Research Thesis
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Modeling of Metamaterials in Wave Propagation
Modeling of Metamaterials in Wave Propagation G. Leugering, E. Rohan and F. Seifrt Lehrstuhl für Angewandte Mathematik II, Universität Erlangen-Nürnberg, Germany. New Technologies Research Center, Research Institute at University of West Bohemia, Plzen, Czech Re- public. Abstract: This chapter focuses on acoustic, electromagnetic, elastic and piezo-electric wave propagation through heterogenous layers. The motivation is provided by the demand for a better understanding of meta-materials and their possible construction. We stress the analo- gies between the mathematical treatment of phononic, photonic and elastic meta-materials. Moreover, we treat the cloaking problem in more detail from an analytical and simulation oriented point of view. The novelty in the approach presented here is with the interlinked homogenization- and optimization procedure. INTRODUCTION as ’negative Poisson’ ratio in elastic material foams, negative ’mass’ and ’negative refraction indices’ for The terminology ’metamaterials’ refers to ’beyond the forming of band-gaps in acoustic and optical de- conventional material properties’ and consequently vices, respectively. those ’materials’ typically are not found in nature. Thus given acoustic, elasto-dynamic, piezo-electric It comes as no surprise that research in this area, or electromagnetic wave propagation in a non- once the first examples became publicly known, has homogeneous medium and given a certain merit undergone an exponential growth. Metamaterials function describing the desired material-property or are most often man-made, are engineered materi- dynamic performance of the body involved, one als with a wide range of applications. Starting in wants to find e.g. the location, size, shape and the area of micro-waves where one aims at cloak- material properties of small inclusions such that ing objects from electromagnetic waves in the in- the merit function is increased towards an opti- visible frequency range, the ideas rather quickly in- mal material or performance. -
ARTIFICIAL MATERIALS for NOVEL WAVE PHENOMENA Metamaterials 2019
ROME, 16-21 SEPTEMBER 2019 META MATE RIALS 13TH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA Metamaterials 2019 Proceedings In this edition, there are no USB sticks for the distribution of the proceedings. The proceedings can be downloaded as part of a zip file using the following link: 02 President Message 03 Preface congress2019.metamorphose-vi.org/proceedings2019 04 Welcome Message To browse the Metamaterials’19 proceedings, please open “Booklet.pdf” that will open the main file of the 06 Program at a Glance proceedings. By clicking the papers titles you will be forwarded to the specified .pdf file of the papers. Please 08 Monday note that, although all the submitted contributions 34 Tuesday are listed in the proceedings, only the ones satisfying requirements in terms of paper template and copyright 58 Wednesday form have a direct link to the corresponding full papers. 82 Thursday 108 Student paper competition 109 European School on Metamaterials Quick download for tablets and other mobile devices (370 MB) 110 Social Events 112 Workshop 114 Organizers 116 Map: Crowne Plaza - St. Peter’s 118 Map to the Metro 16- 21 September 2019 in Rome, Italy 1 President Message Preface It is a great honor and pleasure for me to serve the Virtual On behalf of the Technical Program Committee (TPC), Institute for Artificial Electromagnetic Materials and it is my great pleasure to welcome you to the 2019 edition Metamaterials (METAMORPHOSE VI) as the new President. of the Metamaterials Congress and to outline its technical Our institute spun off several years ago, when I was still a program. -
State-Of-The-Art of Metamaterials: Characterization, Realization and Applications
Technological University Dublin ARROW@TU Dublin Articles Antenna & High Frequency Research Centre 2014-7 State-of-the-Art of Metamaterials: Characterization, Realization and Applications Giuseppe Ruvio Technological University Dublin, [email protected] Giovanni Leone Second University of Naples, [email protected] Follow this and additional works at: https://arrow.tudublin.ie/ahfrcart Part of the Electromagnetics and Photonics Commons Recommended Citation G. Ruvio & G. Leone,(2014) State-of-the-art of Metamaterials: Characterization, Realization and Applications, Studies in Engineering and Technology, vol. 1, issue 2. doi:10.11114/set.v1i2.456 This Article is brought to you for free and open access by the Antenna & High Frequency Research Centre at ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU Dublin. For more information, please contact [email protected], [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 4.0 License Redfame Publish ing State-of-the-art of metamaterials: characterization, realization and applications Giuseppe Ruvio 1, 2 & Giovanni Leone 1 1Seconda Università di Napoli, Dipartimento di Ingegneria Industriale e dell’Informazione, Via Roma 29, 81031 Aversa (CE), Italy 2Dublin Institute of Technology, Antenna & High Frequency Research Centre, Kevin Street, Dublin 8, Ireland Abstract Metamaterials is a large family of microwave structures that produces interesting ε and µ conditions with huge implications for numerous electromagnetic applications. Following a description of modern techniques to realize epsilon-negative, mu-negative and double-negative metamaterials, this paper explores recent literature on the use of metamaterials in hot research areas such as metamaterial-inspired microwave components, antenna applications and imaging. -
Do Cloaked Objects Really Scatter Less?
Do Cloaked Objects Really Scatter Less? Francesco Monticone and Andrea Alù* Department of Electrical and Computer Engineering, The University of Texas at Austin, 1 University Station C0803, Austin, Texas 78712, USA *[email protected] We discuss the global scattering response of invisibility cloaks over the entire frequency spectrum, from static to very high frequencies. Based on linearity, causality and energy conservation we show that the total extinction and scattering, integrated over all wavelengths, of any linear, passive, causal and non-diamagnetic cloak necessarily increases compared to the uncloaked case. In light of this general principle, we provide a quantitative measure to compare the global performance of different cloaking techniques and we discuss solutions to minimize the global scattering signature of an object using thin, superconducting shells. Our results provide important physical insights on how invisibility cloaks operate and affect the global scattering of an object, suggesting ways to defeat countermeasures aimed at detecting cloaked objects using short impinging pulses. I. INTRODUCTION The last decade has witnessed a significant progress in the field of classical electrodynamic theory and applications, following the introduction and development of the concept of metamaterials. This field of research has provided a new theoretical framework and practical tools to control electromagnetic waves and fields in unprecedented ways, beyond what is directly offered by natural materials [1]. Among a broad landscape of -
Wsn 47(2) (2016) 75-88 Eissn 2392-2192
Available online at www.worldscientificnews.com WSN 47(2) (2016) 75-88 EISSN 2392-2192 Acoustic cylindrical cloak S. M. Premarathna, K. A. I. L. Wijewardena Gamalath* Department of Physics, University of Colombo, Colombo 3, Sri Lanka *E-mail address: [email protected] ABSTRACT Using the analogy between anisotropic acoustic metamaterials with magnetic metamaterials in transverse magnetic mode, an electromagnetic wave of 2 GHz n transverse magnetic mode, at normal incidence propagating through a two dimensional, anisotropic, semi infinite, double negative, metamaterial slab of 800 × 800 cells, embedded in free space, for the ideal loss case was simulated by a radially dependent finite difference time dependent method to study an ideal acoustic cylindrical cloak. For the simulations multiple cycle m-n-m pulses generating Gaussian beams were used as sinusoidal hard line sources. The simulations for acoustic cylindrical cloaking by a reduced parameter model and a higher order parameter model are also presented. The cloaking behaviour is largely dependent upon the transformation and not on the thickness of the cloak. The radial dependent model and the higher order transformation model are suited for acoustic cloaking. Keywords: Acoustic metamaterials; electromagnetic metamaterials; negative index; anisotropic’ cloaking, radially dependent FDTD method; reduced parameter model’ higher order parameter model 1. INTRODUCTION The purpose of a cloaking device is to define a region of space invisibly isolated from passing acoustic waves. This is accomplished by manipulating the paths traversed by sound through a novel acoustic material. Although the objects in the defined location are still present, the incident waves are guided around them without being affected by the object itself. -
Crphysique-Meta-Preface-Gralak
Foreword Boris Gralak, Sebastien Guenneau To cite this version: Boris Gralak, Sebastien Guenneau. Foreword. Comptes Rendus Physique, Centre Mersenne, 2020, 21 (4-5), pp.311-341. 10.5802/crphys.36. hal-03087380 HAL Id: hal-03087380 https://hal.archives-ouvertes.fr/hal-03087380 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Foreword Boris Gralak and Sébastien Guenneau a CNRS, Aix Marseille Univ, CentraleMarseille, Institut Fresnel,Marseille, France b UMI 2004 Abraham deMoivre-CNRS, Imperial College London, London SW7 2AZ,UK E-mails: [email protected] (B. Gralak), [email protected] (S. Guenneau) Manuscript received 14th October 2020, accepted 22nd October 2020. Metamaterial is a word that seems both familiar and mysterious to the layman: on the one hand, this research area born twenty years ago at the interface between physical and engineering sciences requires a high level of expertise to be investigated with advanced theoretical and experimental methods; and on the other hand electromagnetic paradigms such as negative refraction, super lenses and invisibility cloaks have attracted attention of mass media. Even the origin and meaning of the word metamaterial (formed of the Greek prefix μετά meaning beyond or self and the Latin suffix materia, meaning material) remains elusive. -
The Quest for the Superlens
THE QUEST FOR THE CUBE OF METAMATERIAL consists of a three- dimensional matrix of copper wires and split rings. Microwaves with frequencies near 10 gigahertz behave in an extraordinary way in the cube, because to them the cube has a negative refractive index. The lattice spacing is 2.68 millimeters, or about one tenth of an inch. 60 SCIENTIFIC AMERICAN COPYRIGHT 2006 SCIENTIFIC AMERICAN, INC. Superlens Built from “metamaterials” with bizarre, controversial optical properties, a superlens could produce images that include details fi ner than the wavelength of light that is used By John B. Pendry and David R. Smith lmost 40 years ago Russian scientist Victor Veselago had Aan idea for a material that could turn the world of optics on its head. It could make light waves appear to fl ow backward and behave in many other counterintuitive ways. A totally new kind of lens made of the material would have almost magical attributes that would let it outperform any previously known. The catch: the material had to have a negative index of refraction (“refraction” describes how much a wave will change direction as it enters or leaves the material). All known materials had a positive value. After years of searching, Veselago failed to fi nd anything having the electromagnetic properties he sought, and his conjecture faded into obscurity. A startling advance recently resurrected Veselago’s notion. In most materials, the electromagnetic properties arise directly from the characteristics of constituent atoms and molecules. Because these constituents have a limited range of characteristics, the mil- lions of materials that we know of display only a limited palette of electromagnetic properties. -
Electromagnetic Description and Unexpected Effects
Metamaterials and composites: electromagnetic description and unexpected effects IEEE AP-Society Distinguished Lecture Hong Kong Chapter — 2 March 2015 City University of Hong Kong Ari Sihvola Aalto University Department of Radio Science and Engineering Finland FINLAND ESPOO Annual Meeting of the American Physical Society 29 December 1959 There’s plenty of room at the bottom! Today’s keywords • scales & levels • geometry–matter interaction • emergence/enhancement of losses • effective description and complex constitutive relations • mixing rules METAMATERIALS ? METAMATERIALS ? Wikipedia definition (changing…) 2006: In electromagnetism (covering areas like optics and photonics), a meta material (or metamaterial) is an object that gains its (electromagnetic) material properties from its structure rather than inheriting them directly from the materials it is composed of. This term is particularly used when the resulting material has properties not found in naturally-formed substances. 2014: Metamaterials gain their properties not from their composition, but from their exactingly-designed structures. Their precise shape, geometry, size, orientation and arrangement can affect the waves of light or sound in an unconventional manner, creating material properties which are unachievable with conventional materials. A. Sihvola (2003): Electromagnetic emergence in metamaterials, in Advances in Electomagnetics of Complex Media and Metamaterials, (S. Zouhdi et al., eds), NATO Science Series, 89, 1-17. A. Sihvola (2007): Metamaterials in electromagnetics. Metamaterials, 1, 2-11. Scales in (electromagnetic) material modeling İ ȝ ȟ ȗ Collection of dipole and multipole moments Physical structure (meta)material levels and phenomena • materialization • mathematization • realization • idealization • synthetization • projection • localization • homogenization • fabrication • parametrization • modularization - non-unique - wash-out of microsopic structure - several realizations - loss of details - multiple platforms - emergence, paradigm change For example, in EE context.. -
Metamaterial-Based Flat Lens: Wave Concept Iterative Process Approach
Progress In Electromagnetics Research C, Vol. 75, 13–21, 2017 Metamaterial-Based Flat Lens: Wave Concept Iterative Process Approach Mohamed K. Azizi1, *, Henri Baudrand2, Lassaad Latrach1, and Ali Gharsallah1 Abstract—Metamaterials left-hand negative refractive index has remarkable optical properties; this paper presents the results obtained from the study of a flat metamaterial lens. Particular interest is given to the interaction of electromagnetic waves with metamaterials in the structure of the lens Pendry. Using the new approach of the Wave Concept Iterative Process (WCIP) based on the auxiliary sources helps to visualize the behavior of the electric field in the metamaterial band and outside of its interfaces. The simulation results show an amplification of evanescent waves in the metamaterials with an index of n = −1, which corresponds to a resonance phenomenon to which the attenuation solution is canceled, leaving only the actual growth of these waves. This amplification permits the reconstruction of the image of the source with a higher resolution. 1. INTRODUCTION The way of negative refraction has sparked a rare craze after passionate debate generated by controversies on electromagnetic models. In 1968, the Russian Victor Veselago invented the converging lens plate [1]. In the late 1990s, Pendry and his team carried out work on metal wire networks (“wire medium”) [2, 3] and (split-ring resonators or SRR) [4]. Given the difficulty to achieve super-lenses, teams of researchers developed other systems exploiting the characteristics of metamaterials to achieve a sub-wave length resolution. These new devices include the wireless networks [5, 6] operating in the pipeline system, networks of nanoparticles [7], and the hyper-lenses using structures of spherical and anisotropic form [8–10]. -
Control of the Electromagnetic Fields by Metamaterials
International Journal of Research Studies in Electrical and Electronics Engineering(IJRSEEE) Volume 4, Issue 1, 2018, PP 9-23 ISSN 2454-9436 (Online) DOI: http://dx.doi.org/10.20431/2454-9436.0401002 www.arcjournals.org Control of the Electromagnetic Fields by Metamaterials Tatjana Gric1, Aleksej Trofimov1 1Vilnius Gediminas Technical University *Corresponding Author: Dr. Tatjana Gric, Vilnius Gediminas Technical University, Lithuania. Abstract: Metamaterials are engineered composites. Much of the effort in the electrical engineering, material science, physics, and optics communities emphasized constructing efficient metamaterials and using them for potentially novel applications in antenna and radar design, subwavelength imaging, and invisibility cloak design. The purpose of this chapter is to provide a detailed introduction to the basic metamaterial modelling approaches and an overview of innovative phenomena enabled by metamaterials. While high tunability of the electromagnetic properties might be provided by metamaterial structures and metasurfaces, the former option has not yet been used to solve this problem. By means of the freedom of design provided by metamaterials, we propose the ways to redirect electromagnetic fields and demonstrate a design strategy. Keywords: Metamaterial, electromagnetic field, cloaking 1. INTRODUCTION Metamaterials are engineered composites [1-3]. Much of the effort in the electrical engineering, material science, physics, and optics communities emphasized constructing efficient metamaterials and using them for potentially novel applications in antenna and radar design, subwavelength imaging, and invisibility cloak design [4, 5]. The purpose of this chapter is to provide a detailed introduction to the basic metamaterial modelling approaches and an overview of innovative phenomena enabled by metamaterials. While high tunability of the electromagnetic properties might be provided by metamaterial structures and metasurfaces, the former option has not yet been used to solve this problem. -
Bending the Laws of Optics with Metamaterials: an Interview With
National Science Review INTERVIEW 5: 200–202, 2018 doi: 10.1093/nsr/nwx118 Advance access publication 20 September 2017 Special Topic: Metamaterials Bending the laws of optics with metamaterials: an interview with John Pendry By Philip Ball Downloaded from https://academic.oup.com/nsr/article/5/2/200/4209243 by guest on 23 September 2021 Metamaterials show us that nature’s laws might not always be as fixed as they seem to be. One of the laws of optics, for example, statesthat a light ray passing from one transparent medium to another—air to water or glass, say—is bent at the interface by an amount that depends on the so-called refractive indices of the two media. And all transparent materials have a refractive index greater thanthatofa vacuum (or, roughly speaking, of air), which is set equal to 1. Or do they? In the 1960s, the Russian physicist Victor Veselago explained what would be needed, in theory, for a material to have a refractive index that is not only less than 1 but in fact negative, so that itbends light the ‘wrong way’. Veselago’s idea was all but forgotten until it was unearthed in the late 1990s by electrical engineer David Smith. He was wondering ifit might be possible to make a ‘scaled-up’ version of such a material, built from ‘artificial atoms’ and later called a metamaterial, which could show this effect at longer wavelengths than those of light, in the microwave part of the spectrum. By happy coincidence, physicist SirJohn Pendry of Imperial College London, UK, had already come up with a prescription for making a similar structure from loops of wire. -
List of Participants
Participants 287 Participants List of Participants Bouabellou Abderrahmane El Hixhou Ahmed Alexander Archakov Universit Mentouri de Constantine Facult des Sciences et Techniques Institute of Biomedical Chemistry Physique, Laboratoire LCMI Dpartement de Physique Pogodinskaya str., 10 Campus Chaab Erassas B.P 549 Moscow, 119121 Constantine, 25000 Marrakech, 40000 Russia Algeria Marocco E-mail: [email protected] E-mail: [email protected] E-mail: Tel: 7 095 246 6980, Tel: 213 31 614711, [email protected] FAX: 7 095 245 0857 FAX: 213 31 614711 Tel: 212/44434688, FAX: 212/44433170 Azlan Abdul-Aziz Asen Asenov Glasgow University Universiti Sains Malaysia Ali Al-Mohamad Electronics and Electrical Engineering School of Physics Atomic Energy Commission Rankine Building Minden Scienti¯c Services Oak¯eld Avenue Glugor, Penang 11800 Damascus, 6091 Glasgow, Scotland G12 8QQ Malaysia Syria UK E-mail: [email protected] E-mail: [email protected] E-mail: [email protected] Tel: 00963 11 6111927, Tel: +44 141 330 4790, FAX: 00963 11 6112289 Mat Johar Abdullah FAX: +44 141 330 4907 Universiti Sains Malaysia Andrey N. Aleshin School of Physics Seoul National University Valiantsin M. Astashynski Penang, 11800 School of Physics and Condensed Institute of Molecular and Atomic Malaysia Matter Research Institute Physics, National Academy of Sci- E-mail: [email protected] Sillim-Dong, Kwanak-Gu ences of Belarus Tel: 604-6533679, Seoul, 151-747 Laboratory of Plasma Accelerators FAX: 604-6579105 South Korea Physics E-mail: [email protected] Haslan Abu Hassan 70 F. Skaryna Ave. Tel: 82-2-880-9021, Universiti Sains Malaysia Minsk, 220072 FAX: 82-2-876-2590 School of Physics Belarus Penang, 11800 Alexandre S.