Title: Single-Molecule Techniques in Biophysics: a Review of the Progress in Methods and Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Learning and Estimation of Single Molecule Behavior
Learning and Estimation of Single Molecule Behavior Sivaraman Rajaganapathy1;a, James Melbourne1;b, Tanuj Aggarwal2;c, Rachit Shrivastava1;d, and Murti V. Salapaka1;e Abstract— Data analysis in single molecule studies often of tension. The unfolding of a domain leads to a step involves estimation of parameters and the detection of abrupt change in the length of the protein. How much time is changes in measured signals. For single molecule studies, tools needed for the domains to unfold, the relationship to the for automated analysis that are crucial for rapid progress, need to be effective under large noise magnitudes, and often must force applied, the changes in the structure under folding assume little or no prior knowledge of parameters being stud- and unfolding events are questions that are studied with ied. This article examines an iterated, dynamic programming AFM based force spectroscopy. Most of the studies involve based step detection algorithm (SDA). It is established that numerous iterations of experiments. Often, data is collected given a prior estimate, an iteration of the SDA necessarily from a large number of experiments, not just to ensure a improves the estimate. The analysis provides an explanation and a confirmation of the effectiveness of the learning and high confidence on statistical information, but also because estimation capabilities of the algorithm observed empirically. experiment success rates are sometimes intentionally kept Further, an alternative application of the SDA is demonstrated, low. For example, in single molecule force spectroscopy, wherein the parameters of a worm-like chain (WLC) model the protein solution is diluted enough to ensure that the are estimated, for the automated analysis of data from single the success rate of an attachment forming between the tip molecule protein pulling experiments. -
A-10 Optical and Magnetic Tweezers
A-10 Optical and Magnetic Tweezers From Physics 191r Optical Tweezer Word version File:A10tweezer 10.doc Optical Tweezer PDF version File:A10tweezer 10.pdf ELECTROMAGNETIC TRAPPING: Optical and Magnetic Tweezers author: Mara Prentiss, 2004 first experiment: yes Optical tweezer video (http://www.fas.harvard.edu/~phys191r/Bench_Notes/op_tweez.mov) Magnetic tweezer video (http://www.fas.harvard.edu/~phys191r/Bench_Notes/mag_tweez.mov) Contents 1 LEARNING GOALS 2 INTRODUCTION 3 APPARATUS 3.1 Laser 3.2 Laser controller 3.3 Laser power monitor 3.4 Laser beam profiler 3.5 Sample Preparation 3.5.1 Optical Tweezer 3.5.2 Magnetic Tweezer 3.6 Copper sample stage with temperature control 3.7 Translation stage and controller 3.8 Function generator/circle box/oscilloscope 3.9 White light source 3.10 Camera 3.11 Microspheres 3.12 Quadrant photodiode with I/V converter 3.13 Magnetic Tweezer 4 EXPERIMENTAL PROCEDURE 4.1 Investigations of the Optical Trap 4.2 Investigations of Thermal Motion 4.3 Optional Optical Tweezer Experiments 4.4 Interparticle Interaction 4.5 Magnetic Tweezer 5 NOTES 6 REFERENCES 6.1 Optical Traps 6.2 Brownian Motion 6.3 Magnetic Field Gradient Traps 6.4 2D Polymer Sphere Crystals 6.5 2D Melting 6.6 Ordered Trapped Particles 6.7 Electromagnetic Traps 7 BENCH NOTES 8 APPENDIX A: Optical Tweezer Alignment Procedure 8.1 Safety 8.2 Beam alignment 8.3 Camera alignment 8.4 Trapping a particle 9 APPENDIX B: Particle Tracking using IDL 10 APPENDIX C: Particle Tracking using MATLAB 10.1 Purpose 10.2 Outline 10.3 Details 10.3.1 1) Make videos 10.3.2 2) Import video and convert to grayscale 10.3.3 3) Analyze the videos 10.3.4 4) Analyze the data files LEARNING GOALS Trap uncharged dielectric microbeads in aqueous solution with a focused laser beam. -
Invincible DNA Tethers: Covalent DNA Anchoring for Enhanced Temporal and Force Stability in Magnetic Tweezers Experiments Richard Janissen, Bojk A
Nucleic Acids Research Advance Access published August 19, 2014 Nucleic Acids Research, 2014 1 doi: 10.1093/nar/gku677 Invincible DNA tethers: covalent DNA anchoring for enhanced temporal and force stability in magnetic tweezers experiments Richard Janissen, Bojk A. Berghuis, David Dulin, Max Wink, Theo van Laar and Nynke H. Dekker* Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands Received May 30, 2014; Revised July 11, 2014; Accepted July 14, 2014 ABSTRACT mental role in a variety of biological processes ranging from cellular motility to the replication, repair and segregation of Downloaded from Magnetic tweezers are a powerful single-molecule DNA (1,2). Examples of single-molecule methods capable technique that allows real-time quantitative inves- of applying force to biological systems include atomic force tigation of biomolecular processes under applied spectroscopy (AFM), optical tweezers and magnetic tweez- force. High pulling forces exceeding tens of picoNew- ers (2,3). The magnetic and optical tweezers methods have tons may be required, e.g. to probe the force range garnered particular attention as they provide high tempo- http://nar.oxfordjournals.org/ of proteins that actively transcribe or package the ral, spatial and force sensitivity in a range from hundreds of genome. Frequently, however, the application of such femtoNewtons to tens of picoNewtons (pN), and, in con- forces decreases the sample lifetime, hindering data trast to AFM, they are also capable of measuring and ap- acquisition. To provide experimentally viable sam- plying torque (4–7). More recent developments in magnetic ple lifetimes in the face of high pulling forces, we tweezers also include the possibility of measuring multiple samples simultaneously (multiplexing) (8–10), allowing for have designed a novel anchoring strategy for DNA a broad, statistically sound characterization of biomolecu- in magnetic tweezers. -
Building Bridges Within the Bacterial Chromosome
Review Building bridges within the bacterial chromosome 1,2 2 Dan Song and Joseph J. Loparo 1 Harvard Biophysics Program, Harvard Medical School, Boston, MA, USA 2 Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA All organisms must dramatically compact their genomes called macrodomains (Box 1) with a size of approximately to accommodate DNA within the cell. Bacteria use a set 1 Mb [2,3]. of DNA-binding proteins with low sequence specificity For the past two decades, studies on bacterial chromo- called nucleoid-associated proteins (NAPs) to assist in some condensation and organization have focused on NAPs chromosome condensation and organization. By bend- that can be classified as DNA benders or DNA bridgers ing or bridging DNA, NAPs also facilitate chromosome (Figure 1). Examples of well-studied DNA benders include segregation and regulate gene expression. Over the past HU (a histone-like protein from Escherichia coli strain U93) decade, emerging single-molecule and chromosome and integration host factor (IHF). These proteins can non- conformation capture techniques have investigated specifically bind to DNA by inserting two arms into the minor the molecular mechanisms by which NAPs remodel groove, inducing curvature of more than 908 [4]. DNA and organize the bacterial chromosome. In this review bridgers form dynamic connections between DNA duplexes we describe how such approaches reveal the biochemi- resulting in large DNA loops that can span several kilobases. cal mechanisms of three NAPs that are believed to Besides condensing chromosomes, DNA bridgers also func- facilitate DNA bridging: histone-like nucleoid structuring tion in chromosome segregation and transcription silencing. -
Tissue Manipulation Using Nano-Particles Ferrofluids for Minimal Access Surgical Applications
Tissue Manipulation Using Nano-Particles Ferrofluids for Minimal Access Surgical Applications YU-SHENG LIN Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Mechanical Engineering September, 2014 The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. - ii - Acknowledgements I would like to express my deepest gratitude to my Ph.D. supervisor, Professor Anne Neville for her constant support and guidance through my Ph.D. study. Her enthusiasm, the effort she put into the research and her patient all together make this thesis possible. I am grateful to thank two second supervisors, Dr Rupesh Roshan and Dr Tomasz Liskiewicz, who had supported me in daily research and discussions. I also would like to thank all who had helped this work develop well: the great clinical support from Professor David Jayne, Adrian Hood and Jenifer Barrie on the in-vivo study; the great technical support from Dr Peter Culmer and Dr Ali Alazmani in designing the ex-vivo experimental setup using LabVIEW; the technical support from Dr Nagitha Wijayathunga in characterising the particle migration using micro- CT scanner; the great support from Dr Yi-Fan Chou in processing images using Matlab. In addition, I would like to thank my two examiners, Professor Peter Brett and Dr Mark Wilson for the advices to make this thesis become better. -
Edge Detection with a Preprocessing Approach
Journal of Signal and Information Processing, 2014, 5, 123-134 Published Online November 2014 in SciRes. http://www.scirp.org/journal/jsip http://dx.doi.org/10.4236/jsip.2014.54015 Edge Detection with a Preprocessing Approach Mohamed Abo-Zahhad1, Reda Ragab Gharieb1, Sabah M. Ahmed1, Ahmed Abd El-Baset Donkol2 1Department of Electrical Engineering Communication and Electronics, Assuit University, Assiut, Egypt 2Department of Electrical Engineering and Computer Sciences, Nahda University, Beni-Suef, Egypt Email: [email protected], [email protected], [email protected], [email protected] Received 18 August 2014; revised 15 September 2014; accepted 7 October 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Edge detection is the process of determining where boundaries of objects fall within an image. So far, several standard operators-based methods have been widely used for edge detection. Howev- er, due to inherent quality of images, these methods prove ineffective if they are applied without any preprocessing. In this paper, an image preprocessing approach has been adopted in order to get certain parameters that are useful to perform better edge detection with the standard opera- tors-based edge detection methods. The proposed preprocessing approach involves computation of the histogram, finding out the total number of peaks and suppressing irrelevant peaks. From the intensity values corresponding to relevant peaks, threshold values are obtained. From these threshold values, optimal multilevel thresholds are calculated using the Otsu method, then multi- level image segmentation is carried out. -
Tuning Sizes, Morphologies, and Magnetic Properties of Monocore
Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis Gauvin Hémery, Anthony C. Keyes Jr, Eneko Garaio, Irati Rodrigo, Jose Angel Garcia, Fernando Plazaola, Elisabeth Garanger, Olivier Sandre To cite this version: Gauvin Hémery, Anthony C. Keyes Jr, Eneko Garaio, Irati Rodrigo, Jose Angel Garcia, et al.. Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis. Inorganic Chemistry, American Chemical Society, 2017, 56 (14), pp.8232-8243. 10.1021/acs.inorgchem.7b00956. hal-01567664v3 HAL Id: hal-01567664 https://hal.archives-ouvertes.fr/hal-01567664v3 Submitted on 17 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License This document is the author manuscript version of published paper Inorganic Chemistry, 2017, 56(14), 8232−8243, after peer review and technical editing by the publisher. Final version visible on DOI:10.1021/acs.inorgchem.7b00956 Tuning Sizes, Morphologies, and Magnetic Properties of Monocore Versus Multicore Iron Oxide Nanoparticles through the Controlled Addition of Water in the Polyol Synthesis Gauvin Hemerya, Anthony C. -
Modèles De Markov Cachés Récents Pour La Détection Et La Reconnaissance D’Activités À Partir D’Un Capteur IMU Placé Sur Une Jambe Haoyu Li
Modèles de Markov cachés récents pour la détection et la reconnaissance d’activités à partir d’un capteur IMU placé sur une jambe Haoyu Li To cite this version: Haoyu Li. Modèles de Markov cachés récents pour la détection et la reconnaissance d’activités à partir d’un capteur IMU placé sur une jambe. Autre. Université de Lyon, 2019. Français. NNT : 2019LYSEC041. tel-02537351 HAL Id: tel-02537351 https://tel.archives-ouvertes.fr/tel-02537351 Submitted on 8 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. No d’ordre NNT : 2019LYSEC41 THESE DOCTEUR DE L’ÉCOLE CENTRALE DE LYON Spécialité: Informatique Recent Hidden Markov Models for Lower Limb Locomotion Activity Detection and Recognition using IMU Sensors dans le cadre de l’École Doctorale InfoMaths présentée et soutenue publiquement par HAOYU LI December 2019 Directeur de thèse: Stéphane Derrode, PR à l’Ecole Centrale de Lyon Co-directeur de thèse: Wojciech Pieczynski, PR à Télécom SudParis JURY François Septier Université Bretagne Sud Rapporteur Faicel Chamroukhi Université de Caen Rapporteur Latifa Oukhellou IFSTTAR Présidente Lamia Benyoussef EPITA Examinatrice Stéphane Derrode É́cole Centrale de Lyon Directeur de thèse Wojciech Pieczynski Télécom SudParis Co-directeur de thèse Contents Abstract v Résumé vii 1 Introduction 1 2 Background 7 2.1 Available sensors for collecting data .................. -
The Catholic University of America
THE CATHOLIC UNIVERSITY OF AMERICA Development and Use of Novel Transverse Magnetic Tweezers for Single-Molecule Studies of DNA-Protein Interactions A DISSERTATION Submitted to the Faculty of the Department of Biomedical Engineering School of Engineering Of The Catholic University of America In Partial Fulfillment of the Requirements For the Degree Doctor of Philosophy By Christopher D. Tyson Washington, D.C. 2016 Development and Use of Novel Transverse Magnetic Tweezers for Single-Molecule Studies of DNA-Protein Interactions Christopher D. Tyson, Ph.D. Director: Abhijit Sarkar, Ph.D. I describe several contributions to single molecule experiments. A transverse magnetic tweezers is presented that enables in-plane micromechanical manipulation of a single DNA molecule. This includes a new method for tethering DNA utilizing two labeled beads and a functionalized glass micro-rod. The attachment chemistry reported here enables rapid capture of multiple DNA tethers in parallel, overcomes the difficulties associated with bead aspiration, and preserves the ability to perform differential extension measurements from the bead centroids. Combined with micro- injection pipettes, a new sample cell design, and a buffer exchange system, the components increase the ease-of-use and experimental throughput of the magnetic tweezers device. On the software side, several unique computational methods for interrogating single molecule data are described. First, a technique that uses the diffraction pattern of beads to perform sub-pixel, ~10 nm-level localization of the bead centroids is explained. Second, a novel method for automatically detecting steps in DNA extension data is presented. This algorithm is well-suited for analyzing experiments involving binding and force-induced unbinding of DNA-protein complexes, which produce flat extension regions – steps – corresponding to the times between individual protein association or dissociation events. -
Advances in Magnetic Tweezers for Single Molecule and Cell Biophysics
FRONTIER REVIEW Advances in Magnetic Tweezers for Single Molecule and Cell Biophysics Devrim Kilinc a and Gil U. Lee* a Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 Magnetic tweezers (MTW) enable highly accurate forces to be transduced to molecules to study mechanotransduction at the molecular or cellular level. We review recent MTW studies in single molecule and cell biophysics that demonstrate the flexibility of this technique. We also discuss technical advances in the method on several fronts, i.e., from novel approaches for the measurement of torque to multiplexed biophysical assays. Finally, we describe multi-component nanorods with enhanced optical 10 and magnetic properties and discuss their potential as future MTW probes. Mechanical manipulation of biological material, from proteins to tissue, is receiving growing interest in biomedical research since it provides quantitative information on how mechanical stimuli regulate a multitude of biological processes from enzyme activity to organ development 1. Among the techniques developed to apply force to biological entities, magnetic tweezers (MTW) has claimed particular attention as it is capable of applying torque, it can be fully integrated with a range of powerful light microscopy imaging modes, and it 2 15 offers high force, spatial, and temporal sensitivity . In this review, we present a brief summary of recent measurements made with MTW and highlight several technical advances that are taking place in MTW instrumentation. The MTW technique is based on the non-invasive manipulation of magnetic particles, and thereby the biological entity they are attached to, via an externally-imposed magnetic field and/or field gradient. -
Magnetic Tweezers: Micromanipulation and Force Measurement at the Molecular Level
3314 Biophysical Journal Volume 82 June 2002 3314–3329 Magnetic Tweezers: Micromanipulation and Force Measurement at the Molecular Level Charlie Gosse and Vincent Croquette Laboratoire de Physique Statistique, E´ cole Normale Supe´rieure, Unite´ de Recherche 8550 associe´e au Centre National de la Recherche Scientifique et aux Universite´s Paris VI et VII, 75231 Paris, France ABSTRACT Cantilevers and optical tweezers are widely used for micromanipulating cells or biomolecules for measuring their mechanical properties. However, they do not allow easy rotary motion and can sometimes damage the handled material. We present here a system of magnetic tweezers that overcomes those drawbacks while retaining most of the previous dynamometers properties. Electromagnets are coupled to a microscope-based particle tracking system through a digital feedback loop. Magnetic beads are first trapped in a potential well of stiffness ϳ10Ϫ7 N/m. Thus, they can be manipulated in three dimensions at a speed of ϳ10 m/s and rotated along the optical axis at a frequency of 10 Hz. In addition, our apparatus can work as a dynamometer relying on either usual calibration against the viscous drag or complete calibration using Brownian fluctuations. By stretching a DNA molecule between a magnetic particle and a glass surface, we applied and measured vertical forces ranging from 50 fN to 20 pN. Similarly, nearly horizontal forces up to 5 pN were obtained. From those experiments, we conclude that magnetic tweezers represent a low-cost and biocompatible setup that could become a suitable alternative to the other available micromanipulators. ⌫ LIST OF SYMBOLS x,y (nondimensional) the viscous coefficient of a sphere moving parallel to a sidewall (Defined in Ϫ1 Au (NA ) the factor between the force and the cur- Eq. -
A Method for Wavelet-Based Time Series Analysis of Historical Newspapers
MSc thesis Master’s Programme in Computer Science A Method for Wavelet-Based Time Series Analysis of Historical Newspapers Jari Avikainen December 3, 2019 Faculty of Science University of Helsinki Supervisor(s) Prof. Hannu Toivonen Examiner(s) Prof. Hannu Toivonen, Dr. Lidia Pivovarova Contact information P. O. Box 68 (Pietari Kalmin katu 5) 00014 University of Helsinki,Finland Email address: [email protected].fi URL: http://www.cs.helsinki.fi/ HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme Faculty of Science Master’s Programme in Computer Science Tekij¨a— F¨orfattare— Author Jari Avikainen Ty¨onnimi — Arbetets titel — Title A Method for Wavelet-Based Time Series Analysis of Historical Newspapers Ohjaajat — Handledare — Supervisors Prof. Hannu Toivonen Ty¨onlaji — Arbetets art — Level Aika — Datum — Month and year Sivum¨a¨ar¨a— Sidoantal — Number of pages MSc thesis December 3, 2019 43 pages Tiivistelm¨a— Referat — Abstract This thesis presents a wavelet-based method for detecting moments of fast change in the textual contents of historical newspapers. The method works by generating time series of the relative frequencies of different words in the newspaper contents over time, and calculating their wavelet transforms. Wavelet transform is essentially a group of transformations describing the changes happening in the original time series at different time scales, and can therefore be used to pinpoint moments of fast change in the data. The produced wavelet transforms are then used to detect fast changes in word frequencies by examining products of multiple scales of the transform. The properties of the wavelet transform and the related multi-scale product are evaluated in relation to detecting various kinds of steps and spikes in different noise environments.