'Undruggable' Transcription Factors with Small Molecules
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Contribution of Enhancer-Driven and Master-Regulator Genes to Autoimmune Disease Revealed Using Functionally Informed SNP-To-Gene Linking Strategies Kushal K
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.02.279059; this version posted March 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Contribution of enhancer-driven and master-regulator genes to autoimmune disease revealed using functionally informed SNP-to-gene linking strategies Kushal K. Dey1, Steven Gazal1, Bryce van de Geijn 1,3, Samuel Sungil Kim 1,4, Joseph Nasser5, Jesse M. Engreitz5, Alkes L. Price 1,2,5 1 Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA 2 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 3 Genentech, South San Francisco, CA 4 Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 5 Broad Institute of MIT and Harvard, Cambridge, MA, USA Abstract Gene regulation is known to play a fundamental role in human disease, but mechanisms of regulation vary greatly across genes. Here, we explore the con- tributions to disease of two types of genes: genes whose regulation is driven by enhancer regions as opposed to promoter regions (Enhancer-driven) and genes that regulate many other genes in trans (Master-regulator). We link these genes to SNPs using a comprehensive set of SNP-to-gene (S2G) strategies and apply stratified LD score regression to the resulting SNP annotations to draw three main conclusions about 11 autoimmune diseases and blood cell traits (average Ncase=13K across 6 autoimmune diseases, average N=443K across 5 blood cell traits). -
Genome-Wide DNA Methylation Analysis of KRAS Mutant Cell Lines Ben Yi Tew1,5, Joel K
www.nature.com/scientificreports OPEN Genome-wide DNA methylation analysis of KRAS mutant cell lines Ben Yi Tew1,5, Joel K. Durand2,5, Kirsten L. Bryant2, Tikvah K. Hayes2, Sen Peng3, Nhan L. Tran4, Gerald C. Gooden1, David N. Buckley1, Channing J. Der2, Albert S. Baldwin2 ✉ & Bodour Salhia1 ✉ Oncogenic RAS mutations are associated with DNA methylation changes that alter gene expression to drive cancer. Recent studies suggest that DNA methylation changes may be stochastic in nature, while other groups propose distinct signaling pathways responsible for aberrant methylation. Better understanding of DNA methylation events associated with oncogenic KRAS expression could enhance therapeutic approaches. Here we analyzed the basal CpG methylation of 11 KRAS-mutant and dependent pancreatic cancer cell lines and observed strikingly similar methylation patterns. KRAS knockdown resulted in unique methylation changes with limited overlap between each cell line. In KRAS-mutant Pa16C pancreatic cancer cells, while KRAS knockdown resulted in over 8,000 diferentially methylated (DM) CpGs, treatment with the ERK1/2-selective inhibitor SCH772984 showed less than 40 DM CpGs, suggesting that ERK is not a broadly active driver of KRAS-associated DNA methylation. KRAS G12V overexpression in an isogenic lung model reveals >50,600 DM CpGs compared to non-transformed controls. In lung and pancreatic cells, gene ontology analyses of DM promoters show an enrichment for genes involved in diferentiation and development. Taken all together, KRAS-mediated DNA methylation are stochastic and independent of canonical downstream efector signaling. These epigenetically altered genes associated with KRAS expression could represent potential therapeutic targets in KRAS-driven cancer. Activating KRAS mutations can be found in nearly 25 percent of all cancers1. -
Accompanies CD8 T Cell Effector Function Global DNA Methylation
Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer, Benjamin G. Barwick, Benjamin A. Youngblood, Rafi Ahmed and Jeremy M. Boss This information is current as of October 1, 2021. J Immunol 2013; 191:3419-3429; Prepublished online 16 August 2013; doi: 10.4049/jimmunol.1301395 http://www.jimmunol.org/content/191/6/3419 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130139 Material 5.DC1 References This article cites 81 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/191/6/3419.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer,* Benjamin G. Barwick,* Benjamin A. Youngblood,*,† Rafi Ahmed,*,† and Jeremy M. -
Negative Regulators of Colonic Peripheral Regulatory T Cell Development Teresa Lei Ai Washington University in St
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Spring 5-15-2018 Negative Regulators of Colonic Peripheral Regulatory T Cell Development Teresa Lei Ai Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Ai, Teresa Lei, "Negative Regulators of Colonic Peripheral Regulatory T Cell Development" (2018). Arts & Sciences Electronic Theses and Dissertations. 1509. https://openscholarship.wustl.edu/art_sci_etds/1509 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Division of Biology and Biomedical Sciences Immunology Dissertation Examination Committee: Chyi-Song Hsieh, Chair Paul M. Allen Kenneth M. Murphy Gwendalyn J. Randolph Wayne M. Yokoyama Negative Regulators of Colonic Peripheral Regulatory T Cell Development By Teresa Lei Ai A dissertation presented to The Graduate School of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2018 St. Louis, Missouri -
Evolutionarily Conserved Tbx5–Wnt2/2B Pathway Orchestrates Cardiopulmonary Development
Evolutionarily conserved Tbx5–Wnt2/2b pathway orchestrates cardiopulmonary development Jeffrey D. Steimlea,b,c, Scott A. Rankind,e,f,g, Christopher E. Slagleh,i,j,k, Jenna Bekenya,b,c, Ariel B. Rydeena,b,c, Sunny Sun-Kin Chanl,m, Junghun Kweona,b,c, Xinan H. Yanga,b,c, Kohta Ikegamia,b,c, Rangarajan D. Nadadura,b,c, Megan Rowtona,b,c, Andrew D. Hoffmanna,b,c, Sonja Lazarevica,b,c, William Thomasn,o, Erin A. T. Boyle Andersonp, Marko E. Horbn,o, Luis Luna-Zuritaq,r, Robert K. Hom, Michael Kybal,m, Bjarke Jensens, Aaron M. Zornd,e,f,g, Frank L. Conlonh,i,j,k, and Ivan P. Moskowitza,b,c,1 aDepartment of Pediatrics, University of Chicago, Chicago, IL 60637; bDepartment of Pathology, University of Chicago, Chicago, IL 60637; cDepartment of Human Genetics, University of Chicago, Chicago, IL 60637; dCenter for Stem Cell and Organoid Medicine, Cincinnati Children’s Research Foundation, Cincinnati, OH 45229; eDepartment of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229; fDivision of Developmental Biology, Perinatal Institute, Cincinnati Children’s Research Foundation, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229; gDepartment of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229; hDepartment of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; iDepartment of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; jIntegrative Program for Biological and Genome Sciences, University of North -
The Role of Tbx5 in Sinoatrial Node Differentiation in Mouse Embryonic Stem Cell Derived Cardiomyocytes Yunkai Dai Clemson University, [email protected]
Clemson University TigerPrints All Dissertations Dissertations May 2019 The Role of Tbx5 in Sinoatrial Node Differentiation in Mouse Embryonic Stem Cell Derived Cardiomyocytes Yunkai Dai Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Dai, Yunkai, "The Role of Tbx5 in Sinoatrial Node Differentiation in Mouse Embryonic Stem Cell Derived Cardiomyocytes" (2019). All Dissertations. 2377. https://tigerprints.clemson.edu/all_dissertations/2377 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE ROLE OF TBX5 IN SINOATRIAL NODE DIFFERENTIATION IN MOUSE EMBRYONIC STEM CELL DERIVED CARDIOMYOCYTES A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Bioengineering by Yunkai Dai May 2019 Accepted by: Dr Ann Foley, Committee Chair Dr Agneta Simionescu Dr Robin C. Muise-Helmericks Dr Ying Mei ABSTRACT The sinoatrial node of the mouse embryo arises from the wall of the right atrium near the border of the sinus venosus. Early in development this region expresses the transcription factor Tbx5. Because of this, Tbx5 is thought to sit at the apex of a transcriptional cascade leading to sinoatrial node (SAN) differentiation. To test this we produced a mouse embryonic stem cell line B1 (pTripZ-mTbx5; αMHC::GFP) that conditionally overexpresses Tbx5, to determine if this would lead to enhanced SAN differentiation. We found that ES cells overexpressing Tbx5 showed enhanced overall cardiac differentiation and that cardiac cells showed increased beat rates as compared control embryos. -
Preclinical Toxicology – Points to Consider in Program Design
To view this booklet online, please visit PacificBioLabs.com. Preclinical Toxicology – Points To Consider in Program Design PACIFIC BIOLABS – YOUR PARTNER FOR PRECLINICAL SAFETY TESTING As The Service Leader in Bioscience Testing, Pacific BioLabs (PBL) strives to help our clients deliver safe and effective pharmaceuticals to the patients who need them. Well designed and executed preclinical studies are critical to the success of any drug development program. They must reliably assess the safety of a new drug entity, laying the groundwork for clinical trials and ultimately, regulatory approval. Pacific BioLabs interacts closely with our clients, providing quality nonclinical testing results to meet regulatory requirements and guide your drug development decisions. As part of our commitment to clients, we have prepared a pair of publications that will assist you in planning your preclinical testing program. This publication, Preclinical Toxicology – Points to Consider in Program Design, gives an overview of the drug development process, describes the contents of a typical Common Technical Document, shows the relative timing of various studies required for a successful IND and NDA, and presents advice on selecting and working with contract toxicology labs and other CROs. PBL’s companion publication, Preclinical Toxicology – Guidance for Industry – ICH Guidances, is available on our website at PacificBioLabs.com. It presents two major ICH guidance documents that directly address safety testing of new pharmaceuticals: Guidance M3 – Nonclincal Safety Studies for the Conduct of Human Clinical Trials for Pharmaceutical and Guidance S6 – Preclinical Safety Evaluation of Biotechnology-Derived Pharmaceuticals. The FDA website http://www.fda.gov/cder/guidance contains these two documents along with a variety of other references on regulatory expectations for the nonclinical development of NCEs. -
In Situ Detection of Tbx5 Expression in Developing Chick Embryonic Heart
San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Fall 2010 In Situ Detection Of Tbx5 Expression In Developing Chick Embryonic Heart Vaishali Agarwal San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Agarwal, Vaishali, "In Situ Detection Of Tbx5 Expression In Developing Chick Embryonic Heart" (2010). Master's Theses. 3901. DOI: https://doi.org/10.31979/etd.84mn-c4vy https://scholarworks.sjsu.edu/etd_theses/3901 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. IN SITU DETECTION OF Tbx 5 EXPRESSION IN DEVELOPING EMBRYONIC CHICK HEART A Thesis Presented to The Faculty of the Department of Biological Sciences San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Vaishali Agarwal December 2010 © 2010 Vaishali Agarwal ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled IN SITU DETECTION OF Tbx 5 EXPRESSION IN DEVELOPING EMBRYONIC CHICK HEART by Vaishali Agarwal APPROVED FOR THE DEPARTMENT OF BIOLOGICAL SCIENCES SAN JOSE STATE UNIVERSITY December 2010 Dr. Steven White Department of Biological Sciences Dr. Michael Sneary Department of Biological Sciences Dr. Bob Fowler Department of Biological Sciences ABSTRACT IN SITU DETECTION OF Tbx 5 EXPRESSION IN DEVELOPING EMBRYONIC CHICK HEART by Vaishali Agarwal The Tbx 5 gene codes for a highly conserved transcription factor containing a DNA-binding motif called the T box (or T-domain). -
Research and Development in the Pharmaceutical Industry
Research and Development in the Pharmaceutical Industry APRIL | 2021 At a Glance This report examines research and development (R&D) by the pharmaceutical industry. Spending on R&D and Its Results. Spending on R&D and the introduction of new drugs have both increased in the past two decades. • In 2019, the pharmaceutical industry spent $83 billion dollars on R&D. Adjusted for inflation, that amount is about 10 times what the industry spent per year in the 1980s. • Between 2010 and 2019, the number of new drugs approved for sale increased by 60 percent compared with the previous decade, with a peak of 59 new drugs approved in 2018. Factors Influencing R&D Spending. The amount of money that drug companies devote to R&D is determined by the amount of revenue they expect to earn from a new drug, the expected cost of developing that drug, and policies that influence the supply of and demand for drugs. • The expected lifetime global revenues of a new drug depends on the prices that companies expect to charge for the drug in different markets around the world, the volume of sales they anticipate at those prices, and the likelihood the drug-development effort will succeed. • The expected cost to develop a new drug—including capital costs and expenditures on drugs that fail to reach the market—has been estimated to range from less than $1 billion to more than $2 billion. • The federal government influences the amount of private spending on R&D through programs (such as Medicare) that increase the demand for prescription drugs, through policies (such as spending for basic research and regulations on what must be demonstrated in clinical trials) that affect the supply of new drugs, and through policies (such as recommendations for vaccines) that affect both supply and demand. -
Drug Discovery and Preclinical Development
Drug Discovery and Preclinical Development Neal G . Simon , Ph . D. Professor Department of Biological Sciences Disclaimer “Those wh o h ave k nowl ed ge, d on’t predi ct . Those who predict, don’t have knowledge.” Lao Tzu, 6th Century BC Chinese Poet Discovery and Preclinical Development I. Background II. The R&D Landscape III. ItidTftiInnovation and Transformation IV. The Preclinical Development Process V. Case Study: Stress-related Affective Disorders Serendipity or Good Science: Building Opportunity Hoffman Osterhof I. Background Drug Development Process Biopharmaceutical Drug Development: Attrition Drug FDA Large Scale Discovery Pre-Clinical Clinical Trials Review Manufacturing / Phase IV Phase I Phase III 20-100 1000-5000 Volunteers Volunteers 10,000 bmitted 1 FDA Com- bmitted 250 Compounds 5 Compounds uu pound uu AdApproved s Drug NDA S NDA IND S Phase II 100-500 Volunteers 5 years 1.5 years 6 years 2 years 2 years Quelle: Burrell Report Biotechnology Industry 2006 Capitalized Cost Estimates per New Molecule *All R&D costs (basic research and preclinical development) prior to initiation of clinical testing ** Based on a 5-year shift and prior growth rates for the preclinical and clinical periods. DiMasi and Grabowski (2007) II. The Research & Developppment Landscape R&D Expenditures and Return on Investment: A Declining Function Phrma (2005); Tufts CSDD (2005) R&D Expenditures 1992-2004 and FDA Approvals Hu et al (2007) NIH Budget by Area Pharmaceutical Industry: Diminishing Returns “That is why the business model is under threat: the ability to devise new molecules through R&D and bring them to market is not keeping up with what ’s being lost to generic manufacturers on the other end. -
Anticancer Activity of Bicalutamide-Loaded PLGA Nanoparticles in Prostate Cancers
EXPERIMENTAL AND THERAPEUTIC MEDICINE 10: 2305-2310, 2015 Anticancer activity of bicalutamide-loaded PLGA nanoparticles in prostate cancers JUN GUO1*, SHU-HONG WU2*, WEI-GUO REN3, XIN-LI WANG4 and AI-QING YANG5 1Department of Urology, The Affiliated Hospital of Taishan Medical University, Taian, Shandong 271000; 2Department of Urology, Feicheng Kuangye Central Hospital, Feicheng, Shandong 271608; 3Department of Urology, Rugao Boai Hospital, Nantong, Jiangsu 226500; 4Department of Pathology, The Affiliated Hospital of Taishan Medical University;5 Department of Pathology, The First People's Hospital of Taian, Taian, Shandong 271000, P.R. China Received October 6, 2014; Accepted August 26, 2015 DOI: 10.3892/etm.2015.2796 Abstract. Prostate cancer is the most commonly diagnosed Introduction non-cutaneous malignancy in men in western and most devel- oping countries. Bicalutamide (BLT) is an antineoplastic Men in Western countries and developing nations are hormonal agent primarily used in the treatment of locally frequently diagnosed with cancers of the prostate gland (1). advanced and metastatic prostate cancers. In the present study, Statistically, prostate cancer has overtaken heart diseases and the aim was to develop a nanotechnology-based delivery lung disorders in old people as a cause of mortality. According system to target prostate cancer cells. This involved the to estimates, >200,000 new cases of prostate cancer were development of a BLT-loaded poly(D,L-lactide-co-glycolide) reported with >30,000 mortalities during the year 2013 (2,3). PLGA (PLGA-BLT) nanoparticulate system in an attempt to A similar or higher number of cases has been projected for the improve the therapeutic efficacy of BLT in prostate cancer and year 2014 (4). -
TBX5 Drives Scn5a Expression to Regulate Cardiac Conduction System Function
TBX5 drives Scn5a expression to regulate cardiac conduction system function David E. Arnolds, … , Vickas V. Patel, Ivan P. Moskowitz J Clin Invest. 2012;122(7):2509-2518. https://doi.org/10.1172/JCI62617. Research Article Cardiac conduction system (CCS) disease, which results in disrupted conduction and impaired cardiac rhythm, is common with significant morbidity and mortality. Current treatment options are limited, and rational efforts to develop cell- based and regenerative therapies require knowledge of the molecular networks that establish and maintain CCS function. Recent genome-wide association studies (GWAS) have identified numerous loci associated with adult human CCS function, including TBX5 and SCN5A. We hypothesized that TBX5, a critical developmental transcription factor, regulates transcriptional networks required for mature CCS function. We found that deletion of Tbx5 from the mature murine ventricular conduction system (VCS), including the AV bundle and bundle branches, resulted in severe VCS functional consequences, including loss of fast conduction, arrhythmias, and sudden death. Ventricular contractile function and the VCS fate map remained unchanged in VCS-specific Tbx5 knockouts. However, key mediators of fast conduction, including Nav1.5, which is encoded by Scn5a, and connexin 40 (Cx40), demonstrated Tbx5-dependent expression in the VCS. We identified a TBX5-responsive enhancer downstream of Scn5a sufficient to drive VCS expression in vivo, dependent on canonical T-box binding sites. Our results establish a direct molecular link between Tbx5 and Scn5a and elucidate a hierarchy between human GWAS loci that affects function of the mature VCS, establishing a paradigm for understanding the molecular pathology of CCS disease. Find the latest version: https://jci.me/62617/pdf Research article TBX5 drives Scn5a expression to regulate cardiac conduction system function David E.