2 August 2016 reaction induced stress. The dependency of the oxidation upon curvature and temperature is modeled. Available online 16 August 2016 *This article belongs to the Solid Mechanics Good agreement between the model predictions and available experimental data is obtained.
    [Show full text]
  • Synthesis, Characterization, and Integration of Silicon Nanowires for Nanosystems Technology
    Synthesis, Characterization, and Integration of Silicon Nanowires for Nanosystems Technology by Gregory Stephen Doerk A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Roya Maboudian, Chair Professor Jeffrey Reimer Professor Liwei Lin Fall 2010 Synthesis, Characterization, and Integration of Silicon Nanowires for Nanosystems Technology Copyright 2010 by Gregory Stephen Doerk 1 Abstract Synthesis, Characterization, and Integration of Silicon Nanowires for Nanosystems Technology by Gregory Stephen Doerk Doctor of Philosophy in Chemical Engineering University of California, Berkeley Professor Roya Maboudian, Chair Silicon’s chemical stability, high natural abundance (as the second most common element in the earth’s crust), mechanical stiffness, and semiconducting behavior have made it the subject of extensive scientific investigation and the material of choice for both the micro- electronics and microelectromechanical device industries. The success of Moore’s Law that demands continual size reduction has directed it to a central place in emerging nanoscience and nanotechnology as well. Crystalline nanowires (NWs) are one nanostructured form that silicon may take that has sparked significant interest as they can exhibit considerable con- finement effects and high surface-to-volume ratios, but may be interfaced simply along one direction for the determination of material properties and implementation into new technolo- gies. The expense and difficulty involved in the creation of semiconductor nanowires using the “top down” fabrication techniques of the microelectronics industry has promoted an explosion of chemical synthetic “bottom up” techniques to produce high quality crystalline nanowires in large quanitities.
    [Show full text]
  • Piezoresistivity Characterization of Synthetic Silicon Nanowires Using
    JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 20, NO. 4, AUGUST 2011 959 Piezoresistivity Characterization of Synthetic Silicon Nanowires Using a MEMS Device Yong Zhang, Student Member, IEEE, Xinyu Liu, Member, IEEE, Changhai Ru, Member, IEEE, Yan Liang Zhang, Member, IEEE, Lixin Dong, Senior Member, IEEE, and Yu Sun, Senior Member, IEEE Abstract—This paper presents a microelectromechanical sys- for nanoelectronic applications. For instance, individual single- tems (MEMS) device for simultaneous electrical and mechanical walled carbon nanotubes were used as active transducer ele- characterization of individual nanowires. The device consists of ments in a pressure sensor [1] and a displacement sensor [2]. an electrostatic actuator and two capacitive sensors, capable of acquiring all measurement data (force and displacement) elec- To quantify the piezoresistivity of individual nanomaterials, a tronically without relying on electron microscopy imaging. This number of experimental techniques have been reported. The ex- capability avoids the effect of electron beam (e-beam) irradiation periments in common require simultaneous mechanical loading during nanomaterial testing. The bulk-microfabricated devices and electrical measurement of a nanomaterial. For example, the perform electrical characterization at different mechanical strain cantilever tip of an atomic force microscope (AFM) was used to levels. To integrate individual nanowires to the MEMS device for testing, a nanomanipulation procedure is developed to transfer laterally push a single-walled carbon nanotube suspended over individual nanowires from their growth substrate to the device a trench between two solid electrodes [3], which results in large inside a scanning electron microscope. Silicon nanowires are char- local deformation of the nanotube at the tube–tip contact point.
    [Show full text]