Biology of the Threadfin Bream, Nemipterus Japonicus (Block)

Total Page:16

File Type:pdf, Size:1020Kb

Biology of the Threadfin Bream, Nemipterus Japonicus (Block) BIOLOGY OF THE THREADFIN BREAM, NEMIPTERUS JAPONICUS (BLOCK) B. KRISHNAMOORTHI Central Mafiae Fisheries Research Institute; Sub-station, Visakhapatnam-3 ABSTRACT Nemipterus Japonicus attains an average length of 150 mm in the I year; 210 mm at the end of II year; and 240 mm at the end of III year. The fishery along the Andhra- Orissa coast is supported by fish which have completed one year. November marks the commencement of spawning and N. japonicus may spawn for the first time at 160-170 mm and for a second time, perhaps, at 220 mm. N. japonicus is undoubtedly a carnivore, feeds substantially on crustaceans, molluscs, annelids and echinoderms in that order of abundance and in one of the 1,726 stomachs examined over a three year period, vegetable matter was encountered. It is actively predaceous and possibly a sight-feeder. There was a certain degree of regurgitation, particularly during the spawning period from November to March. The feeding intensity did not increase with an increase in size, but the nature of food com­ ponents was size-dependent. There was a significant increase in the feeding intensity as A''. japonicus advanced to maturity. The peak catches in the fishery coincided or followed peaks in feeding intensity. INTRODUCTION Simultaneous with studies on the distribution and magnitude of abundance of Nemipterus Japonicus off the Andhra-Orissa coast (Krishnamoorthi, 1968), an investigation, extending over a three-year period from August 1964 to July 1967, was carried out to study the growth, reproduction and food and feeding habits in N. japonicus and the results are dealt with in the present account. MATERIAL AND METHODS The material Was largely drawn, as in an earlier study (Krishnamoorthi, 1968), from the catches of the Govt, of India trawlers M.T./IjAofc, MN. Champa and M.V. Sea Horse. Though M.T. Asholc operated a 15 m trawl and M.V. Champa and M.V. Sea Horse operated a 14 m trawl, the mesh size of the cod end of all the trawls was similar. Hence, biological data of N. japonicus collected in a month from all the vessels were pooled together. Samples were obtained at Weekly intervals. Though large numbers (100 specimens on an average) of N. japonicus were measured every week for length, fewer numbers (as indicated in the sections concerned) Were used for collection of other biological data. All measurements were, made on fresh specimens. A scale of only six stages of maturity, as followed 2 B. KRISHNAMOORTHI by Prabhu (1955) for Trich'mms haumela, was adopted in the present studies. While Prabhu (1955) did not come across stage VI in T. haumela, I could, on many occasions, observe N. japonicus in an oozing stage which, along with fish in a stage slightly more advanced than stage V, were treated as belonging to stage VI. AGE AND GROWTH Length frequency A total of 6,865 specimens of both males and females of N. japonicus was measured during the three-year period of this investigation (1964-65: 3,147; 1965-66: 1,288 and 1966-67: 2,430 specimens). The frequency polygons at size intervals of 10 mm for the three years are presented in Figs. 1 to 3. 1964-65. There were, during this year, principally 6 modes a, b, c, d, e and /(Fig. 1), whose progression could be followed. Modes a and c could be traced only from August to October. While the former progressed from 160 mm to 180 mm the latter progressed from 150 mm to 160 mm. In other words, mode a moved by 20 mm in 3 months at the rate of 6.66 mm per month, and mode c pro­ gressed by 10 mm in 4 months at the rate of 2.5 mm per month. The mode b progressed by 60 mm in 10 months, modes d and e by 60 mm in 7 months and mode /by 50 mm in 4 months at the respective rates of 6, 8.6 and 12.5 mm per month. Thus, the size group at mode / had the greatest rate of growth (12.5 mm per month) and the size group at mode c the least rate (2.5 mm per month). Both the size groups at modes d and e had a similar rate of growth (8.6 mm per month) and the size groups at modes a and b had more or less comparable rates of growth (6.66 and 6 mm per month)'. Since it is known that with increase in age the rate of growth tends to fall in fishes, it could be assumed based on the rates of growth presently obtained for the various modes, that the size group at mode / may re­ present the I year class, at modes d and e the II year class, and at modes a and b the III year class. In other words, N. japonicus attained a size of 150 mm at the end of the I year, 230 mm at the end of the II year and 2b0 mm at the end of III-IV year in 1964-65. 1965-66. This year there were principally only 4 modal groups, namely, a {a and oi), b (b, bi and bz), c (c and Cj) and d (Fig. 2). While the mode at d (220 mm) in November could not be traced in the succeeding months, the pro­ gression in the rest of the modes could be followed through the months from August to July. Thus, the modal group a (180 mm) of August progressed to 220 mm in May, i.e., a growth of 40 mm in 10 months or 4 mm per month. The group b which appeared in September at 150 mm progressed to 200 mm in July i.e., a growth of 50 mm in 11 months or 4.5 mm per month. The group c at 100 mm in September progressed to 170 mm in July and had a growth of 70 mm in 11 months or 6.4 mm per month. Extending the same arguments as for the modes of the previous year, the group c may be considered as the I year class because it had the highest u o o •n X > o z ea w > S 40 SO 60 70 60 90 lOO liO 120 llo 140 150 160 170 ISO I90 ZOO ZIO 220 230 240 250 260 270 280 Z90 300 310 320 LENGTH GROUPS 1N mm FIG. 1 Length frequency distribution in N. japonicus during the various months of the year 1964-65. 9^ 2 •zX > o o H X 40 50 60 70 ao 90 100 110 I20 130 l40 150 WO 170 ISO 190 ZOO 210 220 230 240 250 260 270 280 290 300 510 320 53(7 LENGTH GROUPS IN mm FIG. 2 Length frequency distribution in N. japonicus during the various months of the year 1965-66. BIOLOGY OF THREADFIN BREAM 5 (6.4 mm per month) growth rate, the group b as the II year class which had a growth rate of 4.5 mm per month, and the group a as the III year class since it had the least rate of growth ( 4 mm per month). Compared to the previous year's, the rates of growth obtained in the present year Were less. 1966-67. This year also there were principally 4 modal groups, viz., a (a and Oi), b (b and bi) c and d (Fig. 3). While the progression of modal group a and c could be followed from August to May, the group b could be traced from August to June only. The mode rf at 120 mm-fresh recruits to the fishery perhaps-appeared in February and progressed to 140 mm in May, i.e., a growth of 20 mm in 4 months at a rate of 5 mm per month. The growth rates of the other modal groups a, b and c respectively were 5, 3.3 and 3 mm per month; and based on these growth rates they respectively represent the I, II and III year classes in the fisheries for A''. japonicus. The sizes reached at the end of I, II and III years, being 140, 220 and 250 mm, were comparable with those obtained during 1964-65. Reviewing these studies, it may be said that N. japonicus attains an average size of 150 mm in its I year (140-170 mm), 210 mm (200-230 mm) at the end of its II year, and 240 mm (220-260 mm) at the end of its III year. Ben-Tuvia (1968) has reported a size of 130 mm for a fish of'O' year class and 170 mm for one-year-old N. japonicus obtained in the trawl catches in the South Red Sea along the Ethiopian Coast. Sizes of 110-170 mm (mean: 140 mm) for 1 year old, 170-250 mm (mean: 230 mm) for 2 year old, and 290-300 mm for 3 year old males of N. virgatus from the South China Sea have been reported (Eggleston, 1970). Eggleston (1971) reports also the mean sizes of the males of N. bathybus as follows: 1 year -120 mm., 2 year - 150 mm, and 3 year - 190 mm. The present results obtained for 1 and 2 year olds are more or less comparable with those reported for N. virgatus, though the average size presently obtained for the 3 year olds (240 mm) is much less than the range (290-300 mm) given by Eggleston (1970). From the studies of Ben-Tuvia (1968), it is not known which year class contributes most to the N.
Recommended publications
  • Relative Abundance and Growth of Male and Female Nemipterus Furcosus Population (Kelimpahan Relatif Dan Tumbesaran Jantan Dan Betina Populasi Nemipterus Furcosus)
    Sains Malaysiana 45(1)(2016): 79–86 Relative Abundance and Growth of Male and Female Nemipterus furcosus Population (Kelimpahan Relatif dan Tumbesaran Jantan dan Betina Populasi Nemipterus furcosus) F.S. AMIRA, M.M. RAHMAN*, B.Y. KAMARUZZAMAN, K.C.A. JALAL, M.Y. HOSSAIN & N.S. KHAN ABSTRACT A study was conducted to understand the relative abundance and growth of male and female Nemipterus furcosus population in the Pahang coastal water, Malaysia. The sampling was done monthly for a period of one year. A total of 1446 fish specimens were studied in this research. The results showed that maleN. furcosus population was significantly more than female (p<0.01) N. furcosus population. The growth coefficient (b value) varied between 2.6808 and 3.2396 for male and 2.0926 and 3.2838 for female N. furcosus. The growth co-efficients of maleN. furcosus were significantly different than the growth co-efficients of female N. furcosus in all months (p<0.05). They showed negative allometric growths in February- June and September. Female N. furcosus showed positive allometric growths in November-January and August. Isometric growths of female were observed only in October and July. As for male N. furcosus, negative allometric growths were observed in March-June, November and January. Male N. furcosus showed positive allometric growths in August, September, October, December and February. Male N. furcosus showed isometric growth only in July. The overall mean condition factor of male and female was statistically similar (p>0.05). The condition factor (K) ranged from 1.2559 to 1.3917 for male while 1.2503 to 1.3926 for female N.
    [Show full text]
  • View/Download
    SPARIFORMES · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 13 Feb. 2021 Order SPARIFORMES 3 families · 49 genera · 283 species/subspecies Family LETHRINIDAE Emporerfishes and Large-eye Breams 5 genera · 43 species Subfamily Lethrininae Emporerfishes Lethrinus Cuvier 1829 from lethrinia, ancient Greek name for members of the genus Pagellus (Sparidae) which Cuvier applied to this genus Lethrinus amboinensis Bleeker 1854 -ensis, suffix denoting place: Ambon Island, Molucca Islands, Indonesia, type locality (occurs in eastern Indian Ocean and western Pacific from Indonesia east to Marshall Islands and Samoa, north to Japan, south to Western Australia) Lethrinus atkinsoni Seale 1910 patronym not identified but probably in honor of William Sackston Atkinson (1864-ca. 1925), an illustrator who prepared the plates for a paper published by Seale in 1905 and presumably the plates in this 1910 paper as well Lethrinus atlanticus Valenciennes 1830 Atlantic, the only species of the genus (and family) known to occur in the Atlantic Lethrinus borbonicus Valenciennes 1830 -icus, belonging to: Borbon (or Bourbon), early name for Réunion island, western Mascarenes, type locality (occurs in Red Sea and western Indian Ocean from Persian Gulf and East Africa to Socotra, Seychelles, Madagascar, Réunion, and the Mascarenes) Lethrinus conchyliatus (Smith 1959) clothed in purple, etymology not explained, probably referring to “bright mauve” area at central basal part of pectoral fins on living specimens Lethrinus crocineus
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Population Dynamics and Stock Assessment of Delegoa Threadfin Bream, Nemipterus Bipunctatus (Nemipteridae), from the Wadge Bank, South India
    Journal of Applied and Natural Science 10 (1): 59 - 63 (2018) Population dynamics and stock assessment of Delegoa threadfin bream, Nemipterus bipunctatus (Nemipteridae), from the Wadge Bank, South India K. Karuppasamy1*, S. David Kingston2, P. Jawahar1, S.Aanand1, V.K.Venkataramani3 and V.Vidhya1 1Fisheries College and Research Institute, TNFU, Tuticorin (Tamil Nadu), INDIA 2Fisheries Training and Research Centre, TNFU, Parakkai, Kanyakumari (Tamil Nadu), INDIA 3Kerala University of Fisheries and Ocean Studies, Panangad, Kochi (Kerala), INDIA *Corresponding author. E-mail: [email protected] Received: January 10, 2017; Revised received: August 14, 2017; Accepted: January 10, 2018 Abstract: Fishery, population characteristics and stock estimates of Nemipterus bipunctatus were studied during June 2015 to May 2016 from Wadge Bank, South India. This region is characterised by rich biodiversity and has a conducive influence of the Indian Ocean and Arabian Sea. The asymptotic length (L∞), growth coefficient (K) and arbitrary origin of growth (t0) were estimated as 30.5 cm, 0.85/year and 0.18 respectively. The mortality parameters, total mortality rate (Z), fishing mortality rate and natural mortality rate (M) were estimated as 2.20, 0.95 and 1.25 respectively. Exploitation ratio (E) was found to be 0.57 which showed marginal over exploitation of the species at Wadge Bank. This species has two recruitment seasons, one major season from October to December and another minor season in August. The length structured Virtual population analysis revealed heavy fishing pressure on the length group 24 to 28 cm and hence the delegoa threadfin bream was not found to suffer due to recruitment over- fishing in Wadge Bank.
    [Show full text]
  • Download Book (PDF)
    A PICTORIAL GUIDE TO THE FISHES OF THE FAMILY NEMIPTERIDAE OF INDIA R.P. BARMAN and S.S. MISHRA Zoological Survey of India, Fire Proof Spirit Building, Kolkata- 700016 Edited by the Director, Zoological Survey of India, Kolkata Zoological Survey of India Kolkata CITATION Barman, R.P. and Mishra, S.S. 2009. A Pictorial Guide to the Fishes of the family Nemipteridae of India : 1-50. (Published by the Director, Zool. Surv. India, Kolkata) Published : September, 2009 ISBN 978-81-8171-232-5 © Govt. of India, 2009 ALL RIGHTS RESERVED • No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. • This book is sold subject to the condition that it shall not, by way of trade, be lent, resold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which, it is published. • The correct price of this publication is the price printed on this page. Any revised price indicated by a rubber stamp or by a sticker or by any other means is incorrect and should be unacceptable. PRICE • Indian Rs. 150.00 Foreign : $ 10; £ 7 Published at the Publication Division by the Director Zoological Survey of India, 234/4, AJC Bose Road, 2nd MSO Building, 13th floor, Nizam Palace, Kolkata 700020 and printed at MIs Alpha Printers, New Delhi - 110 015. PREFACE A pictorial guide or handbook on the Nemipterid fishes that occur in Indian waters is conceived to provide information on these fishes to the common or semi-technical people who often find it difficult to understand the taxonomic studies in its true sense.
    [Show full text]
  • Comparison of Fat Composition and Chemical Properties of Fat Extracts Between Fish Fillets of Selected Warm-Water and Cold-Water Fish
    1968 Bioscience Journal Original Article COMPARISON OF FAT COMPOSITION AND CHEMICAL PROPERTIES OF FAT EXTRACTS BETWEEN FISH FILLETS OF SELECTED WARM-WATER AND COLD-WATER FISH COMPARAÇÃO DA COMPOSIÇÃO DA GORDURA E PROPRIEDADES QUÍMICAS DOS EXTRATOS DE GORDURA ENTRE FILÉ DE PEIXE DE ÁGUA QUENTE E DE ÁGUA FRIA Siti Nadzirah HUSSIN1; Azrina AZLAN1,2,3*; Hock Eng KHOO1,3 ; Noor Atiqah Aizan ABDUL KADIR1; Muhammad Rizal RAZMAN4 1. Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences University Putra Malaysia, Selangor, Malaysia; 2. Laboratory of Analysis and Authentications, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; 3. Research Centre of Excellence for Nutrition and Non-Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia; 4. Research Centre for Sustainability Science and Governance (SGK), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia (UKM), 43600 UKM Bangi, Selangor, Malaysia ABSTRACT: The purpose of this study was to determine and compare fat composition and chemical properties of fish fillets of selected warm-water fish obtained from Straits of Malacca. A cold water fish, namely salmon was used for comparison. Moisture content, crude fat, fatty acids composition and chemical characteristics of fish fillets of Yellowstripe scad, Japanese threadfin bream and salmon were determined. Japanese threadfin bream fillet had highest moisture and crude fat contents, followed by fillets of Yellowstripe scad and salmon. A significantly strong and negative correlation was found between moisture and crude fat contents of these fish fillets. Fillets of Japanese threadfin bream and Yellowstripe scad also had higher total saturated fatty acids than total unsaturated fatty acids.
    [Show full text]
  • Age and Growth of Nemipterus Randalli in the Southern Aegean Sea, Turkey
    J. Black Sea/Mediterranean Environment Vol. 25, No. 2: 140-149 (2019) RESEARCH ARTICLE Age and growth of Nemipterus randalli in the southern Aegean Sea, Turkey Umut Uyan1*, Halit Filiz2, Ali Serhan Tarkan2,3, Murat Çelik2, Nildeniz Top2 1 Department of Marine Biology, Pukyong National University, (48513) 45, Yongso-ro, Nam-Gu, Busan, KOREA 2 Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000, Menteşe, Muğla, TURKEY 3 Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, POLAND *Corresponding author: [email protected] Abstract In this study, the age and growth characteristics of Randall’s threadfin bream (Nemipterus randalli Russell, 1986) in Gökova Bay (southern Aegean Sea) were examined. In total, 221 (varied between 10.8-21.9 cm in total length and 18.19-150.10 g in total weight) were examined on a monthly basis between May 2015 and April 2016. The sex ratio (male: female) was 1:0.51 and showed significant variation depending on age classes. The length-weight relationship parameters were estimated as follows; a = 0.0171, b = 2.92, r 2= 0.92 (n = 221). Ages ranged from 1 to 5, and the 2-years group was dominant (42.53%) for both sexes. von Bertalanffy growth parameters and phi-prime -1 growth performance index value calculated as L∞= 27.57 cm, k= 0.183 year , t0= -2.88 and Φ= 2.14 for all individuals. The results representing the first study on age and growth of N. randalli in the southern Aegean Sea. Keywords: Randall’s threadfin bream, Nemipteridae, Lessepsian fish, Gökova Bay Received: 10.02.2019 Accepted: 30.05.2019 Introduction Randall’s threadfin bream (Nemipterus randalli Russell, 1986) naturally exists in all the western Indian Ocean including the east and west coasts of India, Pakistan, the Persian (Arabian) Gulf, Red Sea, including the Gulf of Aqaba, the Gulf of Aden, and the eastern African coast: the Seychelles and Madagascar (Russell 1990).
    [Show full text]
  • The Food and Feeding Habits of the Delagoa Threadfin Bream, Nemipterus Bipunctatus (Valenciennes, 1830), from the Coastal Waters Around Dar Es Salaam, Tanzania
    WIO Journal of Marine Science 16 (1 ) 2017 13-23 Original Article 13 The food and feeding habits of the Delagoa threadfin bream, Nemipterus bipunctatus (Valenciennes, 1830), from the coastal waters around Dar es Salaam, Tanzania Joseph S. Sululu1,*, Simon G. Ndaro2, Simon J. Kangwe1 1 Tanzania Fisheries Research 2 Department of Aquatic Sciences * corresponding author: Institute, P.O. Box 78850, and Fisheries Technology, [email protected] Dar es Salaam, University of Dar es Salaam, Tanzania. P.O. Box 35064, Dar es Salaam, Tanzania. Abstract Nemipterus bipunctatus is among the Nemipterids that support artisanal fisheries throughout most of the Western Indian Ocean (WIO) region. Despite its economic importance, information on food and feeding habits is poorly known in the region. Feeding habit was examined with respect to size, sex, maturity stages of the predator, and season. The food preference for N. bipunctatus was determined using Index of Relative Importance (IRI). Crustaceans were the main prey group accounting for more than 40% IRI of the total food ingested with crabs being the most dominant prey item in the group. Fish ranked as the second prey group accounting for 32.1 % IRI of the total food consumed. Meiofauna, bivalves, miscellaneous and cephalopods made up the rest of the diet. Significantly higher mean number of major prey categories were encountered in N. bipunctatus stomachs during the southeast monsoon as compared to during the northeast monsoon (two way contingency table analysis test, χ2-test, df=3, p< 0.001). An ontogenic diet shift study revealed that meiofauna, cephalopods, and bivalves groups had higher contributions in the diet of smaller N.
    [Show full text]
  • Training Manual Series No.15/2018
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CMFRI Digital Repository DBTR-H D Indian Council of Agricultural Research Ministry of Science and Technology Central Marine Fisheries Research Institute Department of Biotechnology CMFRI Training Manual Series No.15/2018 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual In the frame work of the project: DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals 2015-18 Training Manual This is a limited edition of the CMFRI Training Manual provided to participants of the “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals” organized by the Marine Biotechnology Division of Central Marine Fisheries Research Institute (CMFRI), from 2nd February 2015 - 31st March 2018. Principal Investigator Dr. P. Vijayagopal Compiled & Edited by Dr. P. Vijayagopal Dr. Reynold Peter Assisted by Aditya Prabhakar Swetha Dhamodharan P V ISBN 978-93-82263-24-1 CMFRI Training Manual Series No.15/2018 Published by Dr A Gopalakrishnan Director, Central Marine Fisheries Research Institute (ICAR-CMFRI) Central Marine Fisheries Research Institute PB.No:1603, Ernakulam North P.O, Kochi-682018, India. 2 Foreword Central Marine Fisheries Research Institute (CMFRI), Kochi along with CIFE, Mumbai and CIFA, Bhubaneswar within the Indian Council of Agricultural Research (ICAR) and Department of Biotechnology of Government of India organized a series of training programs entitled “DBT sponsored Three Months National Training in Molecular Biology and Biotechnology for Fisheries Professionals”.
    [Show full text]
  • Population Dynamics of Randall's Threadfin Bream Nemipterus
    Indian Journal of Geo Marine Science Vol. 46 (03), March 2017, pp. 551-561 Population dynamics of Randall’s threadfin bream Nemipterus randalli from Pakistani waters, Northern Arabian Sea Muhsan Ali Kalhoro 1,2,3 , DanLing Tang 1,2* , HaiJun Ye1, Evgeny Morozov1, Qun Liu4, Khadim Hussain Memon5 & Muhammad Talib Kalhoro4 1Research Center for Remote Sensing of Marine Ecology & Environment, State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China. 2School of Ocean Sciences, University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing, 100049, China 3Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal, Balochistan, Pakistan 4College of Fisheries, Ocean University of China, Yushan Road Qingdao, 266003, China 5Department of Zoology, Faculty of Natural Sciences, Shah Abdul Latif University, Khairpur Mir’s, Sindh Pakistan *[E-mail: [email protected]] Received 11 December 2014; revised 31 October 2016 The N. randalli fish data consist of 1141 pair of length weight relationship and 24312 length frequencies were measured during 2009 - 2010 survey. The maximum length and weight were 25 cm and 251 g, respectively. The length- 2 weight relationship were a = 0.035, b = 2.744 and R = 0.972. The asymptotic length (L∞) and growth coefficient (K) were estimated to 26.25 cm and 0.320 year-1, respectively. The total mortality (Z) was 1.25 year-1. The natural mortality (M) was 0.863, hence the fishing mortality (F) was Z–M = 0.387 year-1 for N. randalli. The yield per recruit analysis indicated that when was assumed to be 2, Fmax was estimated at 1.3 and F0.1 at 1.3; while was assumed to be 1, Fmax was estimated at 1.1 and F0.1 at 0.95.
    [Show full text]
  • Conservation Status of Fish of the Northern Territory
    Conservation status of fish of the Northern Territory Classification – Endangered Scientific name Common name Glyphis garricki Northern River Shark Classification – Vulnerable Scientific name Common name Chlamydogobius japalpa Finke Goby Glyphis glyphis Speartooth Shark Pingalla lorentzi Lorentz Grunter Pristis clavata Dwarf Sawfish Pristis pristis Largetooth Sawfish Pristis zijsron Green Sawfish Scortum neili Angalarri Grunter Classification – Near Threatened Scientific name Common name Anoxypristis cuspidata Narrow Sawfish Craterocephalus centralis Finke Hardyhead Melanotaenia maccullochi McCulloch’s Rainbowfish Mogurnda larapintae Desert Mogurnda Porochilus obbesi Obbes' Catfish Classification – Least Concern Scientific name Common name Ablennes hians Barred Longtom Abudefduf bengalensis Bengal Sergeant Abudefduf sexfasciatus Scissortail Sergeant Department of ENVIRONMENT AND NATURAL RESOURCES Page 1 of 21 Conservation status of fish of the Northern Territory Scientific name Common name Acanthopagrus morrisoni Western Yellowfin Bream Acanthopagrus pacificus Pikey Bream Acanthopagrus palmaris Northwest Black-Bream Acanthurus grammoptilus Inshore Surgeonfish Acentrogobius viridipunctatus Green-spotted Goby Adventor elongatus Sandpaper Velvetfish Aetobatus ocellatus White-spotted Eagle Ray Aetomylaeus nichofii Banded Eagle Ray Albula argentea Pacific Bonefish Alectis indica Diamond Trevally Alepes vari Herring Scad Ambassis agrammus Sailfin Glassfish Ambassis dussumieri Barehead Glassfish Ambassis interrupta Long-spined Glassfish Ambassis
    [Show full text]
  • Sperm Competition and Sex Change: a Comparative Analysis Across Fishes
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2007.00050.x SPERM COMPETITION AND SEX CHANGE: A COMPARATIVE ANALYSIS ACROSS FISHES Philip P. Molloy,1,2,3 Nicholas B. Goodwin,1,4 Isabelle M. Cot ˆ e, ´ 3,5 John D. Reynolds,3,6 Matthew J. G. Gage1,7 1Centre for Ecology, Evolution and Conservation, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom 2E-mail: [email protected] 3Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada 4E-mail: [email protected] 5E-mail: [email protected] 6E-mail: [email protected] 7E-mail: [email protected] Received October 2, 2006 Accepted October 26, 2006 Current theory to explain the adaptive significance of sex change over gonochorism predicts that female-first sex change could be adaptive when relative reproductive success increases at a faster rate with body size for males than for females. A faster rate of reproductive gain with body size can occur if larger males are more effective in controlling females and excluding competitors from fertilizations. The most simple consequence of this theoretical scenario, based on sexual allocation theory, is that natural breeding sex ratios are expected to be female biased in female-first sex changers, because average male fecundity will exceed that of females. A second prediction is that the intensity of sperm competition is expected to be lower in female-first sex-changing species because larger males should be able to more completely monopolize females and therefore reduce male–male competition during spawning.
    [Show full text]