Constraints from Detrital Zircon Geochronology on West Iberia Paleogeography and Sediment Sources
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Callovian (Middle Jurassic) Dinoflagellate Cysts from the Algarve Basin, Southern
1 Callovian (Middle Jurassic) dinoflagellate cysts from the Algarve Basin, southern 2 Portugal 3 4 Marisa E.N. Borges a,b, James B. Riding c,*, Paulo Fernandes a, Vasco Matos a, Zélia 5 Pereira b 6 7 a CIMA - Centro de Investigação Marinha e Ambiental, Universidade do Algarve, 8 Campus de Gambelas, 8005-139 Faro, Portugal 9 b LNEG-LGM, Rua da Amieira, 4465-965 S. Mamede Infesta, Portugal 10 c British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 11 5GG, UK 12 13 * Corresponding author. Tel.: +44(0)115 9363447 14 E-mail addresses: [email protected] (M.E.N. Borges), [email protected] (J.B. 15 Riding), [email protected] (P. Fernandes), [email protected] (V. Matos), 16 [email protected] (Z. Pereira). 17 18 ABSTRACT 19 The palynology of three Callovian (Middle Jurassic) limestone-marl successions from 20 the Algarve Basin in southern Portugal was studied. These localities are Baleeira 21 Harbour, Mareta Beach and Telheiro Quarry; they provide a composite succession, tied 1 22 to ammonite zones, through the Lower, Middle and Upper Callovian from the western 23 and eastern subbasins of the Algarve Basin. The three sections generally yielded 24 relatively abundant marine and continental palynofloras. Diversity is low to moderate 25 and the dinoflagellate cyst associations are dominated by Ctenidodinium spp., the 26 Ellipsoidictyum/Valensiella group, Gonyaulacysta jurassica subsp. adecta, 27 Korystocysta spp., Meiourogonyaulax spp., Pareodinia ceratophora, Sentusidinium 28 spp., Surculosphaeridium? vestitum and Systematophora spp. Some intra-Callovian 29 marker bioevents were recorded; these include the range bases of Ctenidodinium 30 ornatum, Gonyaulacysta eisenackii, Korystocysta pachyderma, Mendicodinium 31 groenlandicum, Rigaudella spp. -
Organic Maturation of the Algarve Basin (Southern Portugal) and Its Bearing on Thermal History and Hydrocarbon Exploration
Marine and Petroleum Geology 46 (2013) 210e233 Contents lists available at SciVerse ScienceDirect Marine and Petroleum Geology journal homepage: www.elsevier.com/locate/marpetgeo Organic maturation of the Algarve Basin (southern Portugal) and its bearing on thermal history and hydrocarbon exploration Paulo Fernandes a,*, Bruno Rodrigues a, Marisa Borges a,b,1, Vasco Matos a,2, Geoff Clayton c a Universidade do Algarve, CIMA, Campus de Gambelas, 8005-139 Faro, Portugal b LNEG, Rua da Amieira, 4465-965 S. Mamede Infesta, Portugal c Department of Geology, Trinity College, University of Dublin, Dublin 2, Ireland article info abstract Article history: The Algarve Basin, southern Portugal is under-explored in terms of petroleum geology. Organic matu- Received 25 August 2012 ration levels and the thermal history of this basin have been ascertained, together with their implications Received in revised form for future exploration. Maturity was determined using vitrinite reflectance and spore fluorescence/ 17 June 2013 colour. The succession was extensively sampled (158 onshore samples and 20 samples from two offshore Accepted 18 June 2013 Ò wells). Thermal history was modelled using 1D PetroMod . Available online 27 June 2013 A palynostratigraphic study of two offshore wells was also completed, showing thick marlelimestone sequences of Middle and Upper Jurassic age. Hiatuses were identified in the offshore wells within the Keywords: Algarve Basin Jurassic section and between the Jurassic and the Miocene sections. fl Mesozoic The Mesozoic rocks of the Algarve Basin lie within the oil window. Vitrinite re ectance ranges from Portugal 0.52e0.7%Rr in the Lower Cretaceous to 1e1.1%Rr in the Upper TriassiceHettangian. -
A Reconstruction of Iberia Accounting for Western Tethys–North Atlantic Kinematics Since the Late-Permian–Triassic
Solid Earth, 11, 1313–1332, 2020 https://doi.org/10.5194/se-11-1313-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic Paul Angrand1, Frédéric Mouthereau1, Emmanuel Masini2,3, and Riccardo Asti4 1Geosciences Environnement Toulouse (GET), Université de Toulouse, UPS, Univ. Paul Sabatier, CNRS, IRD, 14 av. Edouard Belin, 31400 Toulouse, France 2M&U sas, 38120 Saint-Égrève, France 3ISTerre, Université Grenoble Alpes, 38000 Grenoble, France 4Université de Rennes, CNRS, Géosciences Rennes-UMR 6118, 35000 Rennes, France Correspondence: Paul Angrand ([email protected]) Received: 20 February 2020 – Discussion started: 6 March 2020 Revised: 12 May 2020 – Accepted: 27 May 2020 – Published: 21 July 2020 Abstract. The western European kinematic evolution results 1 Introduction from the opening of the western Neotethys and the Atlantic oceans since the late Paleozoic and the Mesozoic. Geolog- Global plate tectonic reconstructions are mostly based on the ical evidence shows that the Iberian domain recorded the knowledge and reliability of magnetic anomalies that record propagation of these two oceanic systems well and is there- age, rate, and direction of sea-floor spreading (Stampfli and fore a key to significantly advancing our understanding of Borel, 2002; Müller et al., 2008; Seton et al., 2012). Where the regional plate reconstructions. The late-Permian–Triassic these constraints are lacking or their recognition is ambigu- Iberian rift basins have accommodated extension, but this ous, kinematic reconstructions rely on the description and in- tectonic stage is often neglected in most plate kinematic terpretation of the structural, sedimentary, igneous and meta- models, leading to the overestimation of the movements be- morphic rocks of rifted margins and orogens (e.g., Handy tween Iberia and Europe during the subsequent Mesozoic et al., 2010; McQuarrie and Van Hinsbergen, 2013). -
Tectono-Sedimentary Phases of the Latest Cretaceous and Cenozoic Compressive Evolution of the Algarve Margin (Southern Portugal)
9781405179225_4_006.qxd 10/5/07 2:25 PM Page 111 Tectono-sedimentary phases of the latest Cretaceous and Cenozoic compressive evolution of the Algarve margin (southern Portugal) FERNANDO C. LOPES*† and P. P. CUNHA* *Centro de Geofisica, Department of Earth Sciences, Faculty of Sciences and Technology, Universidade de Coimbra, Largo Marquês de Pombal, 3000-272 Coimbra, Portugal (Email: [email protected]) †IMAR – Instituto de Mar, Department of Earth Sciences, Faculty of Sciences and Technology, Universidade de Coimbra, Av. Dr. Dias da Silva, 3000-134 Coimbra, Portugal ABSTRACT The latest Cretaceous and Cenozoic tectono-sedimentary evolution of the central and eastern Algarve margin (southwestern Iberia) is reconstructed as a series of structural maps and three- dimensional diagrams based on multichannel seismic reflection data. Six seismic stratigraphic units, bounded by unconformities related to tectonic events during the African–Eurasian convergence, have been identified. Several episodes of major regional change in palaeogeography and tectonic setting are distinguished: they occurred in the Campanian, Lutetian, Oligocene–Aquitanian trans- ition, middle Tortonian, Messinian–Zanclean transition and Zanclean–Piacenzian transition. These changes were induced by geodynamic events primarily related to the relative motions of the African and Eurasian plates. The Late Cretaceous and Cenozoic in the Algarve margin were dominated by compressional deformation. Triggered by the regional tectonics that affected the basement, Upper Triassic–Hettangian evaporites played an important role in tectono-sedimentary evolution by local- izing both extensional and thrust detachments and generating both salt structures and salt- withdrawal sub-basins. During middle Eocene and Oligocene times, coeval development of compressive structures and normal fault systems in the eastern Algarve domain is interpreted as resulting from gravity gliding due to a general tilt of the margin. -
Rift-Related Magmatism of the Central Atlantic Magmatic Province in Algarve, Southern Portugal ⁎ L.T
Available online at www.sciencedirect.com Lithos 101 (2008) 102–124 www.elsevier.com/locate/lithos Rift-related magmatism of the Central Atlantic magmatic province in Algarve, Southern Portugal ⁎ L.T. Martins a, , J. Madeira b, N. Youbi c, J. Munhá a, J. Mata a, R. Kerrich d a Departamento de Geologia da Faculdade de Ciências, Universidade de Lisboa, CeGUL, Edif. C6, Campo Grande, 1749-016 Lisboa, Portugal b Departamento de Geologia da Faculdade de Ciências, Universidade de Lisboa, LATTEX and IDL, Edif. C6, Campo Grande, 1749-016 Lisboa, Portugal c Department of Geology, Faculty of Sciences-Semlalia, Cadi Ayyad University, P.O. Box. 2390, Prince Moulay Abdellah Avenue, Marrakech 40000, Morocco d Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada S7N 5E2 Received 2 March 2006; accepted 10 July 2007 Available online 7 August 2007 Abstract Lower Jurassic volcanic-sedimentary successions of the Algarve Basin (∼198 Ma) are associated with the Central Atlantic Magmatic Province (CAMP), that was one aspect of Pangean intracontinental rifting. Volcanic products of the Algarve CAMP include subaerial lava flows, pyroclastic deposits and peperites, and contemporaneous sedimentation is dominated by mudstones and conglomerates, often containing volcanic fragments, intercalated in the volcanic sequence. These lithological characteristics and associations are compatible with a facies model typical of continental basaltic magmatism. Volcanic rocks are fractionated low- Ti tholeiites enriched in large ion lithophile elements relative to high field strength elements. The compositional spectrum (e.g., Ba/Nb–Zr/Nb) is consistent with derivation of primary magmas by partial melting of heterogeneous sources, initially continental lithospheric mantle progressively replaced by an asthenospheric source. -
Detrital Zircon Provenance of Triassic Sandstone of the Algarve Basin (SW
Geological Magazine Detrital zircon provenance of Triassic sandstone www.cambridge.org/geo of the Algarve Basin (SW Iberia): evidence of Gondwanan- and Laurussian-type sources of sediment Original Article 1 1 2 3 Cite this article: Gama C, Pereira MF, Cristina Gama , M Francisco Pereira , Quentin G Crowley , Ícaro Dias da Silva Crowley QG, Dias da Silva Í, and Silva JB (2021) and J Brandão Silva4 Detrital zircon provenance of Triassic sandstone of the Algarve Basin (SW Iberia): 1 evidence of Gondwanan- and Laurussian-type Instituto de Ciências da Terra, Departamento de Geociências, Escola de Ciências e Tecnologia, Universidade de 2 sources of sediment. Geological Magazine 158: Évora, Portugal; Department of Geology, School of Natural Sciences, Trinity College, Dublin 2, Ireland; 311–329. https://doi.org/10.1017/ 3Instituto D. Luiz, Departamento de Geologia, Faculdade de Ciências da Universidade de Lisboa, Portugal and S0016756820000370 4Instituto D. Luiz, Departamento de Geologia, Faculdade de Ciências da Universidade de Lisboa, Portugal Received: 2 October 2019 Revised: 6 February 2020 Abstract Accepted: 8 April 2020 Detrital zircon populations from six samples of upper Triassic sandstone (Algarve Basin) were First published online: 19 May 2020 analysed, yielding mostly Precambrian ages. zircon age populations of the Triassic sandstone Keywords: sampled from the western and central sectors of the basin are distinct, suggesting local recycling U–Pb geochronology; detrital zircon; Triassic and/or lateral changes in their sources. Our findings and the available detrital zircon ages from sandstone; Algarve Basin; Palaeozoic terrane; the Palaeozoic terranes of SW Iberia, Nova Scotia and NW Morocco were jointly examined sediment source; Pangaea palaeogeographic using the Kolmogorov–Smirnov test and multidimensional scaling diagrams. -
A Reconstruction of Iberia Accounting for Western Tethys-North Atlantic
A reconstruction of Iberia accounting for Western Tethys-North Atlantic kinematics since the late-Permian-Triassic Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, Riccardo Asti To cite this version: Paul Angrand, Frédéric Mouthereau, Emmanuel Masini, Riccardo Asti. A reconstruction of Iberia accounting for Western Tethys-North Atlantic kinematics since the late-Permian-Triassic. Solid Earth, European Geosciences Union, 2020, 11 (4), pp.1313-1332. 10.5194/se-11-1313-2020. hal-03106296v2 HAL Id: hal-03106296 https://hal.archives-ouvertes.fr/hal-03106296v2 Submitted on 11 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Solid Earth, 11, 1313–1332, 2020 https://doi.org/10.5194/se-11-1313-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. A reconstruction of Iberia accounting for Western Tethys–North Atlantic kinematics since the late-Permian–Triassic Paul Angrand1, Frédéric Mouthereau1, Emmanuel Masini2,3, and Riccardo -
Cretaceous Research 30 (2009) 575–586
Cretaceous Research 30 (2009) 575–586 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Age constraints on the Late Cretaceous alkaline magmatism on the West Iberian Margin Rui Miranda a,b,d,*, Vasco Valadares c,a, Pedro Terrinha c,b, Joa˜o Mata a,d, Maria do Rosa´rio Azevedo e, Miguel Gaspar a,f, Jose´ Carlos Kullberg g, Carlos Ribeiro h a Fac. de Cieˆncias da Univ. de Lisboa, Depto. Geologia , Campo Grande, 1749-016 Lisboa, Portugal b LATTEX, IDL, Univ. de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal c INETI, Depto. Geologia Marinha, Estrada da Azambuja, 2720-866 Amadora, Portugal d Centro de Geologia da Univ. de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal e Depto. Geocieˆncias da Univ. de Aveiro, Santiago Campus, 3810-003 Aveiro, Portugal f CREMINER, Campo Grande, 1749-016 Lisboa, Portugal g Depto. Cieˆncias Terra, Fac. Cieˆncias Tecnologia., Univ. Nova de Lisboa and CICEGe Quinta da Torre, 2829-516 Caparica, Portugal h Depto. Geocieˆncias Univ. E´vora and Centro de Geofı´sica de E´vora, Rua Roma˜o Ramalho, 59, 7000 E´vora, Portugal article info abstract Article history: The onshore sector of the West Iberian Margin (WIM) was the locus of several cycles of magmatic activity Received 21 November 2007 during the Mesozoic, the most voluminous of which was of alkaline nature and occurred between 70 and Accepted in revised form 100 Ma. This cycle took place in a post-rift environment, during the 35 counter-clockwise rotation of 13 November 2008 Iberia and initiation of the alpine compression. -
Extended Abstracts, 53–61
CENTRAL & NORTH ATLANTIC CONJUGATE MARGINS CONFERENCE DUBLIN 2012 THIRD CONJUGATE MARGINS CONFERENCE 2012 ABSTRACTS VOLUME www.conjugatemargins.ie We sincerely thank all our sponsors, partners and supporters who contributed to the success of the Third Conjugate Margins Conference 2012 CENTRAL & NORTH ATLANTIC CONJUGATE MARGINS CONFERENCE DUBLIN 2012 Platinum Seismic Data Room Gold Bronze Suirbhéireacht Gheolaíochta Éireann Geological Survey of Ireland Supporters Third Central & North Atlantic Conjugate Margins Conference Trinity College Dublin, 22-24 August 2012 CONTENTS KEYNOTE SPEAKERS 1 A New Kinematic Plate Reconstruction of the North Atlantic between Ireland and Canada 2 Bridget Ady and Richard C. Whittaker Hyperextension, weakening and crustal folding in the North Atlantic domain 4 Anthony G. Doré, Erik R. Lundin and Susann Wienecke Depositional environments and source distribution across hyper-extended rifted margins of the North Atlantic: Insights from the Iberia-Newfoundland margin 7 Garry D. Karner, Christopher A. Johnson, Geoffrey Mohn and Gianreto Manatschal Drainage evolution in Mesozoic NE Atlantic margin basins: sand sourcing, scales and sediment pathways 18 Shane Tyrrell, Peter D.W. Haughton, Áine McElhinney, Patrick M. Shannon and J. Stephen Daly Exploring the Equatorial Atlantic 20 Jerome Kelly ORAL PRESENTATIONS 25 Post-rift vertical movements in NW Africa: searching a model for excessive subsidence and exhumation 26 Giovanni Bertotti, Mohamed Gouiza and Ibrahim J. Barrie Post-rift km-scale uplift of passive continental