Heterogeneous Photocatalysis and Its Potential Applications in Water and Wastewater Treatment: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Application of the Photocatalytic Chemistry of Titanium Dioxide to Disinfection and the Killing of Cancer Cells
Separation and Purification Methods Volume 28(1) 1999, pp. 1-50 APPLICATION OF THE PHOTOCATALYTIC CHEMISTRY OF TITANIUM DIOXIDE TO DISINFECTION AND THE KILLING OF CANCER CELLS Daniel M. Blake, Pin-Ching Maness, Zheng Huang, Edward J. Wolfrum, and Jie Huang The National Renewable Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 William A. Jacoby Department of Chemical Engineering W2016 Engineering Building East University of Missouri Columbia, MO 65211 Table of Contents Abstract........................................................................................................................... 2 Introduction .................................................................................................................... 2 Background..................................................................................................................... 3 Mode of Action of TiO2................................................................................................... 6 Photocatalytic Reactor Configurations .......................................................................... 9 Structure of Target Organisms....................................................................................... 10 Bacteria...................................................................................................................... 10 Viruses ....................................................................................................................... 13 Fungi......................................................................................................................... -
Application of Titanium Dioxide Photocatalysis to Create Self-Cleaning Building Materials
Application of Titanium Dioxide Photocatalysis to Create Self-Cleaning Building Materials Roland Benedix1 Frank Dehn2 Jana Quaas, Marko Orgass3 SUMMARY To realize self-cleaning material surfaces there are two principal ways: the de- velopment of super-hydrophobic or super-hydrophilic materials. By transferring the microstructure of selected plant surfaces to practical materials like tiles and facade paints, super-hydrophobic surfaces were obtained (Lotus effect). Super- hydrophilic materials were developed by coating glass, ceramic tiles or plastics with the semiconducting photocatalyst titanium dioxide (TiO2). If TiO2 is illumi- nated by light, grease, dirt and organic contaminants are decomposed and can easily be swept away by water (rain). Subject of our further research is a detailed study of the interaction between TiO2 and traditional building materials like con- crete, mortar and plaster. 1 INTRODUCTION In practice, surface cleaning of building materials like tiles, facades and glass panes causes considerable trouble, high consumption of energy and chemical detergents and, consequently, high costs. To realize self-cleaning material sur- faces there are two principal ways: the development of so-called super- hydrophobic or super-hydrophilic surfaces. 1 Prof. Dr. rer. nat. habil., FB IMN/Chemie, HTWK Leipzig 2 Dipl.-Ing., Institut für Massivbau und Baustofftechnologie, Universität Leipzig 3 cand.-Ing., Institut für Massivbau und Baustofftechnologie, Universität Leipzig 157 LACER No. 5, 2000 The wetting of a solid with water, where air is the surrounding medium, is de- pendent on the relation between the interfacial tensions (water/air, water/solid and solid/air). The ratio between these tensions determines the contact angle θ be- tween a water droplet on a given surface. -
The Highly Efficient Photocatalytic and Light Harvesting Property of Ag-Tio2
www.nature.com/scientificreports OPEN The highly efcient photocatalytic and light harvesting property of Ag-TiO2 with negative nano-holes Received: 3 October 2017 Accepted: 24 November 2017 structure inspired from cicada wings Published: xx xx xxxx Imran Zada1, Wang Zhang1, Wangshu Zheng1, Yuying Zhu1, Zhijian Zhang2, Jianzhong Zhang2, Muhammad Imtiaz1, Waseem Abbas1 & Di Zhang1 The negative replica of biomorphic TiO2 with nano-holes structure has been efectively fabricated directly from nano-nipple arrays structure of cicada wings by using a simple, low-cost and highly efective sol-gel ultrasonic method. The nano-holes array structure was well maintained after calcination in air at 500 °C. The Ag nanoparticles (10 nm–25 nm) were homogeneously decorated on the surface and to the side wall of nano-holes structure. It was observed that the biomorphic Ag-TiO2 showed remarkable photocatalytic activity by degradation of methyl blue (MB) under UV-vis light irradiation. The biomorphic Ag-TiO2 with nano-holes structure showed superior photocatalytic activity compared to the biomorphic TiO2 and commercial Degussa P25. This high-performance photocatalytic activity of the biomorphic Ag-TiO2 may be attributed to the nano-holes structure, localized surface plasmon resonance (LSPR) property of the Ag nanoparticles, and enhanced electron-hole separation. Moreover, the biomorphic Ag-TiO2 showed more absorption capability in the visible wavelength range. This work provides a new insight to design such a structure which may lead to a range of novel applications. Photolysis of organic containments has paid a great attention in environmental cleaning and water purifcation1–5. TiO2 has been extensively used as a photocatalytic material due to its signifcant photostability, environmentally friendliness, high chemical stability, non-toxicity and low-cost6. -
Photodegradation of Photodynamic Therapy Agents in Aqueous Tio2 Suspensions
Sustainable Development and Planning VI 719 Photodegradation of photodynamic therapy agents in aqueous TiO2 suspensions A. S. Oliveira1,2, C. G. Maia1, P. Brito1, R. Boscencu3, R. Socoteanu4, M. Ilie3 & L. F. V. Ferreira2 1 Centro Interdisciplinar de Investigação e Inovação, C3I, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Portalegre, Portugal 2Centro de Química-Física Molecular e Instituto de Nanociencias e Nanotecnologia, Instituto Superior Técnico, Universidade Técnica de Lisboa, Portugal 3Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Romania 4 “Ilie Murgulescu” Institute, Romanian Academy, Romania Abstract The presence of emergent pollutants in waters and wastewaters are an issue of increasing concern due to the risk they pose to human and environmental health. Cancer Photodynamic Therapy photosensitizers and their metabolites and photodegradation products are pharmaceutical substances that after treatment will be eliminated from the human body and will eventually reach water bodies. Porphyrins are well established PDT sensitizers and cyanine dyes are promising candidates for the same use. In that way it is important to know how those compounds degrade once they reach water bodies and to find efficient treatment methodologies in case they are persistent. In this paper the simulated solar light photodegradation of a porphyrin (Zinctetraphenylporphyrin) and of a cyanine dye (3,3´-diethylindocarbocyanine iodide) in water was investigated, in the absence and in the presence of the most used photocatalyst for semiconductor photocatalysis: Titanium dioxide (TiO2). We observed that the porphyrin (1x10-3M) did not undergo photodegradation in the absence of photocatalyst and that in its presence the photodegradation process was strongly promoted (60% photodegradation reached after 1 hour of irradiation with 0,01g of TiO2). -
Photodehydrogenation of Ethanol Over Cu2o/Tio2 Heterostructures
nanomaterials Article Photodehydrogenation of Ethanol over Cu2O/TiO2 Heterostructures Congcong Xing 1,2, Yu Zhang 1, Yongpeng Liu 3 , Xiang Wang 1, Junshan Li 1, Paulina R. Martínez-Alanis 4 , Maria Chiara Spadaro 5 , Pablo Guardia 1, Jordi Arbiol 5,6 , Jordi Llorca 2,* and Andreu Cabot 1,6,* 1 Catalonia Institute for Energy Research (IREC), Sant Adrià de Besòs, 08930 Barcelona, Spain; [email protected] (C.X.); [email protected] (Y.Z.); [email protected] (X.W.); [email protected] (J.L.); [email protected] (P.G.) 2 Institute of Energy Technologies, Department of Chemical Engineering and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, 08019 Barcelona, Spain 3 Laboratory for Molecular Engineering of Optoelectronic Nanomaterials (LIMNO), École Polytechnique Fédérale de Lausanne (EPFL), Station 6, CH-1015 Lausanne, Switzerland; yongpeng.liu@epfl.ch 4 ENFOCAT-IN2UB, Universitat de Barcelona (UB), C/Martí i Franquès 1, 08028 Barcelona, Spain; [email protected] 5 Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain; [email protected] (M.C.S.); [email protected] (J.A.) 6 ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain * Correspondence: [email protected] (J.L.); [email protected] (A.C.) Abstract: The photodehydrogenation of ethanol is a sustainable and potentially cost-effective strategy to produce hydrogen and acetaldehyde from renewable resources. The optimization of this process requires the use of highly active, stable and selective photocatalytic materials based on abundant elements and the proper adjustment of the reaction conditions, including temperature. -
Integrated Photo-Catalytic and Anaerobic Treatment of Industrial Wastewater for Biogas Production
INTEGRATED PHOTO-CATALYTIC AND ANAEROBIC TREATMENT OF INDUSTRIAL WASTEWATER FOR BIOGAS PRODUCTION Report to the WATER RESEARCH COMMISSION by OCHIENG AOYI, SETH O. APOLLO, JOHN AKACH, KWENA Y. PETE Centre for Renewable Energy and Water, Vaal University of Technology WRC Report No 2105/1/14 ISBN 978-1-4312-0648-3 March 2015 Obtainable from Water Research Commission Private Bag X03 GEZINA, 0031 [email protected] or download from www.wrc.org.za DISCLAIMER This report has been reviewed by the Water Research Commission (WRC) and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the WRC, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. © Water Research Commission ii EXECUTIVE SUMMARY _________________________________________________________________________________ Introduction: Anaerobic treatment of high strength wastewater is a widely accepted practice in the industry due to the fact that it converts the organic pollutants into biogas, which is a mixture of methane and carbon dioxide. As a result, this process leads to the reduction in chemical oxygen demand (COD) of industrial wastewater. Moreover, the biogas produced is a source of energy which can be used in industry or for domestic purposes to offset the ever increasing energy demand. Waste removal and methane yield are the key parameters used in the evaluation of an anaerobic digester (AD) performance in the anaerobic digestion process. The performance of ADs is inadequate in removing some biorecalcitrant wastes effectively. For this reason, advanced oxidation processed (AOPs) such photocatalytic degradation as well as integrated techniques have attracted a lot of interest in the recent years. -
Metal-Organic Frameworks with Photocatalytic Bactericidal Activity for Integrated Air Cleaning
ARTICLE https://doi.org/10.1038/s41467-019-10218-9 OPEN Metal-organic frameworks with photocatalytic bactericidal activity for integrated air cleaning Ping Li1, Jiazhen Li1, Xiao Feng1, Jie Li1, Yuchen Hao1, Jinwei Zhang1, Hang Wang1, Anxiang Yin1, Junwen Zhou1, Xiaojie Ma1 & Bo Wang 1 Air filtration has become an essential need for passive pollution control. However, most of the commercial air purifiers rely on dense fibrous filters, which have good particulate matter 1234567890():,; (PM) removal capability but poor biocidal effect. Here we present the photocatalytic bac- tericidal properties of a series of metal-organic frameworks (MOFs) and their potentials in air pollution control and personal protection. Specifically, a zinc-imidazolate MOF (ZIF-8) exhibits almost complete inactivation of Escherichia coli (E. coli) (>99.9999% inactivation efficiency) in saline within 2 h of simulated solar irradiation. Mechanistic studies indicate that photoelectrons trapped at Zn+ centers within ZIF-8 via ligand to metal charge transfer (LMCT) are responsible for oxygen-reduction related reactive oxygen species (ROS) pro- duction, which is the dominant disinfection mechanism. Air filters fabricated from ZIF-8 show remarkable performance for integrated pollution control, with >99.99% photocatalytic killing efficiency against airborne bacteria in 30 min and 97% PM removal. This work may shed light on designing new porous solids with photocatalytic antibiotic capability for public health protection. 1 Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081 Beijing, China. Correspondence and requests for materials should be addressed to X.M. -
Research Progress on Catalytic Water Splitting Based on Polyoxometalate/Semiconductor Composites
catalysts Review Research Progress on Catalytic Water Splitting Based on Polyoxometalate/Semiconductor Composites Yue Wu * and Lihua Bi * College of Chemistry, Jilin University, Changchun 130012, China * Correspondence: [email protected] (Y.W.); [email protected] (L.B.) Abstract: In recent years, due to the impact of global warming, environmental pollution, and the energy crisis, international attention and demand for clean energy are increasing. Hydrogen energy is recognized as one of the clean energy sources. Water is considered as the largest potential supplier of hydrogen energy. However, artificial catalytic water splitting for hydrogen and oxygen evolution has not been widely used due to its high energy consumption and high cost during catalytic cracking. Therefore, the exploitation of photocatalysts, electrocatalysts, and photo-electrocatalysts for rapid, cost effective, and reliable water splitting is essentially needed. Polyoxometalates (POMs) are regarded as the potential candidates for water splitting catalysis. In addition to their excellent catalytic properties and reversibly redox activities, POMs can also modify semiconductors to overcome their shortcomings, and improve photoelectric conversion efficiency and photocatalytic activity, which has attracted more and more attention in the field of photoelectric water splitting catalysis. In this review, we summarize the latest applications of POMs and semiconductor composites in the field of photo-electrocatalysis (PEC) for hydrogen and oxygen evolution by catalytic water splitting in recent years and take the latest applications of POMs and semiconductor composites in photocatalysis for water splitting. In the conclusion section, the challenges and strategies of photocatalytic and PEC water-splitting by POMs and semiconductor composites are discussed. Citation: Wu, Y.; Bi, L. -
Enhanced Photocatalytic Activity of the Carbon Quantum Dot-Modified Bioi Microsphere
CORE Metadata, citation and similar papers at core.ac.uk Provided by Springer - Publisher Connector Chen et al. Nanoscale Research Letters (2016) 11:60 DOI 10.1186/s11671-016-1262-7 NANO EXPRESS Open Access Enhanced Photocatalytic Activity of the Carbon Quantum Dot-Modified BiOI Microsphere Yuan Chen1,2, Qiuju Lu1, Xuelian Yan1,2, Qionghua Mo1,3, Yun Chen1, Bitao Liu1*, Liumei Teng1, Wei Xiao1, Liangsheng Ge1 and Qinyi Wang4 Abstract Novel carbon quantum dot (CQD)-modified BiOI photocatalysts were prepared via a facile hydrothermal process. The CQD-modified BiOI materials were characterized by multiple techniques. The CQD with an average size around several nanometers was distributed on the surface of BiOI microsphere. Its photocatalytic activity was investigated sufficiently by the photodegradation of methylene orange (MO). The results showed that the CQD/BiOI 1.5 wt.% sample exhibited the optimum photocatalytic activity, which was 2.5 times that of the pure BiOI. This improvement was attributed to the crucial role of CQDs, which could be acted as a photocenter for absorbing solar light, charge separation center for suppressing charge recombination. Keywords: BiOI, CQDs, Photocatalytic, Visible light Background CQD-based composites [7, 8]. Previous studies have shown The exploration and construction of new photocatalysts that the electron-accepting and transport properties of car- with high catalytic efficiency in sunlight is a core issue in bon nanomaterials provide a convenient way to separate photocatalysis all the time and is also significant in solv- photogenerated electrons; thus, enhanced photocatalytic ing current environment and energy problems [1–3]. performance can be achieved through the construction Recently, bismuth oxyhalides (BiOX, X = Cl, Br, and I) as of semiconductor/carbon composites [9, 10]. -
Metal Organic Frameworks As Emerging Photocatalysts
Chapter 11 Metal Organic Frameworks as Emerging Photocatalysts Ahmad Alshammari, Zheng Jiang and Kyle E. Cordova Additional information is available at the end of the chapter http://dx.doi.org/10.5772/63489 Abstract Increasing number of metal-organic frameworks (MOFs) have recently been recog‐ nised as a new generation of emerging porous photocatalysts in photocatalysis and photoelectrocatalysis, since their intrinsic coordination structure between the metal cluster and organic ligands offers MOFs great flexibility to tune their semiconducting property for enhanced light harvesting. In order to improve their performance substan‐ tially and achieve widespread application of MOF photocatalysts, it is necessary to develop effective synthesis strategies and understand their semiconducting crystal structure, photocatalytic mechanism in depth. This chapter firstly provides a brief introduction of the MOF materials; this chapter addresses the crystallinity, porosity and electronic semiconducting structures that are essential in solar energy conversion. Established and innovative syntheses strategies of MOFs are then categorised and illustrated, followed by various characterisations techniques applied to investigate their structural and semiconducting properties (band structure and charge transfer), including X-ray Diffraction XRD, small angle X-ray Diffraction SAXRD, adsorption/desorption, UV- Vis, nuclear magnetic resonance (NMR), extended fine Auger structures (EXFAS), inelastic neutron scattering (INS) spectroscopy, high-resolution transmission -
Investigation of the Photocatalytic Degradation of Ethanol and Acetone
ESL-IC-06-11-14 ICEBO2006, Shenzhen, China Maximize Comfort: Temperature, Humidity, and IAQ Vol. I-3-4 Investigation of the Photocatalytic Degradation of Ethanol and Acetone Yanhua Liu Bo Ding Shuping Dong Professor Master Student Master Student Department of Building Service Engineering, Xi’an Jiaotong University,Xi’an 710049 , China [email protected] Abstract: In-situ transmission Fourier-transform decomposition are limited. In this paper, the infrared spectroscopy has been used to study the photocatalytic oxidation of acetone, ethanol and the photocatalytic oxidation of acetone, ethanol and the interaction between them during photocatalysis interaction between acetone and ethanol. Compared process have been investigated using a with the degradation of acetone alone, it cannot be Fourier-transform infrared spectroscopy. Ethanol and described by Langmuir-Hinshelwood equation in acetone are chosen as target pollutants because presence of ethanol. The presence of ethanol reduces ethanol is a well-known organic compound and the initial degradation rate of acetone and the acetone is a popular indoor air pollutant. inhibition increases with increasing of ethanol in the system. Acetone also inhibits the degradation of 2. EXPERIMENTAL ethanol but it still can be described by the L-H equation. Acetaldehyde in the system comes from the 2.1 Reactor and gas generator degradation of ethanol, the behavior of production Fig.1 shows the schematic diagram of the and consumption of which is affected by the amount experimental set-up for the study. It consists of a of ethanol and acetone in the mixture. Temperature reactor and an air stream circulation system. The significantly affects the degradation of organic reactor includes a 20-W UV lamp with a 254nm compounds in the mixture. -
Metal-Organic Framework Membranes with Single-Atomic Centers for Photocatalytic CO2 and O2 Reduction
ARTICLE https://doi.org/10.1038/s41467-021-22991-7 OPEN Metal-organic framework membranes with single-atomic centers for photocatalytic CO2 and O2 reduction Yu-Chen Hao1, Li-Wei Chen1, Jiani Li1, Yu Guo 2, Xin Su1, Miao Shu3, Qinghua Zhang4, Wen-Yan Gao1, Siwu Li1, ✉ ✉ ✉ Zi-Long Yu1, Lin Gu 4, Xiao Feng 1, An-Xiang Yin 1 , Rui Si3 , Ya-Wen Zhang 2, Bo Wang 1,5 & Chun-Hua Yan2 1234567890():,; The demand for sustainable energy has motivated the development of artificial photo- synthesis. Yet the catalyst and reaction interface designs for directly fixing permanent gases (e.g. CO2,O2,N2) into liquid fuels are still challenged by slow mass transfer and sluggish catalytic kinetics at the gas-liquid-solid boundary. Here, we report that gas-permeable metal- organic framework (MOF) membranes can modify the electronic structures and catalytic properties of metal single-atoms (SAs) to promote the diffusion, activation, and reduction of gas molecules (e.g. CO2, O2) and produce liquid fuels under visible light and mild conditions. With Ir SAs as active centers, the defect-engineered MOF (e.g. activated NH2-UiO-66) particles can reduce CO2 to HCOOH with an apparent quantum efficiency (AQE) of 2.51% at 420 nm on the gas-liquid-solid reaction interface. With promoted gas diffusion at the porous gas-solid interfaces, the gas-permeable SA/MOF membranes can directly convert humid CO2 gas into HCOOH with a near-unity selectivity and a significantly increased AQE of 15.76% at 420 nm. A similar strategy can be applied to the photocatalytic O2-to-H2O2 conversions, suggesting the wide applicability of our catalyst and reaction interface designs.