Trilobite Evolutionary Rates Constrain the Duration of the Cambrian Explosion

Total Page:16

File Type:pdf, Size:1020Kb

Trilobite Evolutionary Rates Constrain the Duration of the Cambrian Explosion Trilobite evolutionary rates constrain the duration of the Cambrian explosion John R. Patersona,1, Gregory D. Edgecombeb, and Michael S. Y. Leec,d aPalaeoscience Research Centre, School of Environmental & Rural Science, University of New England, Armidale, NSW 2351, Australia; bDepartment of Earth Sciences, The Natural History Museum, London SW7 5BD, United Kingdom; cCollege of Science and Engineering, Flinders University, SA 5001, Australia; and dEarth Sciences Section, South Australian Museum, Adelaide, SA 5000, Australia Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved January 9, 2019 (received for review November 12, 2018) Trilobites are often considered exemplary for understanding the phenotypic and genomic evolution (7, 8). Rapid morphological Cambrian explosion of animal life, due to their unsurpassed di- and molecular evolution during the earliest Cambrian almost versity and abundance. These biomineralized arthropods appear certainly underpinned the pronounced pulses of origination and abruptly in the fossil record with an established diversity, phyloge- diversification throughout the Terreneuvian (3, 9, 10). However, netic disparity, and provincialism at the beginning of Cambrian the question remains as to when evolutionary rates slowed to Series 2 (∼521 Ma), suggesting a protracted but cryptic earlier his- Phanerozoic norms, thus marking the end of the Cambrian ex- tory that possibly extends into the Precambrian. However, recent plosion. For instance, the calibrations used in ref. 7 were mostly analyses indicate elevated rates of phenotypic and genomic evolu- 488 Ma or younger; that analysis therefore only had weak power tion for arthropods during the early Cambrian, thereby shortening to constrain fast early rates further back than that time point. the phylogenetic fuse. Furthermore, comparatively little research Indirect measures using trends in animal diversity and disparity has been devoted to understanding the duration of the Cambrian suggest that rates were elevated throughout the early Cambrian explosion, after which normal Phanerozoic evolutionary rates were (3, 9, 10), but no study has yet quantified rates of evolution established. We test these hypotheses by applying Bayesian tip- across a broad selection of Cambrian lineages using direct phe- dating methods to a comprehensive dataset of Cambrian trilobites. notypic information from the fossil record. We show that trilobites have a Cambrian origin, as supported by the Trilobites are a diverse and abundant clade of biomineralized trace fossil record and molecular clocks. Surprisingly, they exhibit crown-group euarthropods that best exemplify the disjunct be- constant evolutionary rates across the entire Cambrian, for all as- tween the Cambrian rock record and any expected gradualist pects of the preserved phenotype: discrete, meristic, and continuous history of a clade before its first appearance as fossils. The oldest morphological traits. Our data therefore provide robust, quantita- – tive evidence that by the time the typical Cambrian fossil record trilobite body fossils around the world, at or near the Terreneuvian begins (∼521 Ma), the Cambrian explosion had already largely con- Cambrian Series 2 boundary (ca. 521 Ma), already show established cluded. This suggests that a modern-style marine biosphere had diversity, phylogenetic disparity, and biogeographic provincialism – rapidly emerged during the latest Ediacaran and earliest Cambrian (11 13). This, among other evidence, has been used to suggest that – (∼20 million years), followed by broad-scale evolutionary stasis trilobites had a much earlier, Precambrian origin (e.g., refs. 14 16). throughout the remainder of the Cambrian. In fact, Darwin (2) chose trilobites as an exemplar group to high- light his dilemma about animal origins: “There is another and allied Cambrian explosion | evolutionary rates | trilobites | Bayesian tip-dating | difficulty, which is much graver. I allude to the manner in which morphological clock Significance he abrupt first appearance of a multitude of animal fossils in Tearly Cambrian rocks (Terreneuvian to Series 2; ca. 541– The Cambrian explosion was arguably the most important bi- 509 Ma) epitomizes one of the most significant evolutionary ological event after the origin of life. Extensive research has events in Earth’s history (1). This sudden burst of diversity and been devoted to understanding when it began but far less on abundance across most eumetazoan (especially bilaterian) phyla when this burst of evolution ended. We present a quantitative over a relatively short geologic time span, and lack of obvious study that addresses these issues, using a large new dataset of Precambrian precursors, poses a conundrum when attempting to Cambrian trilobites, the most abundant and diverse organisms reconcile the fossil record with the true tempo of early animal during this time. Using probabilistic clock methods, we calcu- evolution. This issue even troubled Darwin (2) because it chal- late rates of evolution in the earliest trilobites virtually iden- lenged his ideas on gradual evolutionary change. He suggested tical to those throughout their Cambrian fossil history. We that the incompleteness of the geologic record can account for a conclude that the Cambrian explosion was over by the time the protracted, cryptic history of animals before their appearance as typical Cambrian fossil record commences and reject an diverse fossils. Over the 150+ years since On the Origin of Species unfossilized Precambrian history for trilobites, solving a prob- was published, fossil discoveries in Ediacaran and Cambrian rocks lem that had long troubled biologists since Darwin. and advances in chronostratigraphy, geochronology, and molecu- ’ Author contributions: J.R.P., G.D.E., and M.S.Y.L. designed research; J.R.P., G.D.E., and lar clocks have diminished Darwin s dilemma (3, 4). However, M.S.Y.L. performed research; M.S.Y.L. analyzed data; J.R.P. and G.D.E. collected pheno- there remain conspicuous gaps in the Cambrian records of many typic and stratigraphic data; and J.R.P., G.D.E., and M.S.Y.L. wrote the paper. animal lineages—for example, the decoupled first appearances of The authors declare no conflict of interest. euarthropod trace and body fossils (5)—perpetuating the idea of This article is a PNAS Direct Submission. an older hidden history for many clades. Published under the PNAS license. Fast evolutionary rates during the early Cambrian have been Data deposition: Data related to this work has been deposited in the Dryad Digital Re- used to explain the rapid emergence of animals, providing sup- pository (doi:10.5061/dryad.v7q827k). port for a more literal reading of the fossil record. Evidence 1To whom correspondence should be addressed. Email: [email protected]. consistent with the radiation of animals within a short time pe- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. riod (∼20 Ma) includes radiometric ages that have refined the 1073/pnas.1819366116/-/DCSupplemental. Cambrian timescale (e.g., ref. 6), as well as elevated rates of Published online February 19, 2019. 4394–4399 | PNAS | March 5, 2019 | vol. 116 | no. 10 www.pnas.org/cgi/doi/10.1073/pnas.1819366116 Downloaded by guest on September 27, 2021 Downloaded by guest on September 27, 2021 output; see middle, and late Cambrian.which Notably, allows all rates three of datasets evolution failed to to vary exhibit across sharply time elevated slices. rates Evolutionary in rates the for earliest discrete, time meristic, and slice. continuous Rate traits units were are very from constant raw across BEA the early, Fig. 1. Paterson et al. known fossiliferous rocks numbers of species of the same group, suddenly appear in the lowest same intensity as cladisticallydating, informative traits. this Where dataset possible, explicitly sampled autapomorphies with the which must have lived[Cambrian] long trilobites before the have [Cambrian] descended age from some one crustacean, tinuous ( of the preserved phenotypeFurongian [107 (ca. 521 discrete, 2 meristic,brian and families 6 (sensu con- piled ref. to 18) date, thatdataset comprising is 107 range the species from largest andusing Series most Bayesian comprehensive 2 tip-dating for clock trilobites toand com- methods 7) the (17). by Thevated analyzing phylogenetic evolutionary an rates extensive during dataset the of early Cambrian Cambrian trilobites (e.g., refs. 6 EARLY CAMBRIAN MIDDLE CAMBRIAN LATE CAMBRIAN Here we test Darwin 521 509 497 Miaolingian Furongian Dated time tree of Cambrian trilobites inferred from tip-dated Bayesian analyses of discrete, meristic, and continuous traits under a multiepoch clock, Terreneuvian Series 2 540 530 5 520 510 5 500 490 480 SI Appendix 2 1 0 0 SI Appendix FallotaspisFallotaspis (whisker plot) 95% HPDofnodeage ChoubertellaChoubertella DaguinaspisDaguinaspis CCalodiscusalodiscus SerrodiscusSerrodiscus – HebediscinaHebediscina 485 Ma) 1 ,Fig.S1 , Table S1 NNeocobboldiaeocobboldia Pagetia posterior probabilityofnode TsunyidiscusTsunyidiscus ’ NevadiaNevadia ... Epoch Clock OlenellusOlenellu s hypothesis (2) and later claims of ele- NephrolenellusNephrol (circle shading) BristoliaBristolia For instance, I cannot doubt that all the PeachellaPeachella — JudomJudomiaia )]. To satisfy the methodology of tip- for absolute and scaled rates. Full species names are presented in EllipElliptocephalatocephala and 115 traits that cover all aspects WanneriaWanne HolmiaHolmia MontezumaspisMontezumaspis
Recommended publications
  • Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
    MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic
    [Show full text]
  • Stratigraphic Paleobiology of an Evolutionary Radiation: Taphonomy and Facies Distribution of Cetaceans in the Last 23 Million Years
    Fossilia, Volume 2018: 15-17 Stratigraphic paleobiology of an evolutionary radiation: taphonomy and facies distribution of cetaceans in the last 23 million years Stefano Dominici1, Simone Cau2 & Alessandro Freschi2 1 Museo di Storia Naturale, Università degli Studi di Firenze, Firenze, Italy; [email protected] 2 Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università degli Studi di Parma, Parma, Italy; cau.simo- [email protected], [email protected] BULLET-POINTS ABSTRACT KEYWORDS: • The majority of cetacean fossils are in Zanclean and Piacenzian deposits. Neogene; • Cetacean fossils are preferentially found in offshore paleosettings. Pliocene; • Pleistocene findings drop to a minimum, notwithstanding offshore strata are Cetaceans; well represented in the record. Taphonomy. • A taphonomic imprinting on the cetacean fossil record is hypothesised, con- nected with a radiation of whale-bone consumers of modern type. offer a particularly rich cetacean fossil record and an INTRODUCTION area where available studies allow to explore this key The study of the stratigraphy and taphonomy of Neo- time of cetacean evolution at a stratigraphic resolution gene cetaceans is a fundamental step to properly frame finer than the stage. An increase in cetaceans diversity the evolutionary radiation of this megafauna, at the is recorded around 3.2 – 3.0 Ma, in coincidence of top of the pelagic marine ecosystem. Major evolutio- the mid-Piacenzian climatic optimum, and a drastic nary steps have been summarised in recent
    [Show full text]
  • Diversity Partitioning During the Cambrian Radiation
    Diversity partitioning during the Cambrian radiation Lin Naa,1 and Wolfgang Kiesslinga,b aGeoZentrum Nordbayern, Paleobiology and Paleoenvironments, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; and bMuseum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany Edited by Douglas H. Erwin, Smithsonian National Museum of Natural History, Washington, DC, and accepted by the Editorial Board March 10, 2015 (received for review January 2, 2015) The fossil record offers unique insights into the environmental and Results geographic partitioning of biodiversity during global diversifica- Raw gamma diversity exhibits a strong increase in the first three tions. We explored biodiversity patterns during the Cambrian Cambrian stages (informally referred to as early Cambrian in this radiation, the most dramatic radiation in Earth history. We as- work) (Fig. 1A). Gamma diversity dropped in Stage 4 and de- sessed how the overall increase in global diversity was partitioned clined further through the rest of the Cambrian. The pattern is between within-community (alpha) and between-community (beta) robust to sampling standardization (Fig. 1B) and insensitive to components and how beta diversity was partitioned among environ- including or excluding the archaeocyath sponges, which are po- ments and geographic regions. Changes in gamma diversity in the tentially oversplit (16). Alpha and beta diversity increased from Cambrian were chiefly driven by changes in beta diversity. The the Fortunian to Stage 3, and fluctuated erratically through the combined trajectories of alpha and beta diversity during the initial following stages (Fig. 2). Our estimate of alpha (and indirectly diversification suggest low competition and high predation within beta) diversity is based on the number of genera in published communities.
    [Show full text]
  • And Ordovician (Sardic) Felsic Magmatic Events in South-Western Europe: Underplating of Hot Mafic Magmas Linked to the Opening of the Rheic Ocean
    Solid Earth, 11, 2377–2409, 2020 https://doi.org/10.5194/se-11-2377-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Comparative geochemical study on Furongian–earliest Ordovician (Toledanian) and Ordovician (Sardic) felsic magmatic events in south-western Europe: underplating of hot mafic magmas linked to the opening of the Rheic Ocean J. Javier Álvaro1, Teresa Sánchez-García2, Claudia Puddu3, Josep Maria Casas4, Alejandro Díez-Montes5, Montserrat Liesa6, and Giacomo Oggiano7 1Instituto de Geociencias (CSIC-UCM), Dr. Severo Ochoa 7, 28040 Madrid, Spain 2Instituto Geológico y Minero de España, Ríos Rosas 23, 28003 Madrid, Spain 3Dpt. Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain 4Dpt. de Dinàmica de la Terra i de l’Oceà, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 5Instituto Geológico y Minero de España, Plaza de la Constitución 1, 37001 Salamanca, Spain 6Dpt. de Mineralogia, Petrologia i Geologia aplicada, Universitat de Barcelona, Martí Franquès s/n, 08028 Barcelona, Spain 7Dipartimento di Scienze della Natura e del Territorio, 07100 Sassari, Italy Correspondence: J. Javier Álvaro ([email protected]) Received: 1 April 2020 – Discussion started: 20 April 2020 Revised: 14 October 2020 – Accepted: 19 October 2020 – Published: 11 December 2020 Abstract. A geochemical comparison of early Palaeo- neither metamorphism nor penetrative deformation; on the zoic felsic magmatic episodes throughout the south- contrary, their unconformities are associated with foliation- western European margin of Gondwana is made and in- free open folds subsequently affected by the Variscan defor- cludes (i) Furongian–Early Ordovician (Toledanian) activ- mation.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Making a Timeline Rope
    Making a Timeline Rope Background: Your timeline rope invites students to focus on recent periods of geologic time. This rope demonstrates four periods and seven epochs, beginning with the Jurassic Period in the Mesozoic Era, in the Phanerozoic Eon, and ending at the present time, in the Holocene Epoch, in the Quaternary Period of the Cenozoic Era, in the Phanerozoic Eon. Standards: SC.D.1.2.3 SC.D.1.2.5 SC.D.1.3.1 SC.D.1.3.2 SC.D.1.3.3 MA.1.G.5.1 MA.1.G.5.2 MA.2.G.3.4 MA.2.G.3.1 MA.3.G.5.2 MA.4.G.3.3 MA.6.A.5.1 MA.8.A.1.3 SC.912.E.5.3 SC.912.E.6.4 SC.912.E.6.5 SC.912.N.3.1 SC.912.N.3.5 Objectives: − Analyze how specific geological processes and features are expressed in Florida and elsewhere − Describe the geological development of the present day oceans and identify commonly found features − Understand the function of models in science, and identify the wide range of models used. − Compare, contrast, and convert units of measure Vocabulary: Geologists and paleontologists give names to spans of many years. Spans are approximate; they relate more to fossil age ranges than to absolute years. Experts use a common vocabulary. Eon: Largest division of geologic time. Each eon contains several periods and can last for hundreds of millions to billions of years. Some experts identify four eons. (Example: Life on earth has been abundant during the Phanerozoic Eon, as well- preserved fossils prove.) Era: Shorter than an eon.
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]
  • 38—GEOLOGIC AGE SYMBOL FONT (Stratagemage) REF NO STRATIGRAPHIC AGE SUBDIVISION TYPE AGE SYMBOL KEYBOARD POSITION for Stratagemage FONT
    Federal Geographic Data Committee U.S. Geological Survey Open-File Report 99–430 Public Review Draft - Digital Cartographic Standard for Geologic Map Symbolization PostScript Implementation (filename: of99-430_38-01.eps) 38—GEOLOGIC AGE SYMBOL FONT (StratagemAge) REF NO STRATIGRAPHIC AGE SUBDIVISION TYPE AGE SYMBOL KEYBOARD POSITION FOR StratagemAge FONT 38.1 Archean Eon A Not applicable (use Helvetica instead) 38.2 Cambrian Period _ (underscore = shift-hyphen) 38.3 Carboniferous Period C Not applicable (use Helvetica instead) 38.4 Cenozoic Era { (left curly bracket = shift-left square bracket) 38.5 Cretaceous Period K Not applicable (use Helvetica instead) 38.6 Devonian Period D Not applicable (use Helvetica instead) 38.7 Early Archean (3,800(?)–3,400 Ma) Era U Not applicable (use Helvetica instead) 38.8 Early Early Proterozoic (2,500–2,100 Ma) Era R (capital R = shift-r) 38.9 Early Middle Proterozoic (1,600–1,400 Ma) Era G (capital G = shift-g) 38.10 Early Proterozoic Era X Not applicable (use Helvetica instead) 38.11 Eocene Epoch # (pound sign = shift-3) 38.12 Holocene Epoch H Not applicable (use Helvetica instead) 38.13 Jurassic Period J Not applicable (use Helvetica instead) 38.14 Late Archean (3,000–2,500 Ma) Era W Not applicable (use Helvetica instead) 38.15 Late Early Proterozoic (1,800–1,600 Ma) Era I (capital I = shift-i) 38.16 Late Middle Proterozoic (1,200–900 Ma) Era E (capital E = shift-e) 38.17 Late Proterozoic Era Z Not applicable (use Helvetica instead) 38.18 Mesozoic Era } (right curly bracket = shift-right square bracket) 38.19 Middle Archean (3,400–3,000 Ma) Era V Not applicable (use Helvetica instead) 38.20 Middle Early Proterozoic (2,100–1,800 Ma) Era L (capital L = shift-l) 38.21 Middle Middle Proterozoic (1,400–1,200 Ma) Era F (capital F = shift-f) 38.22 Middle Proterozoic Era Y Not applicable (use Helvetica instead) A–38–1 Federal Geographic Data Committee U.S.
    [Show full text]
  • International Stratigraphic Chart
    INTERNATIONAL STRATIGRAPHIC CHART ICS International Commission on Stratigraphy Ma Ma Ma Ma Era Era Era Era Age Age Age Age Age Eon Eon Age Eon Age Eon Stage Stage Stage GSSP GSSP GSSA GSSP GSSP Series Epoch Series Epoch Series Epoch Period Period Period Period System System System System Erathem Erathem Erathem Erathem Eonothem Eonothem Eonothem 145.5 ±4.0 Eonothem 359.2 ±2.5 542 Holocene Tithonian Famennian Ediacaran 0.0117 150.8 ±4.0 Upper 374.5 ±2.6 Neo- ~635 Upper Upper Kimmeridgian Frasnian Cryogenian 0.126 ~ 155.6 385.3 ±2.6 proterozoic 850 “Ionian” Oxfordian Givetian Tonian Pleistocene 0.781 161.2 ±4.0 Middle 391.8 ±2.7 1000 Calabrian Callovian Eifelian Stenian Quaternary 1.806 164.7 ±4.0 397.5 ±2.7 Meso- 1200 Gelasian Bathonian Emsian Ectasian proterozoic 2.588 Middle 167.7 ±3.5 Devonian 407.0 ±2.8 1400 Piacenzian Bajocian Lower Pragian Calymmian Pliocene 3.600 171.6 ±3.0 411.2 ±2.8 1600 Zanclean Aalenian Lochkovian Statherian Jurassic 5.332 175.6 ±2.0 416.0 ±2.8 Proterozoic 1800 Messinian Toarcian Pridoli Paleo- Orosirian 7.246 183.0 ±1.5 418.7 ±2.7 2050 Tortonian Pliensbachian Ludfordian proterozoic Rhyacian 11.608 Lower 189.6 ±1.5 Ludlow 421.3 ±2.6 2300 Serravallian Sinemurian Gorstian Siderian Miocene 13.82 196.5 ±1.0 422.9 ±2.5 2500 Neogene Langhian Hettangian Homerian 15.97 199.6 ±0.6 Wenlock 426.2 ±2.4 Neoarchean Burdigalian M e s o z i c Rhaetian Sheinwoodian 20.43 203.6 ±1.5 428.2 ±2.3 2800 Aquitanian Upper Norian Silurian Telychian 23.03 216.5 ±2.0 436.0 ±1.9 P r e c a m b i n P Mesoarchean C e n o z i c Chattian Carnian
    [Show full text]
  • The Gelasian Stage (Upper Pliocene): a New Unit of the Global Standard Chronostratigraphic Scale
    82 by D. Rio1, R. Sprovieri2, D. Castradori3, and E. Di Stefano2 The Gelasian Stage (Upper Pliocene): A new unit of the global standard chronostratigraphic scale 1 Department of Geology, Paleontology and Geophysics , University of Padova, Italy 2 Department of Geology and Geodesy, University of Palermo, Italy 3 AGIP, Laboratori Bolgiano, via Maritano 26, 20097 San Donato M., Italy The Gelasian has been formally accepted as third (and Of course, this consideration alone does not imply that a new uppermost) subdivision of the Pliocene Series, thus rep- stage should be defined to represent the discovered gap. However, the top of the Piacenzian stratotype falls in a critical point of the evo- resenting the Upper Pliocene. The Global Standard lution of Earth climatic system (i.e. close to the final build-up of the Stratotype-section and Point for the Gelasian is located Northern Hemisphere Glaciation), which is characterized by plenty in the Monte S. Nicola section (near Gela, Sicily, Italy). of signals (magnetostratigraphic, biostratigraphic, etc; see further on) with a worldwide correlation potential. Therefore, Rio et al. (1991, 1994) argued against the practice of extending the Piacenzian Stage up to the Pliocene-Pleistocene boundary and proposed the Introduction introduction of a new stage (initially “unnamed” in Rio et al., 1991), the Gelasian, in the Global Standard Chronostratigraphic Scale. This short report announces the formal ratification of the Gelasian Stage as the uppermost subdivision of the Pliocene Series, which is now subdivided into three stages (Lower, Middle, and Upper). Fur- The Gelasian Stage thermore, the Global Standard Stratotype-section and Point (GSSP) of the Gelasian is briefly presented and discussed.
    [Show full text]
  • Ediacaran and Cambrian Stratigraphy in Estonia: an Updated Review
    Estonian Journal of Earth Sciences, 2017, 66, 3, 152–160 https://doi.org/10.3176/earth.2017.12 Ediacaran and Cambrian stratigraphy in Estonia: an updated review Tõnu Meidla Department of Geology, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Ravila 14a, 50411 Tartu, Estonia; [email protected] Received 18 December 2015, accepted 18 May 2017, available online 6 July 2017 Abstract. Previous late Precambrian and Cambrian correlation charts of Estonia, summarizing the regional stratigraphic nomenclature of the 20th century, date back to 1997. The main aim of this review is updating these charts based on recent advances in the global Precambrian and Cambrian stratigraphy and new data from regions adjacent to Estonia. The term ‘Ediacaran’ is introduced for the latest Precambrian succession in Estonia to replace the formerly used ‘Vendian’. Correlation with the dated sections in adjacent areas suggests that only the latest 7–10 Ma of the Ediacaran is represented in the Estonian succession. The gap between the Ediacaran and Cambrian may be rather substantial. The global fourfold subdivision of the Cambrian System is introduced for Estonia. The lower boundary of Series 2 is drawn at the base of the Sõru Formation and the base of Series 3 slightly above the former lower boundary of the ‘Middle Cambrian’ in the Baltic region, marked by a gap in the Estonian succession. The base of the Furongian is located near the base of the Petseri Formation. Key words: Ediacaran, Cambrian, correlation chart, biozonation, regional stratigraphy, Estonia, East European Craton. INTRODUCTION The latest stratigraphic chart of the Cambrian System in Estonia (Mens & Pirrus 1997b, p.
    [Show full text]
  • Maximized Biostratigraphic Resolution Across the Cambrian Series 2
    Maximized biostratigraphic resolution across the Cambrian Series 2‒Series 3 boundary interval calibrated with synchronous sea-level fluctuations and their impact on the biotic composition Prof. Dr. Gerd Geyer Project duration: 2012–2015 Supported by the German Research Foundation (DFG) Summary The research project dealt with a characterization of organisms and their assemblages as well as sedimentological criteria in various parts of the Cambrian continents across the Cambrian Series 2–Series 3 boundary interval. The research activities are primarily contributions to the global Cambrian subdivision project of the International Subcommission of Cambrian Stratigraphy. Particular emphasis was put on the taxonomy and biostratigraphy of trilobites which provide a base for intercontinental or subglobal correlation in the critical interval. The series of research activities conformed with current GSSP projects of the ISCS. In total, more than 30 single projects were actively carried out, dealing with Cambrian rocks and fossils from Jordan, the Iran, Kyrgyzstan, northern Greenland, Morocco, Sweden, Denmark, northern Germany, eastern Canada, the Canadian cordillera, England, Poland, South China, Saxony and the Franconian Forest in Bavaria. Five publication presented global synopses without a specific regional focus. Publications and proposals for the Subcommission on Cambrian Stratigraphy: Bayet-Goll, A., Wilmsen, M., Geyer, G., Mahboubi, A. & Moussavi-Harami, R. 2014. Facies architecture, depositional environments and sequence stratigraphy of the Middle Cambrian Fasham and Deh-Sufiyan formations in the central Alborz, Iran. Facies 60: 815‒841, doi 10.1007/s10347-014-0401-9. Elicki, O. & Geyer, G. 2013. The Cambrian trilobites of Jordan – taxonomy, systematic and stratigraphic significance. Acta Geologica Polonica 63 (1): 1–56.
    [Show full text]