Appendix A: Final Programmatic Environmental Assessment (Pea) for Nsf-Funded Ooi (June 2008)

Total Page:16

File Type:pdf, Size:1020Kb

Appendix A: Final Programmatic Environmental Assessment (Pea) for Nsf-Funded Ooi (June 2008) APPENDIX A: FINAL PROGRAMMATIC ENVIRONMENTAL ASSESSMENT (PEA) FOR NSF-FUNDED OOI (JUNE 2008) [This page intentionally left blank.] FinalFinal ProgrammaticProgrammatic EnvironmentalEnvironmental AssessmentAssessment forfor NationalNational ScienceScience Foundation-FundedFoundation-Funded OceanOcean ObservatoriesObservatories InitiativeInitiative (OOI)(OOI) JuneJune 20082008 Acronyms and Abbreviations ~ approximately m meter(s) ADCP acoustic Doppler current profiler MARS Monterey Accelerated Research System ADV acoustic Doppler velocimeter MBARI Monterey Bay Aquarium Research Institute AGM absorbed glass mat MBES multibeam echosounder AWOIS Automated Wreck and Obstruction MFN Multi-function Node Information System MHz megahertz AUV autonomous underwater vehicle mm millimeter(s) BAP bio-acoustic profiler MMPA Marine Mammal Protection Act BMPs Best Management Practices MPJbox medium-power junction box CAA Clean Air Act MREFC Major Research Equipment and Facilities CDR Conceptual Design Review Construction CEQ Council on Environmental Quality ms millisecond CFR Code of Federal Regulations MSA Magnuson-Stevens Act CGSN Coastal/Global-Scale Nodes NANOOS Northwest Association of Networked cm centimeter(s) Ocean Observing Systems CND Conceptual Network Design NEPA National Environmental Policy Act CO2 carbon dioxide NHPA National Historic Preservation Act CPS Coastal Pelagic Species nmi nautical mile CSN Coastal-scale Nodes NMFS National Marine Fisheries Service CTD conductivity-temperature-depth NOAA National Oceanic and Atmospheric CWA Clean Water Act Administration CZMA Coastal Zone Management Act NOTMAR Notice to Mariners DA Double Armored NPDES National Pollutant Discharge DART Deep-ocean Assessment and Reporting Elimination System of Tsunamis NRC Natural Resources Consultants DAS days at sea NRHP National Register of Historic Places DoN Department of the Navy NSF National Science Foundation DPS Distinct Population Segment O&M Operations and Maintenance EA Environmental Assessment ODAS Oceanographic Data Acquisitions Systems EEZ Exclusive Economic Zone ODEQ Oregon Department of Environmental Quality EFH Essential Fish Habitat OFCC Oregon Fishermen’s Cable Committee EOM electrical-optical-mechanical OOI Ocean Observatories Initiative ESA Endangered Species Act OrCOOS Oregon Coastal Ocean Observing System ESU Evolutionary Significant Unit ORION Ocean Research Interactive Observatory FERC Federal Energy Regulatory Commission Networks FMC Fisheries Management Council OSC Observatory Steering Committee FMP Fisheries Management Plan PND Preliminary Network Design ft foot/feet ROI Region of Influence GSN Global-scale Nodes ROV remotely operated vehicle ha hectare(s) RSN Regional-scale Nodes HAPC Habitat Area of Particular Concern SAUP Sea Around Us Project HDD horizontal directional drilling SBP sub-bottom profiler HMS Highly Migratory Species SHPO State Historic Preservation Officer HPIES horizontal electrometer-pressure-inverted SIP State Implementation Plan echosounder SOP Standard Operating Procedure ICES International Council for the SP Special Applications Exploration of the Sea STAC Science and Technical Advisory Committee ICPC International Cable Protection Committee SWPPP Storm Water Pollution Prevention Plan in inches TRF trawl resistant frame IO Implementing Organization UCSD University of California-San Diego IODP Integrated Ocean Drilling Program UNOLS University-National Oceanographic IOOS Integrated Ocean Observing System Laboratory System Jbox junction box µs microsecond JOI Joint Oceanographic Institutions U.S. United States kg kilogram(s) USACE U.S. Army Corps of Engineers kHz kilohertz USC United States Code km kilometer(s) USCG U.S. Coast Guard LPJbox low-power junction box USEPA U.S. Environmental Protection Agency LVN Low-voltage Node USFWS U.S. Fish and Wildlife Service LW Lightweight W Watts LWA Light-wire Armored WHOI Woods Hole Oceanographic Institution FINAL PROGRAMMATIC ENVIRONMENTAL ASSESSMENT FOR THE OCEAN OBSERVATORIES INITIATIVE JUNE 2008 Prepared by: TEC Inc. Annapolis, MD and Bainbridge Island, WA On behalf of: National Science Foundation Division of Ocean Sciences 4201 Wilson Blvd. Arlington, VA For additional information, contact: Dr. Shelby Walker, Program Officer National Science Foundation Division of Ocean Sciences 4201 Wilson Blvd Arlington, VA 22203 Phone: (703) 292-4568 E-mail: [email protected] OOI Programmatic EA Final June 2008 EXECUTIVE SUMMARY PROPOSED ACTION This Programmatic Environmental Assessment (EA) has been prepared to analyze the potential impacts on the human and natural environment associated with the installation and operation of the Ocean Observatories Initiative (OOI). This EA has been prepared on behalf of the National Science Foundation (NSF) in compliance with the National Environmental Policy Act (NEPA) of 1969 (42 United States Code §4321 et seq.) and the Council on Environmental Quality Regulations for Implementing the Procedural Provisions of NEPA (Title 40 Code of Federal Regulations §§1500-1508). The NEPA process ensures that environmental impacts of proposed major federal actions are considered in the decision- making process. To provide the U.S. ocean sciences research community with the basic sensors and infrastructure required to make sustained, long-term, and adaptive measurements in the oceans, the NSF‟s Ocean Sciences Division developed the OOI from community-wide, national, and international scientific planning efforts. OOI builds upon recent technological advances, experience with existing ocean observatories, and lessons learned from several successful pilot and test bed projects. The proposed OOI would be an interactive, globally distributed and integrated network of cutting-edge technological capabilities for ocean observatories. This network of sensors would enable the next generation of complex ocean studies at the coastal, regional, and global scale. OOI would complement the broader effort to establish the proposed operationally focused national system known as the Integrated Ocean Observing System (IOOS). As these efforts mature, the research-focused observatories envisioned by the OOI would be networked with the IOOS and in turn would be a key and enabling U.S. contribution to the international Global Ocean Observing System and the Global Earth Observation System of Systems. The OOI infrastructure would include cables, buoys, deployment platforms, moorings, junction boxes, electric power generation (solar, wind, fuel cells, and/or diesel), mobile assets (i.e., autonomous underwater vehicles [AUVs] and gliders), and two-way communications systems. This large-scale infrastructure would support sensors located at the sea surface, in the water column, and at or beneath the seafloor. The initiative would also support related elements, such as unified project management, data dissemination and archiving, modeling of oceanographic processes, and education and engagement activities essential to the long-term success of ocean science. The OOI design is based upon three main technical elements across global, regional, and coastal scales. At the global and coastal scales, mooring observatories would provide locally generated power to seafloor and platform instruments and sensors and use a satellite link to shore and the Internet. Up to four Global- scale Nodes (GSN) or buoy sites are proposed for ocean sensing in the Eastern Pacific and Atlantic oceans. The Regional-scale Nodes (RSN) off the coast of Washington and Oregon would consist of seafloor observatories with various chemical, biological, and geological sensors linked with submarine cables to shore that provide power and Internet connectivity. Coastal-scale Nodes (CSN) would be represented by the Endurance Array off the coast of Washington and Oregon and the Pioneer Array off the coast of Massachusetts. In addition, there would be an integration of mobile assets such as AUVs and gliders with the GSN, RSN, and CSN observatories. PURPOSE AND NEED The OOI would build a network of sensors that would collect ocean and seafloor data at high sampling rates over years to decades. These sensors would be linked to shore using the latest communications ES-1 OOI Programmatic EA Final June 2008 technologies, enabling scientists to reconfigure them from their laboratories and use the incoming data in near-real time in their models. Scientists and educators from around the country, from large and small institutions, and from fields other than ocean science, would be able to take advantage of OOI‟s open data policy and emerging cyberinfrastructure capabilities in distributed processing, visualization, and integrative modeling. Researchers would make simultaneous, interdisciplinary measurements to investigate a spectrum of phenomena including episodic, short-lived events (tectonic, volcanic, biological, severe storm-related), to more subtle, longer-term changes or emergent phenomena in ocean systems (circulation patterns, climate change, ocean acidity, ecosystem trends). Through a unifying cyberinfrastructure, researchers would control sampling strategies of experiments deployed on one part of the infrastructure in response to remote detection of events by other parts of the infrastructure. The long-term introduction of ample power and bandwidth to remote parts of the ocean by the OOI would provide the ocean science community with unprecedented access to detailed data on multiple spatial scales, studying the coastal-, regional-, and global-scale ocean, and using mobile assets (AUVs, gliders, and vertical profilers)
Recommended publications
  • An International Journal of Cosmogenic Isotope Research
    Radiocarbon, Volume 42, Number 3 (2000) Item Type Journal; text Publisher Department of Geosciences, The University of Arizona Journal Radiocarbon Rights Copyright © by the Arizona Board of Regents on behalf of the University of Arizona. All rights reserved. Download date 09/10/2021 09:46:29 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/655374 Radiocarbon An International Journal of Cosmogenic Isotope Research VOLUME 42 / NUMBER 3 / 2000 Guest Editor J VAN DER PLICHT Editor A J T JULL Associate Editors J WARREN BECK GEORGE S BURR Managing Editor KIMBERLEY TANNER ELLIOTT Department of Geosciences The University of Arizona 4717 East Fort Lowell Road Tucson, Arizona 85712-1201 USA ISSN: 0033-8222 RADIOCARBON An International Journal of Cosmogenic Isotope Research Editor: A J T JULL Associate Editors: J WARREN BECK and GEORGE S BURR Managing Editor: KIMBERLEY TANNER ELLIOTT Interns: JACKIE LIND and MARGARET BURNETT Published by Department of Geosciences The University of Arizona Published three times a year at The University of Arizona, Tucson, AZ 85712-1201 USA. © 2000 by the Arizona Board of Regents on behalf of the University of Arizona. All rights reserved. Subscription rates (2001): $150.00 (for institutions), $80.00 (for individuals). Foreign postage is $10. All sub- scriptions now include free access to our online journal at http://www.catchword.com/titles/00338222.htm. A complete price list, including proceedings of international conferences, special publications, and back issues, appears on the inside back cover of this issue. Advertising rates are also listed at the back of this issue and on our website at http://www.radiocarbon.org/adrates.html.
    [Show full text]
  • S. Mentella) in the Irminger Sea and Adjacent Waters (ICES Areas V, XII, and XIV and NAFO Areas 1 and 2)
    DEEPFISHMAN Case Study 4 – Part II Pelagic Beaked redfish (S. mentella) in the Irminger Sea and adjacent waters (ICES areas V, XII, and XIV and NAFO Areas 1 and 2) Socio-economic study Institute of Economic Studies University of Iceland November2010 1 1 Introduction Recent results have shown that the pelagic beaked redfish, Sebastes mentella, in the Irminger Sea forms two stocks: deep pelagic stock and shallow pelagic stock (Cadrin et al., 2009). The shallow pelagic component of the Irminger Sea is thought to be related to the „shallow pelagic‟ in the Norwegian Sea. The beaked redfish can therefore be considered as forming a complex stock structure, which is not yet completely understood in the North Atlantic. In the Irminger Sea, the shallow pelagic inhibits above 500 m while the deep pelagic is below 500 m and down to 1000 m but is most abundant between 600 and 900 m. Figure 1 shows the geographical distribution of the stock in the Irminger Sea. Figure 1 Geographical distribution of S. mentella in the Irminger Sea and adjacent waters. (from Sigurdsson et al. 2006). Source: DEEPFISHMAN. Case Study Report 4 – Part II (2010). Because of impracticality of managing and monitoring the two stocks by depth there have been geographical proxies set up to minimize mixed stock catches. The management unit boundaries can be seen in figure 2. The polygon bounded by the blue lines indicates the region for the deep pelagic management while the number 2 indicates the shallow management (Cadrin et al 2009, ICES 2009a). 2 Figure 2 Management unit boundaries for Sebastes mentella in the Irminger Sea and adjacent waters.
    [Show full text]
  • Thermohaline Changes in the Irminger Sea
    ICES 1999 ICES eM 1999IL:16 Theme Session L Nordic Seas Exchanges Thermohaline changes in the Irminger Sea by John Mortensen and Beainn Valdimarsson Marine Research Institute (MRI), Reykjavik 121 Reykjavik Skulagata4 Fax: +3545623790 e-mail: [email protected] e-mail: [email protected] Abstract The Inninger Sea is part of the Subpolar Gyre in the northwestern North Atlantic and plays a central role in the large-scale thennohaline overturning of Atlantic Water which is believed to influence the long-tenn changes of the climate system. In this area thennohaline changes are observed at almost all depth levels in the nineties. The most pronounced change is connected to the Modified North Atlantic Water (MNAW) where an overall increase of temperature and salinity were observed during the nineties. Time series from the Icelandic continental slope reveal that the recent onset of increasing temperatures took place in the winter 199511996 and was accompanied by a more pronounced salinity increase in late summer 1997. A historical comparison with nearby sections occupied in the early eighties and late nineties reveals that changes in the distribution of water masses have taken place recently. The reason is likely to be connected to the densification of the Labrador Sea Water (LSW) since the late eighties. The change is seen as a downward movement of the LSW core now occupying in the Inninger Sea the depth range of 1500 to 2100 m instead of 500 to 1200 m in e.g. 1981. The changes are observed as a freshening and cooling of the LSW. Keywords: Inninger Sea, thermohaline changes, Labrador Sea Water and Modified North Atlantic Water.
    [Show full text]
  • Project Execution Plan
    Project Execution Plan PROJECT EXECUTION PLAN Version 3-15 Document Control Number 1001-00000 2011-04-19 Consortium for Ocean Leadership 1201 New York Ave NW, 4th Floor, Washington DC 20005 www.OceanLeadership.org in Cooperation with University of California, San Diego University of Washington Woods Hole Oceanographic Institution Oregon State University Scripps Institution of Oceanography Rutgers, The State University of New Jersey Project Execution Plan Document Control Sheet Version Date Description Originator / ECR 1-01 July 31, 2006 Draft 1-01 Aug 7, 2006 The order of global node implementation was changed in Table A4C-1. 2-00 Nov 16, 2007 H. Given 2-01 Sep 29, 2008 H. Given 2-02 Oct 21, 2008 Incorporates R. Weller, J. Orcutt E. Griffin edits/input. Sections 1.1, 3.4, 3.16.4, 5.3 2-03 Oct 30, 2008 Section rewrites, edits, updates E. Griffin 2-04 Oct 31, 2008 Edits L. Brasseur, S. Banahan 2-05 Jan 14, 2009 Revision to Section 3.11 S. Banahan 2-06 Jan 18, 2009 Revision to Section 3.7.2 S. Banahan 2-07 Jan 19, 2009 Edits T. Cowles 2-08 Jan 23, 2009 Addition to Section 3.7.2 E. Griffin 2-09 Jan 30, 2009 Update table and values to A. Ferlaino section 1.0 2-10 Feb 11, 2009 Complete update to reflect NSF S. Williams directed post FDR variant 2-11 Feb 20, 2009 Copy edits E. Griffin 2-12 Feb 21, 2009 Appendix update A. Ferlaino 2-13 Feb 22, 2009 Copy edits T. Cowles 2-14 Feb 22, 2009 Compilation of edits/updates A.
    [Show full text]
  • Forcing of the Preferred Positions of the North Atlantic Eddy-Driven Jet: from Above and Below
    manuscript submitted to Geophysical Research Letters 1 Forcing of the Preferred Positions of the North 2 Atlantic Eddy-driven Jet: from Above and Below 1,2 2 3 3 Rachel H. White , Casey Hilgenbrink , Aditi Sheshadri 1 4 Barcelona Supercomputing Center, 08034 Barcelona, Spain 2 5 University of Washington, Seattle, WA 98195 3 6 Stanford University, Stanford, CA 94305, USA 7 Key Points: 8 • Greenland orography creates the northern preferred latitude of the North Atlantic 9 jet latitude index by forcing Greenland tip jet events 10 • Forced meridional shifts in the North Atlantic jet typically manifest as changes 11 in the probability of preferred latitudes 12 • CMIP5 biases in simulating a northern preferred latitude are connected to clima- 13 tological jet position biases Corresponding author: Rachel H. White, [email protected] –1– manuscript submitted to Geophysical Research Letters 14 Abstract 15 The atmospheric eddy-driven jet over the North Atlantic exhibits three ‘preferred po- 16 sitions’, latitudes where the jet maximum occurs more frequently than others. Using a 17 state-of-the-art dynamical atmosphere model (WACCM), we explore the forcing of these 18 preferred positions by upper-atmosphere circulation and northern hemisphere mountain 19 ranges. The latitude of the northern preferred position shifts only when the latitudinal 20 position of Greenland is changed, and this preferred position disappears when Green- 21 land orography is flattened. We propose that Greenland tip jet events create the appear- 22 ance of an eddy-driven jet northern ‘preferred position’. In ERA-interim data, years with 23 a higher frequency of tip jet events show a higher frequency of the northern preferred 24 position.
    [Show full text]
  • Can Katabatic Winds Directly Force Retreat of Greenland Outlet Glaciers? Hypothesis Test on Helheim Glacier in Sermilik Fjord
    https://doi.org/10.5194/tc-2020-194 Preprint. Discussion started: 3 August 2020 c Author(s) 2020. CC BY 4.0 License. Can katabatic winds directly force retreat of Greenland outlet glaciers? Hypothesis test on Helheim Glacier in Sermilik Fjord. Iain Wheel1, 2, Poul Christoffersen1, Sebastian H. Mernild3, 4, 5, 6 5 1Scott Polar Research Institute, University of Cambridge, Cambridge, UK 2Department of Geography and Sustainable Development, University of St Andrews, St Andrews, UK 3Nansen Environmental and Remote Sensing Center, Bergen, Norway 4Geophysical Institute, University of Bergen, Norway 5Faculty of Engineering and Science, Western Norway University of Applied Sciences, Sogndal, Norway 10 6Antarctic and Sub-Antarctic Program, University de Magallanes, Punta Arenas, Chile Correspondence to: Iain Wheel ([email protected]) Abstract. Katabatic winds drive sea ice export from glaciated fjords across Greenland and other high latitude environments, but few studies have investigated the extent to which they also drive inflow of warm water and whether they have a direct impact on glaciers stability. Using ERA5 reanalysis data, verified by two local weather stations, we create a timeseries of 15 katabatic winds across Sermilik Fjord in southeast Greenland. Using this along with hydrographic data, from 2009-2013, positioned across the fjord, we analyse changes in fjord circulation during individual katabatic flows. Changes in melange presence are analysed too, via the use of MODIS and Landsat-7 satellite imagery. We show that warm water influxes are associated with katabatic winds, and that the potential submarine melt rates vary up to four-fold, dependant on katabatic wind strength. Rapid retreat of Helheim Glacier occurred during strong downslope wind events which removed the ice melange, 20 and so the well documented retreat of Helheim between 2001-2005 is predicted to be in part because of strong katabatic winds.
    [Show full text]
  • The Ocean Observatories Initiative: Establishing a Sustained and Adaptive
    The Ocean Observatories Initiative: Establishing A Sustained And Adaptive Telepresence In The Ocean Shelby Walker(1) (1)National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, SSMC#3, Rm 11319, Silver Spring, MD USA [email protected] formerly National Science Foundation, 4201 Wilson Blvd., Arlington, VA, USA The significance of the ocean to our nation and Global, regional, and local climate change and world is evident and has been of increasing impacts, coastal hazards, ecosystem-based concern in recent years. In 2003 and 2004, the management and the relationship between the U.S. Commission on Ocean Policy and the Pew ocean and human health are amongst the critical Oceans Commission issued major reports with issues noted in the Commissions’ sweeping sets of recommendations designed to recommendations that point to the need for a improve society’s use and stewardship of, and sustained, research-driven, ocean observing impact on, the coastal and global ocean. These capability. The ocean science community and recommendations highlight key areas that require society at large are now poised to embark on a continuous investigation to enable timely and novel and revolutionary approach for studying sound decision-making and policy development. the ocean that calls for the establishment of an interactive, globally distributed and integrated network of sensors in the ocean. The Ocean Observatories Initiative (OOI) is part of a broader trend in the physical and natural sciences toward use of arrays of in situ sensors, real-time data, and multidisciplinary approaches to study complex natural systems [1]. The OOI, with its geographically Figure 1.
    [Show full text]
  • The Subpolar Gyre Regulates Silicate Concentrations in the North Atlantic Received: 31 May 2017 H
    www.nature.com/scientificreports OPEN The subpolar gyre regulates silicate concentrations in the North Atlantic Received: 31 May 2017 H. Hátún1, K. Azetsu-Scott3, R. Somavilla4, F. Rey5, C. Johnson 6, M. Mathis7, Accepted: 17 October 2017 U. Mikolajewicz7, P. Coupel8, J.-É. Tremblay8, S. Hartman9, S. V. Pacariz1,10, I. Salter1,11 & Published: xx xx xxxx J. Ólafsson2 The North Atlantic is characterized by diatom-dominated spring blooms that results in signifcant transfer of carbon to higher trophic levels and the deep ocean. These blooms are terminated by limiting silicate concentrations in summer. Numerous regional studies have demonstrated phytoplankton community shifts to lightly-silicifed diatoms and non-silicifying plankton at the onset of silicate limitation. However, to understand basin-scale patterns in ecosystem and climate dynamics, nutrient inventories must be examined over sufcient temporal and spatial scales. Here we show, from a new comprehensive compilation of data from the subpolar Atlantic Ocean, clear evidence of a marked pre-bloom silicate decline of 1.5–2 µM throughout the winter mixed layer during the last 25 years. This silicate decrease is primarily attributed to natural multi-decadal variability through decreased winter convection depths since the mid-1990s, a weakening and retraction of the subpolar gyre and an associated increased infuence of nutrient-poor water of subtropical origin. Reduced Arctic silicate import and the projected hemispheric-scale climate change-induced weakening of vertical mixing may have acted to amplify the recent decline. These marked fuctuations in pre-bloom silicate inventories will likely have important consequences for the spatial and temporal extent of diatom blooms, thus impacting ecosystem productivity and ocean-atmosphere climate dynamics.
    [Show full text]
  • Subannual and Seasonal Variability of Atlantic-Origin Waters in Two Adjacent West Greenland Fjords
    Journal of Geophysical Research: Oceans RESEARCH ARTICLE Subannual and Seasonal Variability of Atlantic-Origin 10.1029/2018JC014278 Waters in Two Adjacent West Greenland Fjords Key Points: D. Carroll1 , D. A. Sutherland2 , B. Curry3, J. D. Nash4 , E. L. Shroyer4 , G. A. Catania5,6 , • We analyze a 2-year hydrographic 7 8 3 9,10 record from a suite of moorings in L. A. Stearns , J. P. Grist , C. M. Lee , and L. de Steur Davis Strait and two adjacent west 1 2 Greenland fjords Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, Department of Earth Sciences, University 3 4 • Hydrography above the sill exhibits of Oregon, Eugene, OR, USA, Applied Physics Laboratory, University of Washington, Seattle, WA, USA, College of Earth, clear seasonality; subannual warming Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA, 5Department of Geological Sciences, of basin waters coincides with the University of Texas at Austin, Austin, TX, USA, 6Institute for Geophysics, University of Texas at Austin, Austin, TX, USA, arrival of dense Atlantic-origin waters 7 8 at the mouth Department of Geology, University of Kansas, Lawrence, KS, USA, National Oceanography Centre, University of 9 10 • We use Seaglider observations and Southampton Waterfront Campus, Southampton, UK, Norwegian Polar Institute, Tromsø, Norway, Royal Netherlands reanalysis of sea ice and winds to Institute for Sea Research (NIOZ), Den Burg, Netherlands explore the role of local and remote forcing in driving fjord renewal Abstract Greenland fjords provide a pathway for the inflow of warm shelf waters to glacier termini and Supporting Information: outflow of glacially modified waters to the coastal ocean.
    [Show full text]
  • Regional Scale Nodes a State-Of-The-Art Cabled Undersea
    OOI Regional Cabled Array Winched Profiler Data for Improved Hydroacoustic Analyses 19-06-27_1430_Cram_T1.3-08 CTBT Science and Technology 2019 Conference 24-28 June 2019 Geoff Cram, Mike Harrington, Kellen Rosburg, Kevin Williams, Lisa Zurk Applied Physics Lab, University of Washington 1013 NE 40th St Seattle, WA 98115 Introduction • The Applied Physics Laboratory at the University of Washington (APL-UW) • The Ocean Observatories Initiative Regional Cabled Array (OOI-RCA) • Example profiler data from the OOI-RCA • Relevance to future modular IMS HA stations APL-UW • Founded in 1943 at the University of Washington • Vertically integrated • We design, build, deploy and conduct science with our systems Core Competencies • Underwater Instrumentation and Equipment Development • Ocean Acoustic Propagation and Systems • Experimental Oceanography • Mission-Related and Public Service Rapid Response R&D and Engineering • Simulation and Signal Processing Regional Cabled Array • Multipurpose cabled ocean observatory, funded by the US National Science Foundation Ocean Observatories Initiative • Implemented by the APL-UW in conjunction with the UW School of Oceanography • Installation completed in 2014 • 25 year system design life, going strong • Star topology with expansion capacity for ew instruments/projects RCA Overview RCA RCA Infrastructure in 2019 • 890 km of backbone cable • 7 primary nodes • 5 available ports • 18 seafloor junction boxes • 10 available ports • 6 profiling moorings • 150 oceanographic instruments, majority reporting in real
    [Show full text]
  • Why SOCIB, Why Ocean Observatories, and Why Now?
    7th Meeting of the Expert Group on Marine Research Infrastructure – 14 – 15 November 2011 Marine and Coastal Research Infrastructures: drive knowledge increase, transfer of technological products and management technologies for the public and private sector (Or… The impact of new information infrastructures in understanding and forecasting the changing coastal ocean: SOCIB, an international Coastal Ocean Observing and Forecasting System based in the Balearic Islands) Joaquín Tintoré and the SOCIB team SOCIB and IMEDEA (UIB-CSIC) http://www.socib.eu Outline 1. SOCIB: oceans complexity, monitoring, what, why, why now 2. Background: IMEDEA and/or 20 years of science, technology development and applications for society. Some examples of each… 3. SOCIB: why, scales, monitoring tools, particularities and ongoing activities; gliders, modeling, data center examples, ETD, SIAS 4. Innovation in oceanographic instrumentation: the case of ocean gliders. 5. The new role of Marine Research Infrastructures Oceans are complex and central to the Earth system OOI, Regional Scale Nodes (Delaney, 2008) The oceans are chronically under-sampled (Credit, Oscar Schoefield) The oceans are chronically under-sampled (Credit, Pere Oliver) Now… What is SOCIB? SOCIB is a Coastal Observing and Forecasting System, a multi-platform distributed and integrated Scientific and Technological Facility (a facility of facilities…) n providing streams of oceanographic data and modelling services in support to operational oceanography n contributing to the needs of marine and coastal research in a global change context. The concept of Operational Oceanography is here understood as general, including traditional operational services to society but also including the sustained supply of multidisciplinary data and technologies development to cover the needs of a wide range of scientific research priorities and society needs.
    [Show full text]
  • Enhancement of the North Atlantic CO2 Sink by Arctic Waters
    Biogeosciences, 18, 1689–1701, 2021 https://doi.org/10.5194/bg-18-1689-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Enhancement of the North Atlantic CO2 sink by Arctic Waters Jon Olafsson1, Solveig R. Olafsdottir2, Taro Takahashi3;, Magnus Danielsen2, and Thorarinn S. Arnarson4; 1Institute of Earth Sciences, Sturlugata 7 Askja, University of Iceland, IS 101 Reykjavik, Iceland 2Marine and Freshwater Research Institute, Fornubúðir 5, IS 220 Hafnafjörður, Iceland 3Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA 4National Energy Authority, Grensásvegur 9, IS 108 Reykjavík, Iceland deceased Correspondence: Jon Olafsson ([email protected]) Received: 13 August 2020 – Discussion started: 27 August 2020 Revised: 20 January 2021 – Accepted: 27 January 2021 – Published: 10 March 2021 ◦ Abstract. The North Atlantic north of 50 N is one of the lantic CO2 sink which we reveal was previously unrecog- most intense ocean sink areas for atmospheric CO2 consid- nized. However, we point out that there are gaps and conflicts ering the flux per unit area, 0.27 Pg-C yr−1, equivalent to in the knowledge about the Arctic alkalinity and carbonate −2 −1 −2:5 mol C m yr . The northwest Atlantic Ocean is a re- budgets and that future trends in the North Atlantic CO2 sink gion with high anthropogenic carbon inventories. This is on are connected to developments in the rapidly warming and account of processes which sustain CO2 air–sea fluxes, in changing Arctic. The results we present need to be taken into particular strong seasonal winds, ocean heat loss, deep con- consideration for the following question: will the North At- vective mixing, and CO2 drawdown by primary production.
    [Show full text]