Structure-Function Correlation of the M2 Proton Channel Characterized by Solid-State Nuclear Magnetic Resonance Spectroscopy Jun Hu

Total Page:16

File Type:pdf, Size:1020Kb

Structure-Function Correlation of the M2 Proton Channel Characterized by Solid-State Nuclear Magnetic Resonance Spectroscopy Jun Hu Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2005 Structure-Function Correlation of the M2 Proton Channel Characterized by Solid-State Nuclear Magnetic Resonance Spectroscopy Jun Hu Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES STRUCTURE-FUNCTION CORRELATION OF THE M2 PROTON CHANNEL CHARACTERIZED BY SOLID-STATE NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY By JUN HU A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Spring Semester, 2005 The members of the Committee approve the dissertation of Jun Hu defended on January 24, 2005. Timothy A. Cross Professor Directing Dissertation Peter G. Fajer Outside Committee Member Michael S. Chapman Committee Member Naresh Dalal Committee Member Timothy M. Logan Committee Member The Office of Graduate Studies has verified and approved the above named committee members. ii To my wife, Yan Gu, who makes my life integrate and cheerful, to my parents, Zhaoxin Hu and Qifang Li, for their continuous love and support, and to our expecting son, Joseph G. Hu, whom we have already met twice on the ultrasound screen. iii ACKNOWLEDGMENTS Writing a dissertation is something like drafting a short memoir. The road of science is never even, as we all know. In the years as I was teetering along it, I met so many people giving me warm hands. I want their names to be printed in my dissertation and to be remembered in my science journey. First meeting with Professor Tim Cross was delightful. For an oriental student just stepping on this land and overwhelmed by a whole bunch of words and accents never taught in his English classes, Tim was the first person who I felt was not speaking a foreign language. He has an amazing skill to understand Sino-English. Although at that time I was not completely certain whether I liked his research or not, his knowledge, enthusiasm, shrewdness and humor told me that this was the lab I wanted to join in. His office is always open when he is there. If I want to see him, he always stops any work at hand and talks to me. I do not know how may times I sat in his office with frustration and walked out cheerfully with ideas and hope. I always enjoy those funny stories he told me. He is patient with my naïve ideas. He encourages me to attend many conferences and present my work, while many professors do not do. Now I gradually realize that how important it is to communicate my research with other scientists and conference experience has become a precious wealth to me. His judgment on possibilities, diligence in science, leadership in the lab and coordination of personnel with various expertise have a strong impact on me. I am fortunate in being his student. He is the best mentor of mine. Dr. Riqiang Fu is a brilliant NMR spectroscopist at the National High Magnetic Field Laboratory (NHMFL). I learned much of the fundamental and practical NMR knowledge from him. Whenever I have NMR-related questions and ideas (sometimes very nonsensical and stupid), I go to his office and we talk. He is very patient of explaining every step in the pulse program and encourages me to do NMR experiments independently on spectrometers. I am thankful for his help in these years. I also appreciate Dr. Zhehong Gan for his assistance on the Oxygen-17 project. iv I thank those colleagues for their help in the lab. Dr. Junfeng Wang introduced this lab to me. We had a very good time when he was here and talked a lot about PISEMA simulation on the phone when he was in Georgia. I learned Insight II from Dr. Sanguk Kim. That leaded my interest to the bio-computation. Dr. Kastuyuki Nishimura and I worked on the M2 project when he was here. We are still very good friends. Dr. Fei Gao taught me how to express the M2 protein, which will certainly help my future career on the biological NMR. Dr. Eduard Chekmenev joined the lab last year. We collaborated on many projects and enjoyed working together. Through the project on the structure determination by PISEMA, Tom Asbury (IMB), Srisairam Achuthan (Department of Mathematics) and I work closely together. Tom is very good at structural modeling and refinement and plays a key role in the M2- TMD structure modeling. Without Sai’s help, I would spend much longer time on Jeff Denny’s dissertation. Prof. Jack Quine (Department of Mathematics) taught me the Euclidean rotation and how to use Maple. Certainly, I will not forget the delicious summer soup in his house and the elegant music performed by Dr. Richard Bertram (Tom’s advisor, IMB & Department of Mathematics) and him. Also, I want to remember those folks here in the big family: Dr. Changlin Tian, Dr. Zhiru Ma, Dr. Farhod Nozirov, Yiming Mo, Conggang Li, Alicia Hopkins, Yuanzi Hua, Jacob Moore, Nguyen Hau, Rick Page, Lee Miller and Mukesh Sharma. I thank Yi Xiong from Prof. Alan Marshall group for her help on the Mass spectroscopy. I wish to thank those staff members: Hank Henricks and Umesh Goli in the BASS lab, Judy McEachern, Karol Bickett and Ashley Blue here at MagLab, for their support. I am also grateful to two secretaries in the chemistry graduate office, Sarah Armour and Ginger Martin, for their assistance on my graduate study. Finally, I would like to thank my committee professors: Prof. Peter G. Fajer, Prof. Michael S. Chapman, Prof. Naresh Dalal and Prof. Timothy M. Logan, for directing my Ph.D. study. v TABLE OF CONTENTS LIST OF TABLES......................................................................................................... ix LIST OF FIGURES ........................................................................................................ x ABSTRACT................................................................................................................. xiv INTRODUCTION .................................................................................................... 1 1.1 Membrane Protein Structural Biology................................................................ 1 1.2 Membrane Protein Structures ............................................................................. 5 1.2.1 Lipid Bilayers and Membrane Proteins ...................................................... 5 1.2.2 Membrane Proteins versus Soluble Proteins............................................... 9 1.3 Ion Channels ....................................................................................................... 9 1.3.1 Potassium Channels .................................................................................. 10 1.3.2 Proton Channels........................................................................................ 13 1.4 Solid-state NMR ............................................................................................... 15 1.4.1 Nuclear Spin Hamiltonian......................................................................... 15 1.4.2 Zeeman Hamiltonian and Radio Frequency Hamiltonian ........................ 16 1.4.3 Chemical Shift Hamiltonian ..................................................................... 16 1.4.4 Dipolar Coupling Hamiltonian ................................................................. 17 1.4.5 J-coupling Hamiltonian............................................................................. 17 1.4.6 Quadrupolar Hamiltonian ......................................................................... 18 1.4.7 Spin-Rotation Hamiltonian ....................................................................... 18 1.4.8 Chemical Shift Tensors and Chemical Shielding Tensors........................ 18 1.4.9 Dipolar Coupling Tensors......................................................................... 22 WAVES, WHEELS AND HELICES: ORDERLINESS IN PISEMA FUNCTIONS........................................................................................ 25 2.1 Introduction....................................................................................................... 25 2.2 Torsion Angle ................................................................................................... 25 2.3 Continuous Frenet Frame and Discrete Frenet Frame ...................................... 27 2.4 Frames and NMR.............................................................................................. 30 2.4.1 Standard Peptide Plane Geometry ............................................................ 30 2.4.2 Principal Axis Frame and Peptide Plane Frame ....................................... 31 2.4.3 Helical Axis Frame and Laboratory Frame .............................................. 32 2.5 PISEMA Powder Spectrum Simulation............................................................ 33 2.6 PISA Wheels..................................................................................................... 36 2.6.1 Transformation from PAF to HAF ........................................................... 36 2.6.2 PISA Wheels................................................................................................. 42 vi 2.7 PISEMA Waves................................................................................................ 43 2.7.1 PISEMA Waves........................................................................................ 44 HISTIDINES: HEART OF THE PROTON CHANNEL FROM THE INFLEUNZA A VIRUS .........................................................................
Recommended publications
  • Viewed in Mclaughlin-Drubin and Munger, 2008)
    MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Anand Prakash Candidate for the Degree: Doctor of Philosophy Dr. Eileen Bridge, Mentor Dr. Gary R. Janssen, Reader Dr. Joseph M. Carlin, Reader Dr. Xiao-Wen Cheng Dr. David G. Pennock Graduate School Representative ABSTRACT INVESTIGATING THE TRIGGERS FOR ACTIVATING THE CELLULAR DNA DAMAGE RESPONSE DURING ADENOVIRUS INFECTION by Anand Prakash Cellular genomic integrity is constantly attacked by a variety of exogenous and endogenous agents. In response to damaged DNA, the cell activates a DNA damage response (DDR) pathway to maintain genomic integrity. Cells can also activate DDRs in response to infection with several types of viruses. The cellular DDR pathway involves sensing DNA damage by the Mre11, Rad50, Nbs1 (MRN) sensor complex, which activates downstream ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR) kinases. These kinases phosphorylate downstream effector proteins implicated in cell cycle arrest, DNA repair, and, if the damage is irreparable, apoptosis. The induction of DDRs includes focal accumulation and phosphorylation of several DDR proteins. Adenovirus (Ad) mutants that lack early region 4 (E4) activate a cellular DDR. E4 proteins normally inactivate the MRN sensor complex and prevent downstream DDR signaling involved in DNA repair and cell cycle checkpoint arrest in wild- type Ad5 infections. The characteristics of Ad infection that activate the cellular DDR are not well understood. We have investigated the ability of replication defective and replication competent Ad mutants to activate cellular DDRs and G2/M cell cycle arrest. Ad infection induced early focal accumulation of DDR proteins such as Mre11, Mdc1, phosphorylated ATM (pATM), phosphorylated Chk2 (pChk2), and 53BPI, independent of the replication status of the mutants studied.
    [Show full text]
  • How Influenza Virus Uses Host Cell Pathways During Uncoating
    cells Review How Influenza Virus Uses Host Cell Pathways during Uncoating Etori Aguiar Moreira 1 , Yohei Yamauchi 2 and Patrick Matthias 1,3,* 1 Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland; [email protected] 2 Faculty of Life Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK; [email protected] 3 Faculty of Sciences, University of Basel, 4031 Basel, Switzerland * Correspondence: [email protected] Abstract: Influenza is a zoonotic respiratory disease of major public health interest due to its pan- demic potential, and a threat to animals and the human population. The influenza A virus genome consists of eight single-stranded RNA segments sequestered within a protein capsid and a lipid bilayer envelope. During host cell entry, cellular cues contribute to viral conformational changes that promote critical events such as fusion with late endosomes, capsid uncoating and viral genome release into the cytosol. In this focused review, we concisely describe the virus infection cycle and highlight the recent findings of host cell pathways and cytosolic proteins that assist influenza uncoating during host cell entry. Keywords: influenza; capsid uncoating; HDAC6; ubiquitin; EPS8; TNPO1; pandemic; M1; virus– host interaction Citation: Moreira, E.A.; Yamauchi, Y.; Matthias, P. How Influenza Virus Uses Host Cell Pathways during 1. Introduction Uncoating. Cells 2021, 10, 1722. Viruses are microscopic parasites that, unable to self-replicate, subvert a host cell https://doi.org/10.3390/ for their replication and propagation. Despite their apparent simplicity, they can cause cells10071722 severe diseases and even pose pandemic threats [1–3].
    [Show full text]
  • Opportunistic Intruders: How Viruses Orchestrate ER Functions to Infect Cells
    REVIEWS Opportunistic intruders: how viruses orchestrate ER functions to infect cells Madhu Sudhan Ravindran*, Parikshit Bagchi*, Corey Nathaniel Cunningham and Billy Tsai Abstract | Viruses subvert the functions of their host cells to replicate and form new viral progeny. The endoplasmic reticulum (ER) has been identified as a central organelle that governs the intracellular interplay between viruses and hosts. In this Review, we analyse how viruses from vastly different families converge on this unique intracellular organelle during infection, co‑opting some of the endogenous functions of the ER to promote distinct steps of the viral life cycle from entry and replication to assembly and egress. The ER can act as the common denominator during infection for diverse virus families, thereby providing a shared principle that underlies the apparent complexity of relationships between viruses and host cells. As a plethora of information illuminating the molecular and cellular basis of virus–ER interactions has become available, these insights may lead to the development of crucial therapeutic agents. Morphogenesis Viruses have evolved sophisticated strategies to establish The ER is a membranous system consisting of the The process by which a virus infection. Some viruses bind to cellular receptors and outer nuclear envelope that is contiguous with an intri‑ particle changes its shape and initiate entry, whereas others hijack cellular factors that cate network of tubules and sheets1, which are shaped by structure. disassemble the virus particle to facilitate entry. After resident factors in the ER2–4. The morphology of the ER SEC61 translocation delivering the viral genetic material into the host cell and is highly dynamic and experiences constant structural channel the translation of the viral genes, the resulting proteins rearrangements, enabling the ER to carry out a myriad An endoplasmic reticulum either become part of a new virus particle (or particles) of functions5.
    [Show full text]
  • The Origins of G12P[6] Rotavirus Strains Detected in Lebanon
    RESEARCH ARTICLE Reslan et al., Journal of General Virology DOI 10.1099/jgv.0.001535 The origins of G12P[6] rotavirus strains detected in Lebanon Lina Reslan1,2†, Nischay Mishra3†, Marc Finianos1, Kimberley Zakka1, Amanda Azakir1,4, Cheng Guo3, Riddhi Thakka3, Ghassan Dbaibo1,2, W. Ian Lipkin3,* and Hassan Zaraket1,4,* Abstract The G12 rotaviruses are an increasingly important cause of severe diarrhoea in infants and young children worldwide. Seven human G12P[6] rotavirus strains were detected in stool samples from children hospitalized with gastroenteritis in Lebanon during a 2011–2013 surveillance study. Complete genomes of these strains were sequenced using VirCapSeq- VERT, a capture- based high- throughput viral- sequencing method, and further characterized based on phylogenetic analyses with global RVA and vaccine strains. Based on the complete genomic analysis, all Lebanese G12 strains were found to have Wa- like genetic backbone G12- P[6]-I1- R1- C1- M1- A1- N1- T1- E1- H1. Phylogenetically, these strains fell into two clusters where one of them might have emerged from Southeast Asian strains and the second one seems to have a mixed backbone between North Ameri- can and Southeast Asian strains. Further analysis of these strains revealed high antigenic variability compared to available vaccine strains. To our knowledge, this is the first report on the complete genome- based characterization of G12P[6] emerging in Lebanon. Additional studies will provide important insights into the evolutionary dynamics of G12 rotaviruses spreading in Asia. INTRODUCTION (glycoprotein), are found on the double-shelled capsid Group A rotavirus (RVA) infection is the global leading structure, and are used as determinants of serotype specificity cause of severe, dehydrating diarrhoea in children younger [3].
    [Show full text]
  • Progressive Multifocal Leukoencephalopathy and the Spectrum of JC Virus-​Related Disease
    REVIEWS Progressive multifocal leukoencephalopathy and the spectrum of JC virus- related disease Irene Cortese 1 ✉ , Daniel S. Reich 2 and Avindra Nath3 Abstract | Progressive multifocal leukoencephalopathy (PML) is a devastating CNS infection caused by JC virus (JCV), a polyomavirus that commonly establishes persistent, asymptomatic infection in the general population. Emerging evidence that PML can be ameliorated with novel immunotherapeutic approaches calls for reassessment of PML pathophysiology and clinical course. PML results from JCV reactivation in the setting of impaired cellular immunity, and no antiviral therapies are available, so survival depends on reversal of the underlying immunosuppression. Antiretroviral therapies greatly reduce the risk of HIV-related PML, but many modern treatments for cancers, organ transplantation and chronic inflammatory disease cause immunosuppression that can be difficult to reverse. These treatments — most notably natalizumab for multiple sclerosis — have led to a surge of iatrogenic PML. The spectrum of presentations of JCV- related disease has evolved over time and may challenge current diagnostic criteria. Immunotherapeutic interventions, such as use of checkpoint inhibitors and adoptive T cell transfer, have shown promise but caution is needed in the management of immune reconstitution inflammatory syndrome, an exuberant immune response that can contribute to morbidity and death. Many people who survive PML are left with neurological sequelae and some with persistent, low-level viral replication in the CNS. As the number of people who survive PML increases, this lack of viral clearance could create challenges in the subsequent management of some underlying diseases. Progressive multifocal leukoencephalopathy (PML) is for multiple sclerosis. Taken together, HIV, lymphopro- a rare, debilitating and often fatal disease of the CNS liferative disease and multiple sclerosis account for the caused by JC virus (JCV).
    [Show full text]
  • Presentation by Class I MHC Molecules Requires Cytoplasmic
    Hepatitis C Virus Envelope Glycoprotein E1 Originates in the Endoplasmic Reticulum and Requires Cytoplasmic Processing for Presentation by Class I MHC Molecules This information is current as of September 26, 2021. Mark Selby, Ann Erickson, Christine Dong, Stewart Cooper, Peter Parham, Michael Houghton and Christopher M. Walker J Immunol 1999; 162:669-676; ; http://www.jimmunol.org/content/162/2/669 Downloaded from References This article cites 45 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/162/2/669.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1999 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Hepatitis C Virus Envelope Glycoprotein E1 Originates in the Endoplasmic Reticulum and Requires Cytoplasmic Processing for Presentation by Class I MHC Molecules1 Mark Selby,* Ann Erickson,* Christine Dong,* Stewart Cooper,† Peter Parham,† Michael Houghton,* and Christopher M.
    [Show full text]
  • Investigation of Proton Conductance in the Matrix 2 Protein of the Influenza Virus by Solution NMR Spectroscopy © Daniel Turman
    Investigation of proton conductance in the matrix 2 protein of the influenza virus by solution NMR spectroscopy © Daniel Turman Emmanuel College Class 0[2012 Abstract The Influenza Matrix 2 (M2) protein is a homo-tetrameric integral membrane protein that forms a proton selective transmembrane channell Its recognized function is to equilibrate pH across the viral envelope following endocytosis and across the trans-golgi membrane during viral maturation2 Its function is vital for viral infection and proliferation but the mechanism and selectivity of proton conductance is not well understood. Mutagenesis studies have identified histidine 37 as the pH sensing element and tryptophan 41 as the gating selectivity filter3 This study uses solution nuclear magnetic resonance spectroscopy and an M2 transmembrane protein construct to elucidate key interactions between the aromatic residues believed to confer proton selectivity and pH dependent conduction of M2 in the low pH open and high pH closed states. PH dependent 13 C_1 H HSQC-Trosy experiments were completed in the pH range of 8.0 - 4.0 and the 13 C, and 13 Co2 chemical shift perturbations of histidine 37 revealed multiple saturation points. The protonation states of histidine 37 suggest a shuttling mechanism for proton conduction. Introduction Influenza is a pathogenic virus that has reached pandemic status four times in the twentieth century. The latest pandemic occurred in 2009 from the influenza A HINI strain (figure 1t The World Health Organization (WHO) commented in July of 2009, "this outbreak is unstoppable." Following this event, significant research has been allocated to understand all aspects of the influenza virus in an effort to produce effective vaccines and medications to prevent and control another pandemic.
    [Show full text]
  • Lentivirus and Lentiviral Vectors Fact Sheet
    Lentivirus and Lentiviral Vectors Family: Retroviridae Genus: Lentivirus Enveloped Size: ~ 80 - 120 nm in diameter Genome: Two copies of positive-sense ssRNA inside a conical capsid Risk Group: 2 Lentivirus Characteristics Lentivirus (lente-, latin for “slow”) is a group of retroviruses characterized for a long incubation period. They are classified into five serogroups according to the vertebrate hosts they infect: bovine, equine, feline, ovine/caprine and primate. Some examples of lentiviruses are Human (HIV), Simian (SIV) and Feline (FIV) Immunodeficiency Viruses. Lentiviruses can deliver large amounts of genetic information into the DNA of host cells and can integrate in both dividing and non- dividing cells. The viral genome is passed onto daughter cells during division, making it one of the most efficient gene delivery vectors. Most lentiviral vectors are based on the Human Immunodeficiency Virus (HIV), which will be used as a model of lentiviral vector in this fact sheet. Structure of the HIV Virus The structure of HIV is different from that of other retroviruses. HIV is roughly spherical with a diameter of ~120 nm. HIV is composed of two copies of positive ssRNA that code for nine genes enclosed by a conical capsid containing 2,000 copies of the p24 protein. The ssRNA is tightly bound to nucleocapsid proteins, p7, and enzymes needed for the development of the virion: reverse transcriptase (RT), proteases (PR), ribonuclease and integrase (IN). A matrix composed of p17 surrounds the capsid ensuring the integrity of the virion. This, in turn, is surrounded by an envelope composed of two layers of phospholipids taken from the membrane of a human cell when a newly formed virus particle buds from the cell.
    [Show full text]
  • Combination Gene Transfer to Potentiate Tumor Regression
    Gene Therapy (1997) 4, 361–366 1997 Stockton Press All rights reserved 0969-7128/97 $12.00 Combination gene transfer to potentiate tumor regression T Ohno1,4, Z Yang1,4, X Ling2, M Jaffe1,4, EG Nabel2, D Normolle4 and GJ Nabel1,4 1Howard Hughes Medical Institute, University of Michigan Medical Center, Departments of 2Internal Medicine and 3Biological Chemistry, Ann Arbor, MI; and 4Comprehensive Cancer Center, University of Michigan Medical Center, Ann Arbor, MI, USA Recent efforts to treat malignancy using gene transfer have shown, a significant reduction of tumor size was observed met with varying degrees of success. In this paper, we with each vector. Combination treatment, in which both report the results of studies using two recombinant adeno- vectors were administered, resulted in a trend toward a viral vectors to examine the efficacy of combination gene reduced tumor growth greater than with either vector alone. transfer to cause tumor regression in vivo. One of these In order to characterize the mechanism of tumor vectors encodes the murine MHC class I gene, H-2K b regression, cytolytic T lymphocyte (CTL) assays against (ADV-Kb), which induces an immune response that stimu- the allogeneic molecule, H-2K b, were performed. Mice lates tumor regression. The second vector encodes the treated with ADV-K b showed specific CTL activity against human p21 cyclin dependent kinase inhibitor (ADV-p21). the H-2Kb molecule, demonstrating that the immune This gene product arrests cell cycle progression and pre- response against the H-2Kb gene product involved in vents proliferation of tumor cells. Both vectors were tested tumor regression was potentiated by expression of the p21 in a murine model in vivo for antitumor effect.
    [Show full text]
  • Rotaviruses and Rotavirus Vaccines
    pathogens Editorial Rotaviruses and Rotavirus Vaccines Celeste M. Donato 1,2,3,* and Julie E. Bines 1,2,4 1 Enteric Diseases Group, Murdoch Children’s Research Institute, Parkville, VIC 3052, Australia; [email protected] 2 Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia 3 Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia 4 Department of Gastroenterology and Clinical Nutrition, Royal Children’s Hospital, Parkville, VIC 3052, Australia * Correspondence: [email protected]; Tel.: +61-(03)-99366715 Keywords: epidemiology; rotavirus vaccines; molecular phylogeny; virus evolution; zoonosis; vaccines; virology Group A rotaviruses belong to the Reoviridae virus family and are classified into G and P genotypes based on the outer capsid proteins VP7 and VP4, respectively. To date, 36 G types and 51 P types have been characterised from humans and varied animal species [1]. The most prevalent genotypes in humans are G1, G2, G3, G4, G9, and G12, in combination with P[4], P[6], and P[8] [2,3]. A whole genome classification nomenclature has been developed to describe the genome constellation of strains; Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx- Tx-Ex-Hx, denoting the VP7-VP4-VP6-VP1-VP2-VP3-NSP1-NSP2-NSP3-NSP4-NSP5/6 genes, with x referring to the various recognised genotypes for each gene. There are three major genotype constellations: Wa-like (G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1), DS-1-like (G2-P[4]-I2-R2-C2-M2-A2-N2-T2-E2-H2), and AU-1-like (G3-P[9]-I3-R3-C3-M3-A3-N3-T3- Citation: Donato, C.M.; Bines, J.E.
    [Show full text]
  • Respiratory Syncytial Virus and Coronaviruses
    Chapter 3 Structural and Functional Aspects of Viroporins in Human Respiratory Viruses: Respiratory Syncytial Virus and Coronaviruses Wahyu Surya, Montserrat Samsó and Jaume Torres Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53957 1. Introduction Viroporins are an increasingly recognized class of small viral membrane proteins (~60-120 amino acids) which oligomerize to produce hydrophilic pores at the membranes of virus- infected cells [1]. The existence of ‘viroporins’ was proposed more than 30 years ago after observing enhanced membrane permeability in infected cells [2]. These proteins form oligomers of defined size, and can act as proton or ion channels, and in general enhancing membrane permeability in the host [3]. Even though viroporins are not essential for the rep‐ lication of viruses, their absence results in attenuated or weakened viruses or changes in tropism (organ localization) and therefore diminished pathological effects [4, 5]. In addition to having one – sometimes two – α-helical transmembrane (TM) domain(s), viro‐ porins usually contain additional extramembrane regions that are able to make contacts with viral or host proteins. Indeed, the network of interactions of viroporins with other viral or cellular proteins is key to understand the regulation of viral protein trafficking through the vesicle system, viral morphogenesis and pathogenicity. In general, viroporins participate in the entry or release of viral particles into or out of cells, and membrane permeabilization may be a desirable functionality for the virus. Indeed, sev‐ eral viral proteins that are not viroporins are known to affect membrane permeabilization, e.g., A38L protein of vaccinia virus, a 33-kDa glycoprotein that allows Ca2+ influx and indu‐ ces necrosis in infected cells [6].
    [Show full text]
  • Vpr Mediates Immune Evasion and HIV-1 Spread by David R. Collins A
    Vpr mediates immune evasion and HIV-1 spread by David R. Collins A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Microbiology and Immunology) in the University of Michigan 2015 Doctoral Committee: Professor Kathleen L. Collins, Chair Professor David M. Markovitz Associate Professor Akira Ono Professor Alice Telesnitsky © David R. Collins ________________________________ All Rights Reserved 2015 Dedication In loving memory of Sullivan James and Aiko Rin ii Acknowledgements I am very grateful to my mentor, Dr. Kathleen L. Collins, for providing excellent scientific training and guidance and for directing very exciting and important research. I am in the debt of my fellow Collins laboratory members, present and former, for their daily support, encouragement and assistance. In particular, I am thankful to Dr. Michael Mashiba for pioneering our laboratory’s investigation of Vpr, which laid the framework for this dissertation, and for key contributions to Chapter II and Appendix. I am grateful to Jay Lubow and Dr. Zana Lukic for their collaboration and contributions to ongoing work related to this dissertation. I also thank the members of my thesis committee, Dr. Akira Ono, Dr. Alice Telesnitsky, and Dr. David Markovitz for their scientific and professional guidance. Finally, this work would not have been possible without the unwavering love and support of my family, especially my wife Kali and our wonderful feline companions Ayumi, Sully and Aiko, for whom I continue to endure life’s
    [Show full text]