Senior Whitehead Prize 2019 Citation for Professor Ben Green FRS

Total Page:16

File Type:pdf, Size:1020Kb

Senior Whitehead Prize 2019 Citation for Professor Ben Green FRS Senior Whitehead Prize 2019 Citation for Professor Ben Green FRS Professor Ben Green FRS, of the University of Oxford, is awarded a Senior Whitehead Prize for his groundbreaking contributions to additive combinatorics, analytic number theory, and group theory. In all three areas he has proved results of a power that would have seemed unthinkable twenty years ago. His most famous result, proved with Terence Tao, is that the prime numbers contain arithmetic progressions of all lengths. This was followed up by a series of papers, culminating in a paper with Tao and Tamar Ziegler that proved the so-called inverse theorem for the 푈푘-norms. This completed a programme that proved a very wide class cases of the Hardy–Littlewood conjecture about the asymptotic density of configurations in the primes: essentially, they proved all cases apart from those that would have implied “impossibly difficult” results such as the twin-primes conjecture. More recently, with Kevin Ford, Sergei Konyagin, James Maynard and Tao he has proved a decades-old conjecture of Erdős concerning long gaps in the primes. A famous result of his in group theory, proved with Emmanuel Breuillard and Tao, concerns the structure of “approximate groups”, that is, subsets of groups that have an approximate closure property. Such subsets play a central role in additive combinatorics, but while the Abelian case was well understood thanks to remarkable work of Gregory Freiman and Imre Ruzsa, the non-Abelian case was much harder. The proof is a mixture of deep ideas and a technical tour de force: to give an idea of how strong it is, one consequence of their result is Gromov's theorem on polynomial growth. These are just a few highlights from his many results, which together constitute an extraordinary and highly influential body of work. Green is currently the Waynflete Professor of Pure Mathematics at Oxford. He has received several awards, including the Clay Research Award, the Ramanjuan Prize, the Salem Prize, the Sylvester Medal, the Ostrowski Prize and a Whitehead Prize. .
Recommended publications
  • Properties of High Rank Subvarieties of Affine Spaces 3
    PROPERTIES OF HIGH RANK SUBVARIETIES OF AFFINE SPACES DAVID KAZHDAN AND TAMAR ZIEGLER Abstract. We use tools of additive combinatorics for the study of subvarieties defined by high rank families of polynomials in high dimensional Fq-vector spaces. In the first, analytic part of the paper we prove a number properties of high rank systems of polynomials. In the second, we use these properties to deduce results in Algebraic Geometry , such as an effective Stillman conjecture over algebraically closed fields, an analogue of Nullstellensatz for varieties over finite fields, and a strengthening of a recent result of [5]. We also show that for k-varieties X ⊂ An of high rank any weakly polynomial function on a set X(k) ⊂ kn extends to a polynomial. 1. Introduction Let k be a field. For an algebraic k-variety X we write X(k) := X(k). To simplify notations we often write X instead of X(k). In particular we write V := V(k) when V is a vector space and write kN for AN (k). For a k-vector space V we denote by Pd(V) the algebraic variety of polynomials on V of degree ≤ d and by Pd(V ) the set of polynomials functions P : V → k of degree ≤ d. We always assume that d< |k|, so the restriction map Pd(V)(k) → Pd(V ) is a bijection. For a family P¯ = {Pi} of polynomials on V we denote by X V P¯ ⊂ the subscheme defined by the ideal generated by {Pi} and by XP¯ the set XP (k) ⊂ V . We will not distinguish between the set of affine k-subspaces of V and the set of affine subspaces of V since for an affine k-subspace W ⊂ V, the map W → W(k) is a bijection.
    [Show full text]
  • Gaps Between Primes
    P. I. C. M. – 2018 Rio de Janeiro, Vol. 2 (363–380) GAPS BETWEEN PRIMES J M Abstract We discuss recent advances on weak forms of the Prime k-tuple Conjecture, and its role in proving new estimates for the existence of small gaps between primes and the existence of large gaps between primes. 1 Introduction It follows from the Prime Number Theorem that the average gap between primes less than X is of size roughly log X when X is large. We expect, however, that occasionally these gaps are rather smaller than log X, and occasionally rather larger. Specifically, based on random models and numerical evidence, we believe that the largest and smallest gaps are as described in the following two famous conjectures1. Conjecture 1 (Twin Prime Conjecture). There are infinitely many pairs of primes which differ by exactly 2. th Conjecture 2 (Cramér’s Conjecture, weak form). Let pn denote the n prime. Then 2+o(1) sup (pn+1 pn) = (log X) : pn X Ä Moreover, the Twin Prime Conjecture can be thought of as a special case of the far- reaching Prime k-tuple Conjecture describing more general patterns of many primes. Conjecture 3 (Prime k-tuple Conjecture). Let L1;:::;Lk be integral linear functions k Li (n) = ai n + bi such that for every prime p there is an integer np with Qi=1 Li (np) coprime to p. Then there are infinitely many integers n such that all of L1(n);:::;Lk(n) are primes. The author is funded by a Clay Research Fellowship.
    [Show full text]
  • Arxiv:1910.04675V1 [Math.DS] 10 Oct 2019 UNIAIEDSONNS FNILFLOWS of DISJOINTNESS QUANTITATIVE Ekts,Cmie Ihtesrcua Hoesfrnlosby Ziegler
    QUANTITATIVE DISJOINTNESS OF NILFLOWS FROM HOROSPHERICAL FLOWS ASAF KATZ Abstract. We prove a quantitative variant of a disjointness the- orem of nilflows from horospherical flows following a technique of Venkatesh, combined with the structural theorems for nilflows by Green, Tao and Ziegler. arXiv:1910.04675v1 [math.DS] 10 Oct 2019 1 2 1. Introduction In a landmark paper [10], H. Furstenberg introduced the notion of joinings of two dynamical systems and the concept of disjoint dynam- ical systems. Ever since, this property has played a major role in the field of dynamics, leading to many fundamental results. In his paper, Furstenberg proved the following characterization of a weakly-mixing dynamical system: 1.1. Theorem (Furstenberg [10], Theorem 1.4). A dynamical system (X,β,µ,T ) is weakly-mixing if and only if (X, T ) is disjoint from any Kronecker system. Namely, given any compact abelian group A, equipped with the ac- tion of A on itself by left-translation Ra, the only joining between (X, T ) and (A, Ra) is the trivial joining given by the product mea- sure on the product dynamical system (X A, T R ). The Wiener- × × a Wintner ergodic theorem readily follows from Furstenberg’s theorem. In [2], J. Bourgain derived a strengthening of Furstenberg’s disjoint- ness theorem, which amounts to the uniform Wiener-Wintner theorem. The proof is along the lines of Furstenberg’s but utilizing the Van-der- Corput trick to show uniformity over various Kronecker systems. In a recent work [41], A. Venkatesh gave a quantitative statement of the uniform Wiener-Wintner theorem for the case of the horocyclic flow on compact homogeneous spaces of SL2(R) (and in principal, his proof works also for non-compact spaces as well, by allowing the decay rate to depend on Diophantine properties of the origin point of the orbit).
    [Show full text]
  • Arxiv:1006.0205V4 [Math.NT]
    AN INVERSE THEOREM FOR THE GOWERS U s+1[N]-NORM BEN GREEN, TERENCE TAO, AND TAMAR ZIEGLER Abstract. This is an announcement of the proof of the inverse conjecture for the Gowers U s+1[N]-norm for all s > 3; this is new for s > 4, the cases s = 1, 2, 3 having been previously established. More precisely we outline a proof that if f : [N] → [−1, 1] is a function with kfkUs+1[N] > δ then there is a bounded-complexity s-step nilsequence F (g(n)Γ) which correlates with f, where the bounds on the complexity and correlation depend only on s and δ. From previous results, this conjecture implies the Hardy-Littlewood prime tuples conjecture for any linear system of finite complexity. In particular, one obtains an asymptotic formula for the number of k-term arithmetic progres- sions p1 <p2 < ··· <pk 6 N of primes, for every k > 3. 1. Introduction This is an announcement and summary of our much longer paper [20], the pur- pose of which is to establish the general case of the Inverse Conjecture for the Gowers norms, conjectured by the first two authors in [15, Conjecture 8.3]. If N is a (typically large) positive integer then we write [N] := {1,...,N}. Throughout the paper we write D = {z ∈ C : |z| 6 1}. For each integer s > 1 the inverse conjec- ture GI(s), whose statement we recall shortly, describes the structure of functions st f :[N] → D whose (s + 1) Gowers norm kfkU s+1[N] is large.
    [Show full text]
  • Jakub M. Konieczny Curriculum Vitae
    Jakub M. Konieczny Curriculum Vitae E-mail: [email protected] CONTACT Einstein Institute of Mathematics Webpages: INFORMATION Edmond J. Safra Campus The Hebrew University of Jerusalem mathematics.huji.ac.il/people/jakub-konieczny Givat Ram. Jerusalem, 9190401, Israel jakubmichalkonieczny.wordpress.com RESEARCH Ergodic theory and dynamical systems. Applications to combinatorial number theory. Sym- INTERESTS bolic dynamics. Fourier analysis. Higher order Fourier analysis. Dynamics on nilmani- folds. Generalised polynomials. Automatic sequences. q-multiplicative sequences. Ultrafil- ters. Ramsey theory. Extremal combinatorics. CURRENT Postdoctoral Fellow, October 2017 to present ACADEMIC Einstein Institute of Mathematics, The Hebrew University of Jerusalem APPOINTMENTS under ERC grant: Ergodic Theory and Additive Combinatorics Advisor: Tamar Ziegler EDUCATION University of Oxford Doctor of Philosophy in Mathematics, 1 August 2017 • Supervisor: Ben Green • Area of study: Ergodic theory/Additive combinatorics • Thesis title: On combinatorial properties of nil-Bohr sets of integers and related problems Jagiellonian University, Kraków and Vrije Universiteit, Amsterdam (joint degree) Master of Science in Mathematics, 18 July 2013 (UJ) | 30 August 2013 (VU) • Supervisor: P. Niemiec (UJ) and T. Eisner-Lobova (VU) and A. J. Homburg (VU) • Area of study: Ergodic theory/Combinatorial number theory • Thesis title: Applications of ultrafilters in ergodic theory and combinatorial number theory Jagiellonian University, Kraków Bachelor of Science in Mathematics, 15 July 2011 • Individualised Studies in Mathematics and Natural Sciences (SMP) programme • Extended curriculum incorporating material from Computer Science and Physics JOURNAL PAPERS [1] J. Byszewski, J. Konieczny, and E. Krawczyk. Substitutive systems and a finitary version (PUBLISHED OR of Cobham’s theorem. To appear in Combinatorica, available at arXiv: 1908.11244 ACCEPTED FOR [math.CO] PUBLICATION) [2] J.
    [Show full text]
  • Analytic Number Theory in Honor of Helmut Maier’S 60Th Birthday
    springer.com Carl Pomerance, Michael Th. Rassias (Eds.) Analytic Number Theory In Honor of Helmut Maier’s 60th Birthday Presents the latest developments and applications by leading experts in Analytic Number Theory Contains contributions by mathematicians who have published jointly with Helmut Maier Contains practical material for graduate students and research mathematicians, as well as for computer scientists and engineers??????? ? This volume contains a collection of research and survey papers written by some of the most eminent mathematicians in the international community and is dedicated to Helmut Maier, whose own research has been groundbreaking and deeply influential to the field. Specific emphasis is given to topics regarding exponential and trigonometric sums and their behavior in short intervals, anatomy of integers and cyclotomic polynomials, small gaps in sequences of sifted prime numbers, oscillation theorems for primes in arithmetic progressions, inequalities related to the distribution of primes in short intervals, the Möbius function, Euler’s totient 1st ed. 2015, VIII, 379 p. function, the Riemann zeta function and the Riemann Hypothesis. Graduate students, research mathematicians, as well as computer scientists and engineers who are interested in pure and Printed book interdisciplinary research, will find this volume a useful resource. Contributors to this volume: Hardcover Bill Allombert, Levent Alpoge, Nadine Amersi, Yuri Bilu, Régis de la Bretèche, Christian Elsholtz, 99,99 € | £89.99 | $119.99 John B. Friedlander, Kevin Ford, Daniel A. Goldston, Steven M. Gonek, Andrew Granville, Adam J. [1] 106,99 € (D) | 109,99 € (A) | CHF Harper, Glyn Harman, D. R. Heath-Brown, Aleksandar Ivi, Geoffrey Iyer, Jerzy Kaczorowski, 118,00 Daniel M.
    [Show full text]
  • Issue 118 ISSN 1027-488X
    NEWSLETTER OF THE EUROPEAN MATHEMATICAL SOCIETY S E European M M Mathematical E S Society December 2020 Issue 118 ISSN 1027-488X Obituary Sir Vaughan Jones Interviews Hillel Furstenberg Gregory Margulis Discussion Women in Editorial Boards Books published by the Individual members of the EMS, member S societies or societies with a reciprocity agree- E European ment (such as the American, Australian and M M Mathematical Canadian Mathematical Societies) are entitled to a discount of 20% on any book purchases, if E S Society ordered directly at the EMS Publishing House. Recent books in the EMS Monographs in Mathematics series Massimiliano Berti (SISSA, Trieste, Italy) and Philippe Bolle (Avignon Université, France) Quasi-Periodic Solutions of Nonlinear Wave Equations on the d-Dimensional Torus 978-3-03719-211-5. 2020. 374 pages. Hardcover. 16.5 x 23.5 cm. 69.00 Euro Many partial differential equations (PDEs) arising in physics, such as the nonlinear wave equation and the Schrödinger equation, can be viewed as infinite-dimensional Hamiltonian systems. In the last thirty years, several existence results of time quasi-periodic solutions have been proved adopting a “dynamical systems” point of view. Most of them deal with equations in one space dimension, whereas for multidimensional PDEs a satisfactory picture is still under construction. An updated introduction to the now rich subject of KAM theory for PDEs is provided in the first part of this research monograph. We then focus on the nonlinear wave equation, endowed with periodic boundary conditions. The main result of the monograph proves the bifurcation of small amplitude finite-dimensional invariant tori for this equation, in any space dimension.
    [Show full text]
  • Additive and Analytic Combinatorics
    IMA Workshops September 29-October 3, 2014 Additive and Analytic Combinatorics ORGANIZERS SPEAKERS David Conlon, University of Oxford Tim Austin, Courant Institute of Mathematical Sciences Ernie Croot, Georgia Institute of Technology Vitaly Bergelson, The Ohio State Van Vu, Yale University University Tamar Ziegler, Hebrew University Emmanuel Breuillard, Université de Paris XI (Paris-Sud) Boris Bukh, Carnegie Mellon University Mei-Chu Chang, University of California, Additive combinatorics is the theory of counting Riverside additive structures in sets. This theory has seen David Conlon, University of Oxford exciting developments and dramatic changes in Ernie Croot, Georgia Institute of direction in recent years thanks to its connections Technology with areas such as harmonic analysis, ergodic Jacob Fox, Massachusetts Institute of Technology theory, and representation theory. As it turns out, Bob Guralnick, University of Southern many combinatorial ideas that have existed in the California combinatorics community for quite some time can Akos Magyar, University of British be used to attack notorious problems in other areas Columbia of mathematics. A typical example is the Green- Hamed Hatami, McGill University Tao theorem on the existence of long arithmetic Frederick Manners, University of Oxford progressions in primes, which uses a famous Lilian Matthiesen, Institut de theorem of Szemerédi on arithmetic progressions Mathematiques de Jussieu in dense sets as a key component. The field is also Jozsef Solymosi, University of British of great interest to computer scientists; a number of Columbia the techniques and theorems have seen application Terence Tao, University of California, Los Angeles in, for example, communication complexity, Van Vu, Yale University property testing, and the design of randomness Melanie Wood, University of Wisconsin, extractors.
    [Show full text]
  • An Inverse Theorem for the Gowers U4-Norm
    Glasgow Math. J. 53 (2011) 1–50. C Glasgow Mathematical Journal Trust 2010. doi:10.1017/S0017089510000546. AN INVERSE THEOREM FOR THE GOWERS U4-NORM BEN GREEN Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK e-mail: [email protected] TERENCE TAO UCLA Department of Mathematics, Los Angeles, CA 90095-1555, USA e-mail: [email protected] and TAMAR ZIEGLER Department of Mathematics, Technion - Israel Institute of Technology, Haifa 32000, Israel e-mail: [email protected] (Received 30 November 2009; accepted 18 June 2010; first published online 25 August 2010) Abstract. We prove the so-called inverse conjecture for the Gowers U s+1-norm in the case s = 3 (the cases s < 3 being established in previous literature). That is, we show that if f :[N] → ރ is a function with |f (n)| 1 for all n and f U4 δ then there is a bounded complexity 3-step nilsequence F(g(n)) which correlates with f . The approach seems to generalise so as to prove the inverse conjecture for s 4as well, and a longer paper will follow concerning this. By combining the main result of the present paper with several previous results of the first two authors one obtains the generalised Hardy–Littlewood prime-tuples conjecture for any linear system of complexity at most 3. In particular, we have an asymptotic for the number of 5-term arithmetic progressions p1 < p2 < p3 < p4 < p5 N of primes. 2010 Mathematics Subject Classification. Primary: 11B30; Secondary: 37A17. NOTATION . By a 1-bounded function on a set X we mean a function f : X → ރ with |f (x)| 1 for all x∈ X.
    [Show full text]
  • 50Th IMO – 50 Years of International Mathematical Olympiads − Hans-Dietrich Gronau • Hanns-Heinrich Langmann Dierk Schleicher Editors
    50th IMO – 50 Years of International Mathematical Olympiads − Hans-Dietrich Gronau • Hanns-Heinrich Langmann Dierk Schleicher Editors 50thIMO–50Years of International Mathematical Olympiads 123 Editors Hans-Dietrich Gronau Hanns-Heinrich Langmann Universität Rostock Bildung & Begabung gemeinnützige GmbH Institut für Mathematik Bundeswettbewerb Mathematik Ulmenstr. 69 Kortrijker Str. 1 18051 Rostock 53177 Bonn Germany Germany [email protected] [email protected] Dierk Schleicher Jacobs University Research I Campus Ring 1 28759 Bremen Germany [email protected] ISBN 978-3-642-14564-3 e-ISBN 978-3-642-14565-0 DOI 10.1007/978-3-642-14565-0 Springer Heidelberg Dordrecht London New York Mathematics Subject Classification (2010): 00A09 c Springer-Verlag Berlin Heidelberg 2011 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer.Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface From 10 to 22 July 2009 Germany hosted the 50th International Mathematical Olympiad (IMO).
    [Show full text]
  • Joint Journals Catalogue EMS / MSP 2020
    Joint Journals Cataloguemsp EMS / MSP 1 2020 Super package deal inside! msp 1 EEuropean Mathematical Society Mathematical Science Publishers msp 1 The EMS Publishing House is a not-for-profit Mathematical Sciences Publishers is a California organization dedicated to the publication of high- nonprofit corporation based in Berkeley. MSP quality peer-reviewed journals and high-quality honors the best traditions of quality publishing books, on all academic levels and in all fields of while moving with the cutting edge of information pure and applied mathematics. The proceeds from technology. We publish more than 16,000 pages the sale of our publications will be used to keep per year, produce and distribute scientific and the Publishing House on a sound financial footing; research literature of the highest caliber at the any excess funds will be spent in compliance lowest sustainable prices, and provide the top with the purposes of the European Mathematical quality of mathematically literate copyediting and Society. The prices of our products will be set as typesetting in the industry. low as is practicable in the light of our mission and We believe scientific publishing should be an market conditions. industry that helps rather than hinders scholarly activity. High-quality research demands high- Contact addresses quality communication – widely, rapidly and easily European Mathematical Society Publishing House accessible to all – and MSP works to facilitate it. Technische Universität Berlin, Mathematikgebäude Straße des 17. Juni 136, 10623 Berlin, Germany Contact addresses Email: [email protected] Mathematical Sciences Publishers Web: www.ems-ph.org 798 Evans Hall #3840 c/o University of California Managing Director: Berkeley, CA 94720-3840, USA Dr.
    [Show full text]
  • Ewm Newsletter23.Pdf
    Newsletter 23 Edited by Sara Munday (University of Bristol, UK) and Elena Resmerita (University of Klagenfurt, Austria) 2013/2 In this issue This issue is dedicated to the EWM general meeting which took place in September 2013 at the Hausdorff Centre for Mathematics, Bonn. A report and the minutes of the meeting are included below, followed by interesting data related to gender in Math publications provided by colleagues from Zentralblatt Math (presented also at the meeting). The interviews focus on the change of convenor: Marie-Francoise Roy (former convenor) and Susanna Terracini (new convenor), and on Tamar Ziegler, a guest speaker at Bonn who has been the European Mathematics Society 2013 lecturer. The series of articles on the STEM situation in different European countries continues here with Germany and Italy. An article published a few years ago in the magazine "Role Model Book" of the Nagoya University, Japan is included courtesy to its author: Yukari Ito. Prestigious prizes for research awarded to woman mathematicians this year in Europe are highlighted. A series of announcements on Math events and miscellanea are pointed out at the end of this issue. The 2013 EWM general meeting Report from the meeting The meeting was opened by the EWM convenor Marie-Francoise Roy and by Dr. Michael Meier, Chief Administrator of HCM Bonn, who talked about the mission and activities of HCM, as well as the personality of the mathematician Felix Hausdorff , who on top of his contributions to topology and many other topics in mathematics was also a philosopher and playwrighter under the pseudonym Paul Mongré.
    [Show full text]