Seasonal Trends in Colonisation of Protea Infructescences by Gondwana- Myces and Ophiostoma Spp

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Trends in Colonisation of Protea Infructescences by Gondwana- Myces and Ophiostoma Spp South African Journal of Botany 2005, 71(3&4): 307–311 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY EISSN 1727–9321 Seasonal trends in colonisation of Protea infructescences by Gondwana- myces and Ophiostoma spp. F Roets1, LL Dreyer1* and PW Crous2 1 Department of Botany, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa 2 Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands * Corresponding author, e-mail: [email protected] Received 6 April 2004, accepted in revised form 18 November 2004 Seasonal growth of the fungal genera Gondwanamyces of Protea. A definite seasonal pattern was observed, with and Ophiostoma (hereafter referred to as ophiosto- colonisation numbers peaking during the wetter winter matoid fungi) on the floral parts of serotinous Protea- months. P. laurifolia was found to be a new host for ceae flowers was investigated. Several new Protea host Ophiostoma splendens and Gondwanamyces capensis. species were found and new knowledge emerged Ophiostomatoid fungi were restricted to dead floral parts, regarding the tissue types colonised by these fungi. and fruiting structures were never observed on living Although floral parts of a wide range of Proteaceae were plant tissue. Both the vector organisms and the specific examined, ophiostomatoid fungi were exclusively ecological function of the ophiostomatoid fungi are still collected from the infructescences of serotinous species unknown, and require further investigation. Introduction The floral diversity of the Cape Floristic Region (CFR) is world- two genera, namely Ophiostoma H. Syd. and P. Syd., renowned. This area includes the Fynbos Biome, which including the species Ophiostoma protearum Marais and contains most of the c. 9 000 plant species (Goldblatt and Wingf., O. splendens Marais and Wingf. and O. africanum Manning 2000) found within the CFR. The fynbos contains Marais and Wingf. (Sporothrix Hektoen and Perkins three dominant plant families: Ericaceae, Restionaceae and anamorphs), and Gondwanamyces Marais and Wingf. Proteaceae (Cowling and Richardson 1995), of which the including the species Gondwanamyces capensis (M.J. Proteaceae is often the structurally dominant member. Wingf. and P.S. van Wyk) Marais and Wingf., and G. The Proteaceae is diverse in terms of number of species proteae (M.J. Wingf., P.S. van Wyk and Marasas) Marais and the range of morphological forms that exist within the and Wingf. (Knoxdaviesia Wingf. et al. anamorphs). These family. In the south-western Cape alone, there are more than two ascomycete genera share the same morphological 330 species in 14 genera (Rebelo 1995). In total, 13 of these characteristics of spherical ascocarps with long necks, but genera are Cape-centred, with 10 endemic to the area (Rourke differ in their anamorphs (Wingfield and Van Wyk 1993) 1998). The Proteaceae is the seventh largest family of vascular and cycloheximide tolerance (Marais 1996). plants in the CFR, with 96.7% of its members confined to this Morphologically similar genera with similar long perithecial area (Goldblatt and Manning 2000). Protea L. species are of necks from the Northern Hemisphere are insect-vectored considerable economic importance to South Africa in terms of (Davidson and Robinson-Jeffrey 1965, Davidson et al. 1967, eco-tourism, horticulture and the dried-flower industry. Davidson 1978, Dowding 1984), and cause important tree Several fungi that are closely associated with the Protea- diseases such as Dutch elm disease (Braisier 1988) and ceae have been discovered and described (Crous et al. 2000a, oak wilt (Sinclair et al. 1987). Some authors have suggested 2000b, Swart et al. 2000, Taylor and Crous 2000, Taylor 2001). that these fungi may also assist bark beetles to overwhelm Many of these cause fungal infections, including diseases of host tree resistance (Christiansen and Solheim 1990), the leaves, stems, roots and seedlings (Crous et al. 2000a, hinting at the existence of mutualistic relationships between 2000b). Very limited attention has, however, been focussed the fungi and the insect vectors. on the apparently non-pathogenic fungi associated with these There is a strong morphological similarity between Northern plants (Marais and Wingfield 1994, Taylor et al. 2001). Hemisphere Ophiostoma species that occur in the galleries Five ophiostomatoid fungal species are currently known of bark beetles on trees (Wingfield et al. 1999) and the to inhabit the infructescences of some serotinous Protea Ophiostoma and Gondwanamyces species present in Protea species, where they are thought to grow as saprobes (Marais infructescences. The morphological similarities revolve around and Wingfield 2001). These ophiostomatoid fungal the flask-shaped ascomata with long necks that are present species are only associated with the infructescences of in both groups. This morphological arrangement suggests Protea species from South Africa. They are grouped into insect spore dispersal. Spores collect in a sticky mass at the 308 Roets, Dreyer and Crous tips of the necks, where insects can readily come into contact Proteaceae were collected from various sites in the Stellen- with them (Upadhyay 1981, Wingfield et al. 1993). bosch region, South Africa (Table 1). Species were selected These morphological similarities are, to some extent, according to the availability of their infructescences in the corroborated by an rDNA-based molecular phylogeny of the region. Their infructescences were examined for the ophiostomatoid fungi by Marais et al. (1998). In this phylogeny, presence of ophiostomatoid perithecia and their anamorphs, the southern hemisphere members of Ophiostoma form a using a dissecting microscope (X100 magnification). This well-supported monophyletic group sister to the type species enabled the identification of the ideal infructescence age for of Ophiostoma, O. piliferum (Fr.) Syd. and P. Syd., which is detecting fungal growth. Ten fruiting structures (c. one year a Northern Hemisphere representative. The southern African old) of each of these species were then collected at each members of the genera Gondwanamyces and Ophiostoma, site (30 samples in total for each species) at three-month however, are clearly paraphyletic, which suggest that the intervals (from February 2000 to November 2001) and morphological similarities between these two genera must be inspected for the presence of ophiostomatoid fungal fruiting the result of convergent evolution (Wingfield et al. 1999). structures. Fungi were identified directly from the host To date, ophiostomatoid fungi in Protea species have only material and from isolations done on Petri dishes containing been found in insect-infested flower heads (Wingfield et al. 2% malt extract agar (MEA; Biolab, Midrand, South Africa) 1988), suggesting that one or more of these insects could and Sigma Streptomycin sulphate (0.04g l–1). act as vector of the fungal spores. Insects associated with In addition, a selection of other Proteaceae present at the Protea infructescences belong to a wide range of families study sites, the Betty’s Bay/Kleinmond area and the Cape (Coetzee and Giliomee 1987a, 1987b, Coetzee 1989, Point Nature Reserve (Western Cape Province), were Wright 1990, Visser 1992). The putative vectors of G. screened for the presence of ophiostomatoid fungi in their proteae have, however, been narrowed down to only two flower heads at different times of the year. These included species, and the vectors for O. splendens have been several Protea species (P. compacta R. Br., P. lepido- narrowed down to four species (Roets 2002). Further carpodendron (L.) L., P. longifolia Andrews, P. magnifica Link, molecular studies are underway to identify the vectors of P. grandiceps Tratt, P. scabra R. Br. and P. speciosa (L.) L.), each of the southern African ophiostomatoid species. a number of Leucospermum R. Br. species (L. conocar The aim of the present study was to examine the seasonal podendron (L.) H. Beuk, L. oleifolium (P.J. Bergius) R. Br. growth patterns of ophiostomatoid fungi within Protea and L. cordifolium (Salisb. ex Knight) Fourc.), two infructescences, while also scanning this niche for new Leucadendron R. Br. species (L. laureolum (Lam.) Fourc. fungal and host associations. The nature and extent of and L. xanthoconus (Knutze) K. Schum.), Diastella ophiostomatoid colonisation were also investigated. thymelaeoides (P.J. Bergius) Rourke, Mimetes cucullatus (L.) R. Br., Aulax umbellata (Thunb.) R. Br. and Spatalla Materials and Methods curvifolia Salisb. ex Knight. These plants were not included in the three-monthly monitoring due to the limited numbers Seasonality and host specificity of available flower heads they presented. They were merely included to help determine the host range of the different Six-month- to one-year-old infructescences and other fruiting fungal species. structures (e.g. cones) of 11 species belonging to the Table 1: Collection sites of Proteaceae infructescences and other fruiting structures in the Stellenbosch region of South Africa Proteaceae species Population site Grid reference Leucadendron rubrum Burm. f. Jonkershoek S: 33° 58.591' E: 18° 56.817' Leucadendron rubrum Stellenbosch Mountain S: 33° 56.743' E: 18° 52.711' Leucadendron salignum Bergius Jonkershoek S: 33° 59.210' E: 18° 57.361' Leucadendron salignum Stellenbosch Mountain S: 33° 56.743' E: 18° 52.711' Protea acaulos L. Jonkershoek S: 33° 59.210' E: 18° 57.361' Protea burchellii
Recommended publications
  • Salesforce Park Garden Guide
    Start Here! D Central Lawn Children’s Play Area Garden Guide6 Palm Garden 1 Australian Garden Start Here! D Central Lawn Salesforce Park showcases7 California over Garden 50 species of Children’s Play Area 2 Mediterraneantrees and Basin over 230 species of understory plants. 6 Palm Garden -ã ¼ÜÊ ÊăØÜ ØÊèÜãE úØƀØÊèÃJapanese Maples ¼ÃØ Ê¢ 1 Australian Garden 3 Prehistoric¢ØÕ輫ÕØÊ£ØÂÜÃã«ó«ã«Üŧ¼«¹ĆãÃÜÜ Garden 7 California Garden ¼ÜÜÜŧÊÃØãÜŧÃØ¢ã«Ã£¼ÜÜÜũF Amphitheater Garden Guide 2 Mediterranean Basin 4 Wetland Garden Main Lawn E Japanese Maples Salesforce Park showcases over 50 species of 3 Prehistoric Garden trees and over 230 species of understory plants. A Oak Meadow 8 Desert Garden F Amphitheater It also offers a robust year-round calendar of 4 Wetland Garden Main Lawn free public programs and activities, like fitness B Bamboo Grove 9 Fog Garden Desert Garden classes, concerts, and crafting classes! A Oak Meadow 8 5 Redwood Forest 10 Chilean Garden B Bamboo Grove 9 Fog Garden C Main Plaza 11 South African 10 Chilean Garden Garden 5 Redwood Forest C Main Plaza 11 South African Garden 1 Children’s Australian Play Area Garden ABOUT THE GARDENS The botanist aboard the Endeavor, Sir Joseph Banks, is credited with introducing many plants from Australia to the western world, and many This 5.4 acre park has a layered soil system that plants today bear his name. balances seismic shifting, collects and filters storm- water, and irrigates the gardens. Additionally, the soil Native to eastern Australia, Grass Trees may grow build-up and dense planting help offset the urban only 3 feet in 100 years, and mature plants can be heat island effect by lowering the air temperature.
    [Show full text]
  • Tulbagh Renosterveld Project Report
    BP TULBAGH RENOSTERVELD PROJECT Introduction The Cape Floristic Region (CFR) is the smallest and richest floral kingdom of the world. In an area of approximately 90 000km² there are over 9 000 plant species found (Goldblatt & Manning 2000). The CFR is recognized as one of the 33 global biodiversity hotspots (Myers, 1990) and has recently received World Heritage Status. In 2002 the Cape Action Plan for the Environment (CAPE) programme identified the lowlands of the CFR as 100% irreplaceable, meaning that to achieve conservation targets all lowland fragments would have to be conserved and no further loss of habitat should be allowed. Renosterveld , an asteraceous shrubland that predominantly occurs in the lowland areas of the CFR, is the most threatened vegetation type in South Africa . Only five percent of this highly fragmented vegetation type still remains (Von Hase et al 2003). Most of these Renosterveld fragments occur on privately owned land making it the least represented vegetation type in the South African Protected Areas network. More importantly, because of the fragmented nature of Renosterveld it has a high proportion of plants that are threatened with extinction. The Custodians of Rare and Endangered Wildflowers (CREW) project, which works with civil society groups in the CFR to update information on threatened plants, has identified the Tulbagh valley as a high priority for conservation action. This is due to the relatively large amount of Renosterveld that remains in the valley and the high amount of plant endemism. The CAPE program has also identified areas in need of fine scale plans and the Tulbagh area falls within one of these: The Upper Breede River planning domain.
    [Show full text]
  • Diss Schurr Regensburg
    Seed dispersal and range dynamics of plants: understanding and predicting the spatial dynamics of serotinous Proteaceae Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Naturwissenschaftlichen Fakultät III - Biologie und Vorklinische Medizin der Universität Regensburg vorgelegt von Frank Martin Schurr aus Eberdingen-Nußdorf Regensburg, im Juni 2005 Promotionsgesuch eingereicht am 15. Juni 2005 Die Arbeit wurde angeleitet von Dr. Steven Higgins und Prof. Dr. Peter Poschlod Prüfungsausschuss: Prof. Dr. Charlotte Förster Prof. Dr. Peter Poschlod Dr. Steven Higgins Prof. Dr. Erhard Strohm Prof. Dr. Christoph Oberprieler A cone of Leucadendron rubrum that is about to release its seeds. Contents Contents 1 General Introduction 1 1.1 Seed dispersal and large-scale dynamics of plants 1 1.2 Measuring and modelling seed dispersal 6 1.3 The study system 10 2 A process-based model for secondary seed dispersal by wind and its experimental validation 15 2.1 Introduction 16 2.2 Model description 17 2.3 Model parameterisation and validation 23 2.4 Results 27 2.5 Discussion 33 3 Can evolutionary age, colonization and persistence ability explain to which extent species fill their potential range? 38 3.1 Introduction 38 3.2 Methods 40 3.3 Results 47 3.4 Discussion 50 4 Long-distance dispersal need not save species threatened by climate driven range shifts 54 4.1 Introduction 54 4.2 Methods 55 4.3 Results 58 4.4 Discussion 60 5 General Discussion and Outlook 62 5.1 Ecological and methodological findings 62 5.2 Implications
    [Show full text]
  • Pathogens Associated with Diseases. of Protea, Leucospermum and Leucadendron Spp
    PATHOGENS ASSOCIATED WITH DISEASES. OF PROTEA, LEUCOSPERMUM AND LEUCADENDRON SPP. Lizeth Swart Thesis presented in partial fulfillment of the requirements for the degree of Master of Science in Agriculture at the University of Stellenbosch Supervisor: Prof. P. W. Crous Decem ber 1999 Stellenbosch University https://scholar.sun.ac.za DECLARATION 1, the undersigned, hereby declare that the work contained in this thesis is my own original work and has not previously in its entirety or in part been submitted at any university for a degree. SIGNATURE: DATE: Stellenbosch University https://scholar.sun.ac.za PATHOGENS ASSOCIATED WITH DISEASES OF PROTEA, LEUCOSPERMUM ANDLEUCADENDRONSPP. SUMMARY The manuscript consists of six chapters that represent research on different diseases and records of new diseases of the Proteaceae world-wide. The fungal descriptions presented in this thesis are not effectively published, and will thus be formally published elsewhere in scientific journals. Chapter one is a review that gives a detailed description of the major fungal pathogens of the genera Protea, Leucospermum and Leucadendron, as reported up to 1996. The pathogens are grouped according to the diseases they cause on roots, leaves, stems and flowers, as well as the canker causing fungi. In chapter two, several new fungi occurring on leaves of Pro tea, Leucospermum, Telopea and Brabejum collected from South Africa, Australia or New Zealand are described. The following fungi are described: Cladophialophora proteae, Coniolhyrium nitidae, Coniothyrium proteae, Coniolhyrium leucospermi,Harknessia leucospermi, Septoria prolearum and Mycosphaerella telopeae spp. nov. Furthermore, two Phylloslicla spp., telopeae and owaniana are also redecribed. The taxonomy of the Eisinoe spp.
    [Show full text]
  • Protea Newsletter International
    Protea Newsletter International An e­Newsletter for the International Protea Industry and Scientific Community to Promote Communication, Cooperation and the Advancement of Science, Technology, Production and Marketing (and to promote the Hawaii Protea Industry) Volume 2, Number 1, April 2009 Editor: Ken Leonhardt Chairman, lnternational Protea Working Group (IPWG), International Society for Horticultural Science (ISHS) Professor, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, Hawaii USA Contents: A visit to South Africa ............................................................................. 2 International Horticulture Congress announcement .................................. 3 New protea poster from the University of Hawaii..................................... 4 A message from the Hawaii State Protea Growers Corporation ................ 4 A message from the Zimbabwe Protea Association .................................. 5 Protea night­life ....................................................................................... 6 Proteaceae cultivar development and uses ................................................ 6 Sample costs to establish and produce protea ........................................... 6 Research funding awarded by the IPA...................................................... 7 New cultivar registrations......................................................................... 7 Recent books on Proteaceae ....................................................................
    [Show full text]
  • Image Identification of Protea Species with Attributes and Subgenus Scaling
    Image identification of Protea species with attributes and subgenus scaling Peter Thompson Willie Brink Stellenbosch University Stellenbosch University [email protected] [email protected] Abstract The flowering plant genus Protea is a dominant repre- sentative for the biodiversity of the Cape Floristic Region in South Africa, and from a conservation point of view im- portant to monitor. The recent surge in popularity of crowd- sourced wildlife monitoring platforms presents both chal- lenges and opportunities for automatic image based species identification. We consider the problem of identifying the Protea species in a given image with additional (but op- tional) attributes linked to the observation, such as loca- tion and date. We collect training and test data from a crowd-sourced platform, and find that the Protea identifi- Figure 1. Different species of Protea, such as Protea neriifolia cation problem is exacerbated by considerable inter-class and Protea laurifolia shown here, can exhibit considerable visual similarity, data scarcity, class imbalance, as well as large similarity. variations in image quality, composition and background. Our proposed solution consists of three parts. The first part incorporates a variant of multi-region attention into a pre- important for understanding species populations [3] in the trained convolutional neural network, to focus on the flow- midst of issues like global warming, pollution and poach- erhead in the image. The second part performs coarser- ing. The crowd-sourced platform iNaturalist for example grained classification on subgenera (superclasses) and then allows users to upload observations of wildlife, which typ- rescales the output of the first part. The third part con- ically include images, locations, dates, and identifications ditions a probabilistic model on the additional attributes that can be verified by fellow users [31].
    [Show full text]
  • THE PROTEA ATLAS of Southern Africa
    THE PROTEA ATLAS of southern Africa Anthony G Rebelo (Ed.) South African National Biodiversity Institute, Kirstenbosch THE PROTEA ATLAS of southern Africa Anthony G Rebelo (Ed.) South African National Biodiversity Institute, Pretoria (Title Page) Standard SANBI copyright page (Copyright page) Foreword By whom? CONTENTS ACKNOWLEDGEMENTS .......................................................................................................................... x Sponsors ........................................................................................................................................................ x Organisation .................................................................................................................................................. x Atlassers ........................................................................................................................................................ x 1. INTRODUCTION..................................................................................................................................... x Background ....................................................................................................................................... x Scope (objectives) ............................................................................................................................. x Species............................................................................................................................................... x Geographical
    [Show full text]
  • Sand Mine Near Robertson, Western Cape Province
    SAND MINE NEAR ROBERTSON, WESTERN CAPE PROVINCE BOTANICAL STUDY AND ASSESSMENT Version: 1.0 Date: 06 April 2020 Authors: Gerhard Botha & Dr. Jan -Hendrik Keet PROPOSED EXPANSION OF THE SAND MINE AREA ON PORTION4 OF THE FARM ZANDBERG FONTEIN 97, SOUTH OF ROBERTSON, WESTERN CAPE PROVINCE Report Title: Botanical Study and Assessment Authors: Mr. Gerhard Botha and Dr. Jan-Hendrik Keet Project Name: Proposed expansion of the sand mine area on Portion 4 of the far Zandberg Fontein 97 south of Robertson, Western Cape Province Status of report: Version 1.0 Date: 6th April 2020 Prepared for: Greenmined Environmental Postnet Suite 62, Private Bag X15 Somerset West 7129 Cell: 082 734 5113 Email: [email protected] Prepared by Nkurenkuru Ecology and Biodiversity 3 Jock Meiring Street Park West Bloemfontein 9301 Cell: 083 412 1705 Email: gabotha11@gmail com Suggested report citation Nkurenkuru Ecology and Biodiversity, 2020. Section 102 Application (Expansion of mining footprint) and Final Basic Assessment & Environmental Management Plan for the proposed expansion of the sand mine on Portion 4 of the Farm Zandberg Fontein 97, Western Cape Province. Botanical Study and Assessment Report. Unpublished report prepared by Nkurenkuru Ecology and Biodiversity for GreenMined Environmental. Version 1.0, 6 April 2020. Proposed expansion of the zandberg sand mine April 2020 botanical STUDY AND ASSESSMENT I. DECLARATION OF CONSULTANTS INDEPENDENCE » act/ed as the independent specialist in this application; » regard the information contained in this
    [Show full text]
  • Avian Pollinators and the Pollination Syndromes of Selected Mountain Fynbos Plants
    Avian pollinators and the pollination syndromes of selected Mountain Fynbos plants A.G. Rebelo, W.R. Siegfried and A.A. Crowe FitzPatrick Institute, University of Cape Town, Rondebosch The flowering phenology of Erica and proteaceous plants and Introduction the abundance of nectarivorous birds were monitored in Mountain fynbos is a major vegetation type in the fynbos Mountain Fynbos in the Jonkershoek State Forest, South Africa. Species tended to flower for short periods in summer biome (Kruger 1979) which corresponds geographically at high altitudes, or for longer periods in autumn and winter with the 'Capensis' region, delineated by Werger (1978) as at low altitudes. Three avian species apparently tracked the one of the plant biogeographical regions of southern Africa. flowers occurring at low altitudes during winter and, when The structural character of fynbos vegetation is largely present. at high altitudes during summer. Statistical analyses determined by three families, Restionaceae, Proteaceae and confirmed that the distribution of Promerops cafer is primarily Ericaceae, and the flora is notable for its great richness in correlated with the abundance of protea flowers, and that of species (Taylor 1979) . Nectarinia vio/acea with Erica flowers. The evolution of an Nearly all members of the Restionaceae are dioecious, unusually high ratio of putative avian pollinators to wind-pollinated graminoids (Pillans 1928) , whereas the ornithophilous plant species in Mountain Fynbos is discussed. Ericaceae and Proteaceae display more diverse pollination S. Afr. J. Bot. 1984, 3: 285-296 syndromes with a high proportion of putative bird-pollinated Die bloeifenologie van Erica en proteaplante en die talrykheid species (Baker & Oliver 1967; Rourke 1980, pers.
    [Show full text]
  • Bark Medicines Used in Traditional Healthcare in Kwazulu-Natal, South Africa: an Inventory
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector South African Journal of Botany 2003, 69(3): 301–363 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 0254–6299 Bark medicines used in traditional healthcare in KwaZulu-Natal, South Africa: An inventory OM Grace1, HDV Prendergast2, AK Jäger3 and J van Staden1* 1 Research Centre for Plant Growth and Development, School of Botany and Zoology, University of Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa 2 Centre for Economic Botany, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom 3 Department of Medicinal Chemistry, Royal Danish School of Pharmacy, 2 Universitetsparken, 2100 Copenhagen 0, Denmark * Corresponding author, e-mail: [email protected] Received 13 June 2002, accepted in revised form 14 March 2003 Bark is an important source of medicine in South Overlapping vernacular names recorded in the literature African traditional healthcare but is poorly documented. indicated that it may be unreliable in local plant identifi- From thorough surveys of the popular ethnobotanical cations. Most (43%) bark medicines were documented literature, and other less widely available sources, 174 for the treatment of internal ailments. Sixteen percent of species (spanning 108 genera and 50 families) used for species were classed in threatened conservation cate- their bark in KwaZulu-Natal, were inventoried. gories, but conservation and management data were Vernacular names, morphological and phytochemical limited or absent from a further 62%. There is a need for properties, usage and conservation data were captured research and specialist publications to address the in a database that aimed to synthesise published infor- gaps in existing knowledge of medicinal bark species mation of such species.
    [Show full text]
  • Pollination Structures Plant and Nectar‐Feeding Bird
    Received: 10 April 2020 Revised: 22 April 2020 Accepted: 3 May 2020 DOI: 10.1111/1440-1703.12148 ORIGINAL ARTICLE Pollination structures plant and nectar-feeding bird communities in Cape fynbos, South Africa: Implications for the conservation of plant–bird mutualisms Sjirk Geerts1 | Anina Coetzee2 | Anthony G. Rebelo3 | Anton Pauw4 1Department Conservation and Marine Sciences, Cape Peninsula University of Abstract Technology, Cape Town, South Africa With the current global concerns about pollinators, relationships between spe- 2DST/NRF Centre of Excellence at the cies interactions and diversity are pivotal. If pollinator communities depend FitzPatrick Institute of African strongly on the diversity of flowering plants and vice versa, anthropogenic Ornithology, University of Cape Town, Cape Town, South Africa influences—whether positive or negative—on one partner will cause changes 3South African National Biodiversity in the other. Here we ask whether nectarivorous bird communities are struc- Institute, Kirstenbosch Research Centre, tured by resource abundance (Proteaceae nectar) or Proteaceae diversity at dif- Claremont, South Africa ferent spatial scales in the Cape fynbos of South Africa. On a small spatial 4Department of Botany and Zoology, Stellenbosch University, Matieland, scale, we sampled 34 one-hectare plots across the Cape Floristic Region (CFR) South Africa for flowering Proteaceae species, number of inflorescences, nectar volume, veg- etation age, nectar-feeding bird abundance and species richness. At small Correspondence Sjirk Geerts, Department Conservation scale, nectar—rather than vegetation structure or plant community and Marine Sciences, Cape Peninsula composition—was the most strongly correlated to nectar-feeding bird diversity University of Technology, P.O. Box and abundance. On a landscape scale we investigated the spatio-temporal 652, Cape Town 8000, South Africa.
    [Show full text]
  • Nectar Distribution and Nectarivorous Bird Foraging Behaviour at Different Spatial Scales
    Nectar distribution and nectarivorous bird foraging behaviour at different spatial scales by Anina Coetzee Dissertation presented for the Degree of Doctor of Philosophy in the Faculty of Science, at Stellenbosch University Supervisor: Prof. Anton Pauw Co-supervisor: Dr. Phoebe Barnard March 2016 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own original work, that I am the authorship owner thereof (unless to the extent explicitly otherwise stated) and that I have not previously in its entirety or in part submitted it for obtaining any qualification. March 2016 Copyright © 2016 Stellenbosch University of Stellenbosch All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract While foraging strategies of animals may be shaped by the distribution of their food resources, these strategies in turn also affect the ecology and evolution of their resources. In this regard, African systems, of all the different bird-pollination systems worldwide, have been least studied. I investigated the relationships between these aspects at population, community and landscape levels in the bird-pollination systems of the Cape Floristic Region. This biodiversity hotspot in the southwest of South Africa contains an unusually high number of bird-pollinated plant species relative to the number of pollinating bird species. Chapter 2 describes how I experimentally tested which nectar resource traits affect sunbird foraging behaviour at the small scale within populations. Sunbirds’ behaviour was largely determined by visual signals and distances between nectar resources. The birds showed flower colour preferences, but no flower constancy (selective foraging only on one flower type).
    [Show full text]